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In this note we give an example of an AC, charge, F, on R and an absolutely
continuous Radon measure p on R such that F ® u is not an AC, charge on R2.
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1. INTRODUCTION

In [1] the tensor problem was stated for the tensor product of AC,
charges and the Lebesgue measure. Later W. F. Pfeffer suggested look-
ing at possible generalizations of this problem. In this note we show that
a more general version of this problem is false. We also give a version of
the tensor theorem which seems to be true and will be the subject of a
forthcoming paper by this author.

The generalized version of the tensor problem is the following (for details
of the definitions see Section 2 of this paper or [1]):

Let u be an absolutely continuous Radon measure in R”, and let F be
a charge in R™ where m and n are positive integers. (In this paper abso-
lute continuity is always considered with respect to the Lebesgue measure.)
Given a bounded BV set B C R™*" let

B ={xeR":(x,y) € B}
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and
(F@p)B) = [ F(B)du(y).

It is not difficult to see that F ® u is a charge and the question is whether
F®uis AC, in E x R" whenever F is AC, in a locally BV set E C R™.

This question is of interest because for nonabsolute integrals usually
there is no Fubini’s theorem and hence results concerning products are
useful.

In this note we give a counterexample in the simplest possible setting.
The charge F will be an AC, charge on R (in fact, it will be supported on
[0, 1]) and p will be an absolutely continuous Radon measure supported
on [0, 1]. Their tensor product F ® w will not be an AC, charge on R
More sophisticated similar examples can be obtained in higher dimensions
as well.

It is easy to see that if u has an atomic part then the tensor conjecture
is false. Our example shows that even for absolutely continuous measures
one can obtain counterexamples. In our construction we give a u such that
its density function (its Radon-Nikodym derivative) ¢ is unbounded. It
seems to us that the conjecture on tensor products is true if we assume
that ¢ € L>®(R").

2. PRELIMINARIES

We denote by d(A) and | A| the diameter and the Lebesgue measure of
the set A C R™, respectively.

The open ball centered at x and of radius r will be denoted by B(x, r).

Closed intervals in R™ are Cartesian products of closed one-dimensional
intervals. Figures in R are finite unions of closed m-dimensional intervals.

The Lebesgue density points (see for example [2, Corollary 6.2.6]) of a
measurable set 4 C R™ form its essential interior, int* 4. The Lebesgue dis-
persion points (zero-density points) of 4 form its essential exterior ext* A.

The essential boundary of A equals ¢*A4 ol R™\(int* A U ext* A).

The measurable set A Cc R™ is a BV set if its perimeter |A|| o
#"1(9* A) is finite (here #™! denotes the (m — 1)-dimensional Hausdorff
measure).

One-dimensional BV sets coincide (modulo sets of zero Lebesgue mea-
sure) with finite unions of closed intervals, that is, with one-dimensional
figures. Recalling that the zero-dimensional Hausdorff measure is the
counting measure, if the BV set A C R is equivalent to U;.‘ZII ; (where the
I;’s are disjoint closed intervals) then the essential boundary of A coin-
cides with the endpoints of the intervals I; and || A|| = 2k (the number of
the endpoints of these intervals).
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A function F defined on m-dimensional Bl sets is an m-dimensional
charge if it is

1. additive; that is, F(4A U B) = F(A) + F(B) holds for any two
nonoverlapping BV sets A and B (recall that A and B are nonoverlap-
ping if int* 4 N int*B = J);

2. continuous; that is, for every € > 0 there exists p > 0 such that
|F(A)| < eif |A| <p, |A| <1/e, and A C B(0, 1/€).

Assume E C R™, 6: E — [0, 00) is a gauge on E if {x : 6(x) = 0} is thin;
that is, it is of o-finite (m — 1)-dimensional Hausdorff measure.

A system P = {(A;, x;)}._, is a partition if the A,’s are nonoverlapping
BV sets and x; € 4; for i =1, ..., p. The partition & is anchored in E if
x;eEforalli=1,..., p. If a gauge & is given on E then % is 6-fine if
A; C B(x;,8(x;)) holds for alli=1,..., p.

The regularity, r(A), of a BV set A C R™ is the number |A|/d(A)| A
if d(A)|A| # 0; otherwise r(A) = 0. If n > 0 and r(A) > 1 we say that
A is m-regular. A partition % is n-regular if 7(A4;) > nforalli=1,..., p.

If a one-dimensional BV set 4 C R is n-regular then

d(A) = |A] > nd(A)| 4] and hence  1/n = |A]; (1

that is, A4 is equivalent to a finite union of less than [1/2n] many closed
intervals. Since || 4| > 2 we also have

|A] > nd(A)||A]| = 2nd(A). 2)
Assume F is a charge defined on BV sets of R",n > 0, E C R™ and

8: E — [0, 00) is a gauge. Set

p
Vn,aF(E) = sng [F(A;),
P =1

where the supremum is taken for all n-regular, §-fine partitions P =
{(A;, x;)}7_,. The F-variational outer measure of E is defined as

V.F(E) = sup i%f V,oF(E),
O<n

where the infimum is taken for all § gauge functions defined on E. It is not
difficult to show that I F is a metric outer measure.

