
Journal of Mathematical Analysis and Applications 259, 377–385 (2001)
doi:10.1006/jmaa.2000.7398, available online at http://www.idealibrary.com on
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In this note we give an example of an AC∗ charge, F , on � and an absolutely
continuous Radon measure µ on � such that F ⊗ µ is not an AC∗ charge on �2.
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1. INTRODUCTION

In [1] the tensor problem was stated for the tensor product of AC∗
charges and the Lebesgue measure. Later W. F. Pfeffer suggested look-
ing at possible generalizations of this problem. In this note we show that
a more general version of this problem is false. We also give a version of
the tensor theorem which seems to be true and will be the subject of a
forthcoming paper by this author.

The generalized version of the tensor problem is the following (for details
of the definitions see Section 2 of this paper or [1]):

Let µ be an absolutely continuous Radon measure in �n, and let F be
a charge in �m where m and n are positive integers. (In this paper abso-
lute continuity is always considered with respect to the Lebesgue measure.)
Given a bounded BV set B ⊂ �m+n, let

By = �x ∈ �m � 	x� y
 ∈ B�

1 Supported by Grants FKFP 0192/1999 and Hungarian National Foundation for Scientific
Research Grant T 032042.

377

0022-247X/01 $35.00
Copyright © 2001 by Academic Press

All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82134841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


378 zoltán buczolich

and

	F ⊗ µ
	B
 =
∫
�n
F	By
dµ	y


It is not difficult to see that F ⊗ µ is a charge and the question is whether
F ⊗ µ is AC∗ in E × �n whenever F is AC∗ in a locally BV set E ⊂ �m.

This question is of interest because for nonabsolute integrals usually
there is no Fubini’s theorem and hence results concerning products are
useful.

In this note we give a counterexample in the simplest possible setting.
The charge F will be an AC∗ charge on � (in fact, it will be supported on
[0� 1]) and µ will be an absolutely continuous Radon measure supported
on [0� 1]. Their tensor product F ⊗ µ will not be an AC∗ charge on �2.
More sophisticated similar examples can be obtained in higher dimensions
as well.

It is easy to see that if µ has an atomic part then the tensor conjecture
is false. Our example shows that even for absolutely continuous measures
one can obtain counterexamples. In our construction we give a µ such that
its density function (its Radon–Nikodym derivative) φ is unbounded. It
seems to us that the conjecture on tensor products is true if we assume
that φ ∈ L∞	�n
.

2. PRELIMINARIES

We denote by d	A
 and �A� the diameter and the Lebesgue measure of
the set A ⊂ �m, respectively.

The open ball centered at x and of radius r will be denoted by B	x� r
.
Closed intervals in �m are Cartesian products of closed one-dimensional

intervals. Figures in �m are finite unions of closed m-dimensional intervals.
The Lebesgue density points (see for example [2, Corollary 6.2.6]) of a

measurable setA ⊂ �m form its essential interior, int∗A. The Lebesgue dis-
persion points (zero-density points) of A form its essential exterior ext∗A.
The essential boundary of A equals ∂∗A def= �m\	int∗A ∪ ext∗A
.

The measurable set A ⊂ �m is a BV set if its perimeter �A� def=
�m−1	∂∗A
 is finite (here �m−1 denotes the 	m− 1
-dimensional Hausdorff
measure).

One-dimensional BV sets coincide (modulo sets of zero Lebesgue mea-
sure) with finite unions of closed intervals, that is, with one-dimensional
figures. Recalling that the zero-dimensional Hausdorff measure is the
counting measure, if the BV set A ⊂ � is equivalent to ∪kj=1Ij (where the
Ij ’s are disjoint closed intervals) then the essential boundary of A coin-
cides with the endpoints of the intervals Ij and �A� = 2k (the number of
the endpoints of these intervals).
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A function F defined on m-dimensional BV sets is an m-dimensional
charge if it is

1. additive; that is, F	A ∪ B
 = F	A
 + F	B
 holds for any two
nonoverlapping BV sets A and B (recall that A and B are nonoverlap-
ping if int∗A ∩ int∗B = �
;

2. continuous; that is, for every ε > 0 there exists ρ > 0 such that
�F	A
� < ε if �A� < ρ� �A� < 1/ε, and A ⊂ B	0� 1/ε
.

