
JOURNAL OF APPROXIMATION THEORY 29, 179-199 (1980) 

Simultaneous Approximation of a Set of complex-Value 
Functions in a Normed Vector Space 

J. H. FREILICH” 

Department of Mathematics, Statistics and Computing, 
City of London Polytechnic, 31 Jewvy Street, London EC3 NZEY, England 

Communicated by E. W’. Cheney 

Received September 3, 1978 

DEDICATED TO THE MEMORY OF P. TURh 

We present a unifying characterisation theory for best simultaneous approxima- 
tion of a set of complex-valued bounded functions on a compact topological 
space B in a normed vector space, by elements of a non-linear subset of e(B). 
The linear problem in the uniform norm was first considered by Diaz and 
McLaughlin [J. Approximation Theory 2 (1969), 419-4323 and was further 
developed by Blatt [J. Approximation Theory 8 (1913), 210-2481 for non-linear 
subsets. We now generalise their approach to an arbitrary norm using the Hahn- 
Banach theory. 

. INTRODUCTION OF PROBLEM, BASIC DEFWTXONS AND RESULTS 

Let B be a compact topological space and S(13) the linear space of complex- 
valued functions defined on B endowed with an arbitrary norm. For E a 
positive number, denote by F = F(a) a nonempty subset of S(B) such that 
if FE F, then jjfjj < 01. Let C(B) be the set of complex-valued ~o~~in~~~~ 
functions defined on B and V = V(B) a non-linear subset of C 
wish to characterise a best simultaneous approximation, 2;, , from V to A?‘$ 
if it exists, designated b.s.a. and given by supptF I[J’- vO j/ = inf,,, supStF 
jlf- v I/. 

The case of the uniform norm has been treated by Blatt in 125. In Section 2, 
we show that this problem is equivalent to finding a best one-sided approxi- 
mation from V to a w* upper semi-continuous function h* (Definition 1.4) 
where h* and V are defined now to be on a w * compact subset of the 
space and h* is set-valued. In Section 3, we obtain a sufficient condition that 
vO satisfies by generalizing the KolmogoroE criterion. Furthermore, by im- 

* The author’s work was carried out at Imperial College, London, in partial f~~~~rn~nt 
of the requirements for a Ph.D. degree of the University of London, 1977. 
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posing on V that it is regular (Definition 1.71, the Kolmogoroff criterion is 
found to be a necessary condition for a global best approximation and we 
can further deduce a uniqueness result. 

In Section 4, we develop the characterisation of a local best approximation 
for approximating families which depend on a parameter, with respect to 
which they have a FrCchet derivative. This includes the case when Y is a 
set of generalized rational polynomials and, with the norm being L1, we 
indicate in Section 5 how under appropriate conditions a local best approxi- 
mation is (i) locally unique, (ii) locally strongIy unique, and (iii) charac- 
terized by a generalized “alternation” theorem. 

IV&don. Let R, c be the fields of real, complex numbers, respectvely, 
endowed with the usual metric topologies given by d(x, v> ==I x - y I. Let 
X and Y be topological spaces, X* the dual of X, i.e,, the set of complex- 
valued bounded linear functionals X -+ @. 

Let A(Y) := [EC Y j E # M ] and ,X(Y) :== [EC Y 1 B compact in the 
topology on Y and E # ~1. E” denotes the closure of 123, C(E) the comple- 
ment of E and co[E] the convex hull or cover of E. W(L, 6, E) is a w* open 
neighbourhood (nbhd) of L, i.e., 

W(~,B,E):-(IEX*:~(Z--)~[ <~forall~c6; 
where 8 is some finite subset of X and E > 01. 

Where there is no loss of clarity we abbreviate W(L, 0, E) by W(L) or IV. 

DEFINITION 1.1. f: X* --t A(Y) is w* upper semi-continuous (u.s.c.) at 
L E X* if to every open set G with f(> C C there exists a w* open nbhd W-(L) 
such that f( W(Q) C G. 

DEFINITION 1.2. j? 2'" --j R is w* U.S.C. at L E X* if to every real number 
c > f(L) there exists a w* open nbhd IV(L) with f(l) < c for all I E W&j. 
The following theorems can be obtained by generalizations of standard 
topology arguments [9]: 

THEOREM 1.1. If EC X* is w* compact urzdfi E -+ S(Y) is w* U.S.C. 
on E, thetif(E) is compact in Y. 

TEBOREM 1.2. If EC X* is w* compact andf: E -+ R is w* U.S.C. on E, 
then there exists apz LO E E such that 

Henceforth, we shall further assume X to be a normed linear space. 
We recall that to each x E X we can associate the evaluation 1: X* - Q; 
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given by 4(L) =I Lx. We remark that 5 is continuous. We shall omit the cap 
in the sequel when portraying x as a function on a subset of X”. 