We say that F is an AC, (m-dimensional) charge if V,F is absolutely
continuous with respect to the Lebesgue measure (in R™).
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3. THE MAIN RESULT

THEOREM 1. There exists a charge F defined on BV sets of R and an
absolutely continuous Radon measure . in R, such that F ® u is not an AC,
charge in R?.

Proof. Let C be the triadic Cantor set. We denote by C; the union of
the 2 many closed intervals of length 37% which are used in the definition

of C at step k. We denote these intervals by Gy 4, ..., Gy ,. We denote
by G\ 4 --- sz . the intervals which are concentric Wlth Gy ks G gy
respectlvely, and which are of length
1
hy = K20k +133k+2"

Observe that Cy 1 N Uzk G =9

On Gj ; we set for cach ] =1,...,2k

1

Observe that

h 1
Ak e 1
/ujG}., d(x)dx =2 . TROE =
Set ¢(x) =0 for x & U, Uf.:l G i
Put u(A) = [, ¢(x)dx. Observe that u is an absolutely continuous
Radon measure with support in [0, 1] and

(G0 = 55t ()

for each k e Nand j=1,...,2~.

To define the charge F we need an auxiliary Cantor type set E. We define
this set as the intersection of some auxiliary nested closed sets E; and each
E, will be a union of nonoverlapping closed intervals, each of length 3K,

Set Eg =1,  =[0,1], Ny = 1.

Assume k > 0, E, is defined and equals the union of nonoverlapping

closed intervals I; x, j =1,..., Ny, each of length 3K,
Gl,l GZ,]
Gy
— — CZ
G2 Gy, G2 Gsz Ghy Gap

FIGURE 1
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[ I

Ijs k41 intervals

FIGURE 2

To define E;,, divide each I; ; into 37K 3=(1)? — 3G+’ many
nonoverlapping intervals, each of length 3-(+1’ keep the first 31—+ _
1 of them, and delete the last one. Repeating this procedure in each
I we obtain2 tzle closed intervals I 4i1,j = 1,..., Ny, where
Npy = Q% =¥ —1)N,. For j = 1,...,N, denote by J; ; the last

. N
deleted subinterval of I; ;. Set Eyyy = U; 51 I g1

By induction we define E; for all k € N and set E = ;2 E;. Observe

that for k > 1

k
Bl = T1(1 =397
j=1

and hence |E| > 0.

Assume that k is fixed and we choose a j € {1, ..., N, }. Then the inter-
val I; ; contains a subinterval J; ; of length 3~ (1 Denote by J; , the
sublnterval of J; , which is concentrlc with it and of length (1/3)|J; |-

Observe that d1st( i Ex) = (1/3) 4 =37 (k+17-1 GQet

Ky = k42k2+13(k+1)2.

Divide J,/',k into k; many equal subintervals, J; ; ,,i = 1,..., ;. Then
i il = 370+ /i, for all i.

For i = 1,...,k/2 on int(Jy ;) set f(x) = |J; x|/ ;«l; on
int(Jy_1,j 1) set f(x) = = il/Waicy,jul- I x ¢ U UjU; Intd; i
then set f(x) =0

Observe that if [a, b] is an arbitrary interval and a,b ¢ J; ; then

/ f(x)dx =0.
[a, b1}

If A is one-dimensional BV set put

OONk

FA)=L 3 [ fds.

k=0 j=1
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By the above observation all but finitely many terms of the double sum in
the definition of F equal zero; hence F(A) is well defined.

Next we need to verify that F is an AC, charge.

Assume that the BV set A is equivalent (modulo a set of measure zero)
to the disjoint closed intervals Z, ..., Z,. We will denote this property later
by A~ UL, Z

If no endpoint of an interval Z; belongs to an interval of the form J; ,
then

oo Ni
Fz)=y [ @)
520 121 Y 2Nk
If at least one of the endpoints of Z; belongs to an interval of the form
J;  k, then, without limiting generality, we can assume that the other end-
pomt of Z, either does not belong to an interval of the form J; , C J; ,
or if it belongs to such an interval then k£ > k. It is easy to see that in thls
case

\F(Z)| =2V |- ®)

First we show that F is a charge. It is clearly additive. Assume € > 0
is given. Without limiting generality we assume € < 1. We need to choose
p > 0 such that if the BV set 4 C B(0, 1/¢), | A|| < 1/e, and |A| < p then
|F(A)| < e.