Assume E ⊂ �m� δ� E→ �0�∞
 is a gauge on E if �x � δ	x
 = 0� is thin;
that is, it is of σ-finite 	m− 1
-dimensional Hausdorff measure.

A system � = �	Ai� xi
�pi=1 is a partition if the Ai’s are nonoverlapping
BV sets and xi ∈ Ai for i = 1�    � p. The partition � is anchored in E if
xi ∈ E for all i = 1�    � p. If a gauge δ is given on E then � is δ-fine if
Ai ⊂ B	xi� δ	xi

 holds for all i = 1�    � p.

The regularity, r	A
, of a BV set A ⊂ �m is the number �A�/d	A
�A�
if d	A
�A� �= 0; otherwise r	A
 def= 0. If η > 0 and r	A
 > η we say that
A is η-regular. A partition � is η-regular if r	Ai
 > η for all i = 1�    � p.

If a one-dimensional BV set A ⊂ � is η-regular then

d	A
 ≥ �A� > ηd	A
�A� and hence 1/η ≥ �A�� (1)

that is, A is equivalent to a finite union of less than �1/2η� many closed
intervals. Since �A� ≥ 2 we also have

�A� > ηd	A
�A� ≥ 2ηd	A
 (2)

Assume F is a charge defined on BV sets of �m�η > 0� E ⊂ �m and
δ� E→ �0�∞
 is a gauge. Set

Vη� δF	E
 = sup
�

p∑
i=1

�F	Ai
��

where the supremum is taken for all η-regular, δ-fine partitions � =
�	Ai� xi
�pi=1. The F-variational outer measure of E is defined as

V∗F	E
 = sup
0<η

inf
δ
Vη�δF	E
�

where the infimum is taken for all δ gauge functions defined on E. It is not
difficult to show that V∗F is a metric outer measure.

We say that F is an AC∗ (m-dimensional) charge if V∗F is absolutely
continuous with respect to the Lebesgue measure (in �m).
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3. THE MAIN RESULT

Theorem 1. There exists a charge F defined on BV sets of � and an
absolutely continuous Radon measure µ in �, such that F ⊗ µ is not an AC∗
charge in �2.

Proof. Let C be the triadic Cantor set. We denote by Ck the union of
the 2k many closed intervals of length 3−k which are used in the definition
of C at step k. We denote these intervals by G1� k�    �G2k�k. We denote
by G′

1� k�    �G
′
2k�k the intervals which are concentric with G1� k�    �G2k�k,

respectively, and which are of length

hk =
1

k22k+133k+2 

Observe that Ck+1 ∩
⋃2k
j=1G

′
j� k = �.

On G′
j� k we set for each j = 1�    � 2k

φ	x
 = 1
hkk

22k


Observe that
∫
∪jG′

j� k

φ	x
dx = 2k
hk

hkk
22k

= 1
k2 

Set φ	x
 = 0 for x �∈ ⋃∞
k=1

⋃2k
j=1G

′
j� k.

Put µ	A
 = ∫
A φ	x
dx. Observe that µ is an absolutely continuous

Radon measure with support in [0� 1] and

µ	G′
j� k
 =

1
k22k

(3)

for each k ∈ � and j = 1�    � 2k.
To define the charge F we need an auxiliary Cantor type set E. We define

this set as the intersection of some auxiliary nested closed sets Ek and each
Ek will be a union of nonoverlapping closed intervals, each of length 3−k2

.
Set E0 = I1� 0 = �0� 1��N0 = 1.
Assume k ≥ 0, Ek is defined and equals the union of nonoverlapping

closed intervals Ij� k� j = 1�    �Nk, each of length 3−k2
.

FIGURE 1
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FIGURE 2

To define Ek+1 divide each Ij� k into 3−k2
/3−	k+1
2 = 3	k+1
2−k2

many
nonoverlapping intervals, each of length 3−	k+1
2

, keep the first 3	k+1
2−k2 −
1 of them, and delete the last one. Repeating this procedure in each
Ij� k we obtain the closed intervals Ij′� k+1� j