DEFINITION 1.3. Let K be a subset of B*, the unit norm ball of %” 
satisfying 

(i) K is w* closed. 
(ii) For every fe Fand u E V, there exists an L f X with Re L(f - v) = 

IIf- 21 Il. 

Remarks. (1) The existence of L in B* in (ii) above guaranteed by the 
Hahn-Banach Theorem. 

(2) We shall henceforth take all neighbourhoods of L to be in K. 
(3) We understand by 1, -9 L that for this 0 and any E > 0, there 

exists an n, = n,,(B, E) such that I, E W(L, 8, E) for all y1 2 n, . The following 
definitions are generalizations of corresponding ones in 151. 

DEFINITIoN 1.4. For L E K let h(L) := (z E C / there exists an f~ E 
withf(L) = Lf = z>. Now define 

h*(L) is a set-valued mapping from K into A(C) and is a closed set for each I,. 

THEOREM 1.3. 

for each 0 there exists at least 
me sequence ((Za , 23) satisfying 
(1) L~K 
(2) L2 s L 
(3) zn E w,), 
(4) z, -+ z. 

Proof. Suppose first z E h*(L). Then by Definition 1.4, 

zEi,,,l?,.,40 for all E > 0, and all 8. 
, I 

For each 6 then, we have z E (UIEw(L,e,lin) h(Z))” and so there exists a sequence 
((I, , zJ} depending possibly on 8 with j z - z, 1 < l/n, z, E h(l,), I, E K 
and &, E W’(L, 8, l/n). Conversely, if for each 0 there exists a sequence 
CVIE 9 z,)) satisfying the four conditions, then for any E > 0 there exists an 
n, such that for n 2 M o , hz E W@, 0, 4 and by (3) z,n E h&J c WW(LB,~~ 
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Now z = limz,, therefore z E (u zEw L,B,s) h(Z))“. Since the arbitrary inter- ( 
section of closed sets is again closed, 

Finally, since this is true for each 0, the intersection may be taken over all 
such 8. 

Remark. Suppose for each Bi , i = I,..., m, there exists sequences 
u2 > z,)] depending on 19~ satisfying (l)-(3) such that (2,) has limit points, 
but not in h(L). Let A(eJ be the set of all such limit points, Then if these 
conditions are met by B = uEl Bi, we have ,@ $2 A(B) CA(0J for 
i = l,..., m. Now A(&) are closed subsets of the compact disc (z: / z j < a> 
and therefore the family (A(0): 0 C X> satisfies the finite intersection property. 
Thus there exists a z E fie A(B) C h*(L) with z @ h(L). We employ a modified 
version of this argument, below. 

COROLLARY, If L = AL, + (1 - A) L2 , where L, L, , L, E K and 
0 < h < 1, then 

h*(L) C Ah*(L,) + (1 - X) h*(L,) 

Proof. Since h(L) C hh(L,) + (1 - X) h(L,), we need only consider 
z E h*(L), z $ h(L). For any 0 and E > 0, let Wti)(Li, 0, E) be a w* open 
nbhd of Li, i = 1,2. Then hWcl) + (1 - h) Wt2) is a w* open nbhd of 
L = AL, + (1 - X) L, . 

Setting 

h(L) = ,Q, (IsdwIl~g-A)w~‘~ h(4° 

it is obvious by their definitions that h*(L) C i;(L). 
Now h(L) = (z E e ) for each 0, there exists sequence(s) ((In, 2%)) satis- 

fying (l)-(4) where 1, = hpn + (1 - ;\) q% with pn E W(l), qn E W(a)}. Thus 
h(L) C h*(L). Furthermore plz -9 L, , q12 -9 Lz , and since there exists an 
~YEF with I,fn =z,; we have -KG, wJ>, 21% E h(pJ, w, E h&J and 
z, = xv, + (1 - h) w, . Let A(B) be the set of all limit points of all such 
sequence pairs (0, , w,]. Since z, -+ z $ h(L), A(B) A h(L,) x h(L,) = 0. 
Now (A(8): &’ C X} satisfies the finite intersection property in the product 
topology. 

Thus there exists a (v, w) E n0 A(B) C h*(L,) x h*(L,) with z = Av + 
(1 - h) w. 

DEFINITION I .5. A non-void subset of Y C X is an extremal subset of 
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X if a proper convex combination hx, + (1 - A) xg , 0 < X < 1, of two 
points x1 , x2 E X, is in Y only if both x1 and x, are in Y. 