Assume A ~ |J!_; Z,. Then || A|| < 1/e implies ¢ < 1/2¢. Choose k such
that

ik = k| < €672, J=1,..., Ny, (6)

Since f is bounded on Hy & Uk" 1UNA J; x we can choose p; >0 such

that if the interval Z; C Hy, and |Z,| < p; then | [, f| =|F(Z,)| < €
If fz A, f # 0 then there exists k € {1,...,ky— 1} and j € {1,. Nk}
such that Z NJ;, = <. This implies that 1f we assume that |Z;| < |A| <
|J1 ko |/3 then Z C Hk()
Therefore if [, AH, f #0then |Z,| < |A4] < pdétmin(pl, p,) implies that
s <0
|F(Z,)| < €.
If [, nH, f =0 but F(Z,) # 0 then an estimate of the form (5) holds
s 0
with a k; > k. Using (6) we obtain

IF(Z)I <21, 1] < 2W1 4, < €.
This implies
t
F(A)| = Y IF(Z)] < /2 = ¢/2 <.

s=1
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Next we show that F is AC,.

Since V,F is a Borel measure, V,F(R\[0, 1]) = 0, and one can easily
see that V. F is absolutely continuous on each set J; ;,k =0,1,...,j =
1, ..., Ny it is enough to show that it is absolutely continuous on E. Assume
SCE,IS=0,n>0is fixed, and 2 = {(A4;, x;)}._, is an n-regular parti-
tion, anchored in S C E. Assume, furthermore, that 4; ~ U;i: 1 Zs, ;- Then
(1) implies #; < 1/2% and (2) implies |A4;| > 2nd(A;).

Now, if F(Z; ;) # 0, that is, (4) does not hold, then we can use (5) to
obtain

|F(Zs, )| < 2;, k. |-

Since x; € A;, x; € S CE, and ENint(J; ;) = we also have d(4;) >
|J‘s,i’k5,i|/3'
Hence, keeping in mind that || 4;| > 2, we obtain
Al = nd(AD A = 2017, i 1/3 = nlF(Z, )I/3.

Since ¢; < 1/27n we obtain

t:
i 3|4, 3|4,
F(A = DIFZ )| <670 =<5 5

Cover S by an open set G such that |G| < n?€/3 and for x € H choose
8(x) > 0 satisfying B(x, §(x)) C G. If & is §-fine then U_, A; C G and
hence

P P 3| A4;

SIFCa = Y 30 <3161 < e

i=1 i-1 2m
This shows that using this 6 we have V, ;F(S) < €. Using that for each
€ > 0 one can choose a suitable 6 and one can repeat the above argument
for all 7 > 0 we obtain that V,F(S) = 0. This completes the proof of the
fact that F is AC,.

Finally we show that F ® u is not AC,. Using Chapter 7 of [3] one
can easily see that the Hausdorff dimension of C x E is 1 + log2/log3,
and hence |C x E| = 0 but it is not of o-finite one-dimensional Hausdorff
measure; that is, it is not thin.

We show that V,F(C x E) # 0.

Assume 7 is sufficiently small (something like n < 1/20 is suitable). Since
C x E is not thin if 8 is an arbitrary two-dimensional gauge function then
there exists an x € C x E for which (x) > 0. Choose and fix such an x.

Choose k such that 37 < 8(x)/2 and assume that G, is the base interval
of C,. which contains x and is of length 3*"2, and we denote by G, the
corresponding middle third interval of G,. Recall that G, is of length /.,
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¢ m — 4

G

length of I, is 37

FIGURE 3

and it was used in the definition of ¢ and u; furthermore by (3) we have
2
w(Gy) = k= 27,
Similarly, assume that I, is the base interval /; , of length 3-K which
was used in the definition of Ej and J, is the corresponding interval J; ;

of length 3=+’ Furthermore, the middle third of J,, J; . will be denoted
by J; and the intervals J; ; ; used in the definition of f W111 be denoted by

x,l(l - 1 Kk)

Observe that Ci241 N G, consists of two intervals, each of length |G, |/3,
and G, NCpyy =

Set A = (I, x (Cey NG U (U T, 2) x G).

Then | A < 635 + kehe < 7-37%,d(A4) < ¥2-37%, and |A| >
(2/3)32". This implies that A is m-regular. Since 4 ¢ G, x I, C
B(x, 8(x)), the one element partition 2 = {(A4, x)} is n-regular and é-fine.

On the other hand

(F®u)(A) = w(Co N GIFUL) +w(G)F [ f

|Jx| _ K _
|]x’2| T kAR H13(k+1)? T

=0+ k27 2k, )

This implies that V,, 5(F ® u)(C x E) > 1 holds for all gauge 6 and hence
V.F(C x E) = 1. Thus V,(F ® w) is not absolutely continuous.
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