′ = 1�    �Nk+1, where
Nk+1 = 	3	k+1
2−k2 − 1
Nk. For j = 1�    �Nk denote by Jj� k the last
deleted subinterval of Ij� k. Set Ek+1 = ⋃Nk+1

j′=1 Ij′� k+1.
By induction we define Ek for all k ∈ � and set E = ⋂∞

k=1 Ek. Observe
that for k ≥ 1

�Ek� =
k∏
j=1

(
1 − 3	j−1
2−j2)

and hence �E� > 0.
Assume that k is fixed and we choose a j ∈ �1�    �Nk�. Then the inter-

val Ij� k contains a subinterval Jj� k of length 3−	k+1
2
. Denote by J ′j� k the

subinterval of Jj� k which is concentric with it and of length 	1/3
�Jj� k�.
Observe that dist	J ′j� k� Ek+1
 = 	1/3
�Jj� k� = 3−	k+1
2−1. Set

κk = k42k
2+13	k+1
2



Divide J ′j� k into κk many equal subintervals, Ji� j� k� i = 1�    � κk. Then
�Ji� j� k� = 3−	k+1
2−1/κk for all i.

For i = 1�    � κk/2 on int	J2i� j� k
 set f 	x
 = �Jj� k�/�J2i� j� k�; on
int	J2i−1� j� k
 set f 	x
 = −�Jj� k�/�J2i−1� j� k�. If x �∈ ⋃

k

⋃
j

⋃
i int Ji� j� k

then set f 	x
 = 0.
Observe that if �a� b� is an arbitrary interval and a� b �∈ Jj� k then

∫
�a� b�∩J ′j� k

f 	x
dx = 0

If A is one-dimensional BV set put

F	A
 =
∞∑
k=0

Nk∑
j=1

∫
A∩Jj� k

f 	x
dx
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By the above observation all but finitely many terms of the double sum in
the definition of F equal zero; hence F	A
 is well defined.

Next we need to verify that F is an AC∗ charge.
Assume that the BV set A is equivalent (modulo a set of measure zero)

to the disjoint closed intervals Z1�    � Zt . We will denote this property later
by A ∼ ⋃t

s=1Zs.
If no endpoint of an interval Zs belongs to an interval of the form J ′j� k

then

F	Zs
 =
∞∑
k=0

Nk∑
j=1

∫
Zs∩Jj� k

f = 0 (4)

If at least one of the endpoints of Zs belongs to an interval of the form
Jjs� ks then, without limiting generality, we can assume that the other end-
point of Zs either does not belong to an interval of the form J ′j� k ⊂ Jj� k,
or if it belongs to such an interval then k ≥ ks. It is easy to see that in this
case

�F	Zs
� ≤ 2�Jjs� ks � (5)

First we show that F is a charge. It is clearly additive. Assume ε > 0
is given. Without limiting generality we assume ε < 1. We need to choose
ρ > 0 such that if the BV set A ⊂ B	0� 1/ε
� �A� < 1/ε, and �A� < ρ then
�F	A
� < ε.

Assume A ∼ ⋃t
s=1Zs. Then �A� < 1/ε implies t < 1/2ε. Choose k0 such

that

�J1� k0
� = �Jj� k0

� < ε2/2� j = 1�    �Nk0
 (6)

Since f is bounded on Hk0

def= ⋃k0−1
k=1

⋃Nk
j=1 Jj� k we can choose ρ1 > 0 such

that if the interval Zs ⊂ Hk0
and �Zs� < ρ1 then � ∫Zs f � = �F	Zs
� < ε2.

If
∫
Zs∩Hk0

f �= 0 then there exists k ∈ �1�    � k0 − 1� and j ∈ �1�    �Nk�
such that Zs ∩ J ′j� k = �. This implies that if we assume that �Zs� ≤ �A� <
ρ2 = �J1� k0

�/3 then Zs ⊂ Hk0
.

Therefore if
∫
Zs∩Hk0

f �= 0 then �Zs� ≤ �A� ≤ ρ def= min	ρ1� ρ2
 implies that
�F	Zs
� < ε2.

If
∫
Zs∩Hk0

f = 0 but F	Zs
 �= 0 then an estimate of the form (5) holds
with a ks ≥ k0. Using (6) we obtain

�F	Zs
� ≤ 2�Jjs� ks � ≤ 2�J1� k0
� < ε2

This implies

�F	A
� ≤
t∑
s=1

�F	Zs
� ≤ ε2/2ε = ε/2 < ε
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Next we show that F is AC∗.
Since V∗F is a Borel measure, V∗F	�\�0� 1�
 = 0, and one can easily

see that V∗F is absolutely continuous on each set Jj� k� k = 0� 1�    � j =
1�    �Nk it is enough to show that it is absolutely continuous on E. Assume
S ⊂ E� �S� = 0, η > 0 is fixed, and � = �	Ai� xi
�pi=1 is an η-regular parti-
tion, anchored in S ⊂ E. Assume, furthermore, that Ai ∼