An extremal subset of X consisting of just one point is called an extrema 
point of X. 

The collection of extremal points of X is denoted by ext (X). 

LEMMA 1 .I. Zf C is a convex and compact subset in R” then C = 
co[ext(C)] (see, e.g., [13, p. 2321). 

LEMMA 1.2. Let $ be a continuous linear mapping of I$ into E2 (two 
Hausdorff locally convex topological spaces) and M be a compact subset 
of E1 . Then for every extremal point e2 of $(M) there exists at least one 
extremalpoint e, of M such that $(eJ = e2 (see [IO, p. 3331). 

Given +I ,..., $N elements of X and M a w* closed subset of B*, let 
denote (C1 ,..., &)T and 0 the origin of N-space. 

Let [M, a] denote [(L$, ,..., L$N)T over all L E &I’]. This is a compact set 
in Euclidean N-space as is its convex hull, co[M, @] (see 14, p. 181). 

By I/ 4, I/ we shall understand max [Ii & (I, i = l,..., N]. 

LEMMA 1.3. co[h!, a] = co[ext (M);@] 

ProoJ: By definition of extremal points and Lemma 1.2, 

exr(co[M, a]) C ext[M, a] C [ext(IW), *)I~ 

Furthermore, by applying Lemma 1.1, 

co[M, 91 = co[ext(co[M, +I)] 
C co[ext(M), @I. 

On the other hand, co[ext(M), Tp] C co[M, a]. Hence the two are identic 

LEMMA 1.4. [f 0 is an interior point of co[M, @I, then there exists ara 
E > 0 such that for all ip’ satisfying I/ 9 - W I/ < 5, we have 0 E co[M, 

Proof. Suppose to the contrary that for every E > 0, there exists 
@(E) with I/ 43 - @‘(E)J~ < E and 0 $ co[M, a(~)]. Then since co[M, +(e 
is compact, there exists a separating hyperplane. That is, there exist constants 
Cl(4,..-, c~(E) not all zero, and a real number X(E) such that 

Re 5 Q(C) L&(E) 3 X(e) > 0 for all L E 44. 
i-l 
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Without loss of generality, we can normalise ~~(6) so that / ci(c)>l < 1 for 
i = I,..., N. 

Let E -+ 0. Then I&( ) E -+ &hi for each i, and we can also extract a 
subsequence from Q(G) such that lim E+.o c((E) = ci for each i. Hence we can 
deduce that for all L E M 

Re f ciLr+$ >, 0. 
i=l 

It follows that co[M, @,I lies to one side of this hyperplane. Furthermore, 
0 belongs either outside co[M, 91 or on a hyperplane supporting co[M, *)I 
at 0. 

It could not, however, be in the interior of the convex hull for then there 
would be points of the convex hull to either side of this hyperplane. 

Hence we have been led to a contradiction. 

DEFINITION 1.6. A non-empty subset Z of B* is sign-extremal for 
u0 E V C X if rninlEZ Re L(u - vO) < 0 for all z, E V. 

LEMMA 1.5. If 2 is a w” closed subset of B* then 2 is sign-extremaI for 
v, E V if and only if ext(Z) is sign-extremalfor v,, . 

The proof is given in [3, Lemma 21. 
We define regular subsets of X in the sense of Brosowski. 

DEFINITION 1.7. Y C X is regular at a point v0 E V if for each real number 
h > 0 and for each w* closed subset A of B* satisfying Re L(v - vO) > 0 
for all L E A, there exists a v,, E V with 

(Rl) Re L(vA - v,,) > 0 for all L E A, 

WI II V,I - vo II < A. 

The subset V of X is regular if it is regular at every point of V. In [3, p. 1.551, 
Brosowski shows that if V is a linear space or a convex set then it is regular. 

DEFINITION 1.8. An n-dimensional subspace V is an interpolating sub- 
space on M, M C ext(B*) if for every set of n linearly independent functionals 
L 1 ,..., L, in 44, 

detLt4dl f 0, 

where V = span[$, ,..., +,I. 
In particular if M has finite cardinality m > n, then inf 1 det[&($j)]l > 0 

when the inf is taken over all selections of n linearly independent functionals. 
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2. CONVERSION OF PROBLEM TO APP~OX~MATI~~ OF h” 

We first deduce a basic property of 15”. 