⋃ti
s=1Zs� i. Then

(1) implies ti ≤ 1/2η and (2) implies �Ai� > 2ηd	Ai
.
Now, if F	Zs� i
 �= 0, that is, (4) does not hold, then we can use (5) to

obtain

�F	Zs� i
� ≤ 2�Jjs� i� ks� i �
Since xi ∈ Ai� xi ∈ S ⊂ E, and E ∩ int	Jjs� i�ks� i
 = � we also have d	Ai
 ≥
�Jjs� i� ks� i �/3.

Hence, keeping in mind that �Ai� ≥ 2, we obtain

�Ai� ≥ ηd	Ai
�Ai� ≥ 2η�Jjs� i� ks� i �/3 ≥ η�F	Zs� i
�/3
Since ti ≤ 1/2η we obtain

�F	Ai
� ≤
ti∑
s=1

�F	Zs� i
� ≤ ti
3�Ai�
η

≤ 3�Ai�
2η2 

Cover S by an open set G such that �G� < η2ε/3 and for x ∈ H choose
δ	x
 > 0 satisfying B	x� δ	x

 ⊂ G. If � is δ-fine then

⋃p
i=1Ai ⊂ G and

hence
p∑
i=1

�F	Ai
� ≤
p∑
i=1

3�Ai�
2η2 < 3�G�/η2 < ε

This shows that using this δ we have Vη� δF	S
 < ε. Using that for each
ε > 0 one can choose a suitable δ and one can repeat the above argument
for all η > 0 we obtain that V∗F	S
 = 0. This completes the proof of the
fact that F is AC∗.

Finally we show that F ⊗ µ is not AC∗. Using Chapter 7 of [3] one
can easily see that the Hausdorff dimension of C × E is 1 + log 2/ log 3,
and hence �C × E� = 0 but it is not of σ-finite one-dimensional Hausdorff
measure; that is, it is not thin.

We show that V∗F	C × E
 �= 0.
Assume η is sufficiently small (something like η < 1/20 is suitable). Since

C × E is not thin if δ is an arbitrary two-dimensional gauge function then
there exists an x ∈ C × E for which δ	x
 > 0. Choose and fix such an x.

Choose k such that 3−k2
< δ	x
/2 and assume thatGx is the base interval

of Ck2 which contains x and is of length 3−k
2
, and we denote by G′

x the
corresponding middle third interval of Gx. Recall that G′

x is of length hk2 ,
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FIGURE 3

and it was used in the definition of φ and µ; furthermore by (3) we have
µ	G′

x
 = k−4 2−k2
.

Similarly, assume that Ix is the base interval Ij� k of length 3−k2
which

was used in the definition of Ek and Jx is the corresponding interval Jj� k
of length 3−	k+1
2

. Furthermore, the middle third of Jx� J
′
j� k will be denoted

by J ′x and the intervals Ji� j� k used in the definition of f will be denoted by
Jx� i	i = 1�    � κk
.

Observe that Ck2+1 ∩Gx consists of two intervals, each of length �Gx�/3,
and G′

x ∩ Ck2+1 = �.
Set A = 	Ix × 	Ck2+1 ∩Gx

 ∪ 		⋃κk/2i=1 Jx� 2i
 ×G′

x
.
Then �A� ≤ 6 · 3−k

2 + κkhk2 < 7 · 3−k2
� d	A
 < √

2 · 3−k2
, and �A� >

	2/3
3−2k2
. This implies that A is η-regular. Since A ⊂ Gx × Ix ⊂

B	x� δ	x

, the one element partition � = �	A�x
� is η-regular and δ-fine.
On the other hand

	F ⊗ µ
	A
 = µ	Ck2+1 ∩Gx
F	Ix
 + µ	G′
x

κk
2

∫
Jx� 2
f

= 0 + k−42−k2 κk
2
�Jx� 2�

�Jx�
�Jx� 2�

= κk
k42k2+13	k+1
2 = 1

This implies that Vη� δ	F ⊗ µ
	C × E
 ≥ 1 holds for all gauge δ and hence
V∗F	C × E
 ≥ 1. Thus V∗	F ⊗ µ
 is not absolutely continuous.
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