LEMMA 2.1. h"(L) is w" U.S.C. on K and lz*: K -+ 3f-(@>~ 

EVooJ Suppose at L, E K it is not w* U.S.C. Then there exists an open 
neighbourhood G of h*(L,) such that for every w* open nbhd W(L, , 8, ~1~ 
there exists at least one 1 E W(L, , %, E) with h*(E) $ G. If, however, 
I E IT&,, 8, E) then W(Z, 8, .s> C W(L, , %,2~). Thus for each 8 and E > 0 

(,;, E) h(4° c (,.,, I I 

and /z*(l) C h*(L,) C G, leading to a contradiction. 
Now iz*(tJ is a closed set and furthermore, h*(L,J is bounded, since 

]lfll d 01 for all ~EF and the neighbourhoods of L, are subsets of K, a 
subset of B. Kence h*(L,) is compact. 

Remark. This proof does not depend on a countable base at LO as opposed 
to the proof given in [2, Lemma 2.11. 

The following “distance” function is most suitable for our problem. 

DEFINITION 2.1. c&d, b) = SUP,,/, &$a - b). 

We are now able to take the first step towards an equivalent formulation 
of our original problem. 

LEMMA 2.2. supfeF ljf - z, // = supLBx &I*(L), u(L),>). 

ProoJ For any f E F and L E K, 

Re L(f - v) d sp,, Re(z - Lu) d sup Re(z - Lu). 
.zeh+(L) 

But there exists an L E K such that Re L(f-- a> = j[ f - u jj. Therefore 
!lf - v II d &~“(O, vm < SUPLEK &z*(L), v(L)). The right-hand bound 
is independent of jI Therefore supf,, \jf - v !j < sup,, &z*(L), v(L)). 
On the other hand, consider the sequence (L, , z,) with L, E K, z, E h*(L,) 
and 

liri Re(z., - &I) = sup SLIP Re(z - ED). 
LEK she(L) 

By Theorem 1.3., for 8 = v, there exists a sequence (&‘. T#)) with (I) 
qjp) E K, (2) c$) -Q L, , (3) VP’ E h(qr)), (4) T# + z, . Choose k, so 
that (i) j v$) - z, / < l/n and (ii) j qcv - L,v / < I/n. 
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Then 

> Re(z, - L,u) - 2/n. 

Therefore 

A consequence of Lemma 2.2 is that we can reformulate our problem as 
that of finding the best approximation from V to h* on K using the distance 
function d” on c for approximating a set-valued function. It is desirable to 
investigate further the function on the right-hand side of Lemma 2.2. 

LEMMA 2.3. Set g,(L) := a(h*(L), v(L)) for L E K. Then g, is a mapping 
of K into R and g,(L) is w * U.S.C. on K for each v. 

ProoJ Let L,, E K and ,6 > g,(L,,) with E = (/3 - g,(L,))/2 and 

0 = sshJo) Q(z) where O,(z) = (w: 1 w - z j < e>. 
* 

0 is w* open and h*(L,J C 0. By Lemma 2.1, h* is w* U.S.C. at L, . Hence 
there exists a w* open nbhd W,(L,) such that for all ZE W&L,), h*(Z) C 0. 
But for each 7 E h*(Z) where I E FVl(L,,), there exists a z, E h*(L,J such that 
j r - z, J < E by definition of 0. Therefore for 1 E W;(L,J, 
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Take a IV* open nbhd IV&J such that j Ev - L,u j < E for all I E F&J?&). 
Then for all 2 E W,(L,) n W’&,,) 

which completes the proof. 
We remark that by Theorem 1.2, g, attains its supremum on K. 

LEMMA 2.4. g,(L) is a convex functional on K in the following sense. 
Suppose L = XL, + (1 - A) L, where L, L, , L, E K and 

The proof follows from considering supZehqL) Re z and applying the 
corollary to Theorem 1.3. 

We now restate our problem as that of finding inf,,, supLEK g,(L) an 
for convenience introduce the following non-negative functions: 

4.9 : = ;:g &(O, pv(h*) := in; d(v). 

Furthermore, we set 

M(v) : = [L E K j g,(L) = O(v)], 

D[h*, v] := [(L, z) E KxC 1 z E h*(L), Re(z - Lv) = d(v)], 

$h*, v, L] := [z E h*(L) / Re(z - Lv) = g,(L)]. 

Since K and h*(L) are compact, M(v), D[h*, v] and q[h*, v, L] are non-empty- 
We observe 

((L, z) / L E M(v), z E ?7[h*, v, L]) = D[h*, v]e 

LEMMA 2.5. M(v) is w* compact in K. 

ProojI If L E C(M(v)) then g,(L) < d(v). Since, however, g, is w* 
U.S.C. on K, there exists a w* open nbhd U(L) such that 

d) -=c 44 for all EE U(L). 

Hence C(M(v)) is w* open and therefore M(v) is w* closed and the result 
follows. 

LEMMA 2.6. ext(M(v)) C ext(K) 
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ProoJ: Suppose to the contrary, there exists an E E ext(M((v)) and 
L 6 ext K. Then there exists L, , L, E K and A, 0 < X < 1 with L = AL, + 
(1 - h) L, . Hence g,(L) = d(u) < hg,(L,) + (1 - A) gv(L,) by Lemma 2.4. 
But g,(L) < A(u) for all L EK. Therefore g,(L,) = g,(L,) = O(u), i.e., 
Ll , L, E M(U), which contradicts L E ext(M(n)). 

We now consider relating two separate approaches to describing the 
envelope of F. 

First we define P(L) := sups&(,) Re z. Since g&E) = F+(L) - Re v(L) 
we have that F+(L) is w* U.S.C. on K. Now define U,(L) := supf& Re LJ: 
Let r(L) denote the collection of all w* open nbhds in X of L. 

Let U,+(L) := infwss(L) supzEw U,(I). 
The characterization of the b.s.a. from a linear subspace has been obtained 

in [S] in terms of U,+(L). It is now obtainable from the results in Section 3 
by employing the following lemma. 

LEMMA 2.7. U,+(L) is identical to Z+(L) on K. 

Proof. Suppose to the contrary there exists an L E K with 

F+(L) = a and a >’ U,+(L). 

Then there exists a WE q(L) with 

a > sup sup Re If 
:zew, fEF 

‘=sun sup Re.2 ’ 

On the other hand 

ZEib ZGhiZ) 

= sup~Re’z:zt( kh(Z))’ 

a < sup]Rea:zE n ( u h(l))‘/ 
WWL) zew 

<sup(Rez:.z~( ,lkk(Z))‘) 

leading to a contradiction. 
Now suppose there exists an L E K with F+(L) = a < r = U,+(L). 

Since F+ is w* U.S.C. on K, there exists a 7%‘~ q(L) such that for a < r’ < r, 
F+(Z) < r’ for all I E IV. But h(Z) C h*(Z) for all I E ?V. Therefore SU~,,~(~) Re z < 
supzEhqI) Re z = F+(Z) for all I E W and sup {Re z: z E (UleW(L) h(Z))” < r’]. 
However, suplew supfeF Re If 2 r, leading to a contradiction. 
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3. CNARACTERISATION OF THE BEST APPRO~~TKON TO h* 

We first find circumstances under which pv(h*) is bounded between two 
real numbers. 

THEOREM 3.1. Suppose vO E V and Q a subset of K have the foliowing 
properties: 

(i) Re(z - Lv,) > 0 for all L E Q and z E ~[h*, vO , L]. 
(ii) For no v in V do we have the inequality Re L(v - vO) > 0 satisfied 

for all L E 92. 

Then 0 < infLEa &h*(L), v,(L)) < p&z*) d 4,). 

Pro@ Suppose 0 < pv(h*) < infLED c&h*(L), v,(L)). Then there exists 
a v E Y with p&z*) < A(v) < infLEa c&h*(L), u,(L)). Hence fm every 
L E-Q, &h*(L), v(L)) < c@h*(L), v,(L)). Therefore for all k EL? 
z E +qp*, vo , Ll 

Re(z - v(L)) d ssuyLj Re(z - v(E)) < We(z - v,(L)). 

Hence 0 < Re[v(L) - q,(E)], contradicting (ii). 
We are now in a position to generalise the global Kolmogoroff criterion 

for a sufficient condition for the best approximation from V. 

THEOREM 3.2. v,, E V is a best approximation to A* iffor all u E V 

min Re L(v - vO) < 0. 
L-f( 4 

Proof. Take L? = M(v,,) in Theorem 3.1. If there exists a (L, z) E D[h*, ao] 
such that Re(z - Lu,) = dv,, = 0, then obviously q, is a best approximations 

If for all (L, z) E D[h*, v,], *Re(z - Lv,) > 0, then by Theorem 3.1 

and hence u,, is a best approximation. 
The condition of Theorem 3.2 is not always necessarily satisfied by a best 

approximation from V. However, if V is regular, we can prove the fo~~owi~~. 

THEOREM 3.3. If VC X is regular at vO then vO is a best appro~~mat~~~ 
to h* if and only ifJbr all v E V, minLEM(v0) Re E(v - vO) < 0. 

ProoJ: The sticiency of the condition follows from Theorem 3.2, 
It remains to show the necessity. 

Suppose there exists a v E V with minLEM(V,) Re L(v - vO) = a > 
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Set U :== {L E K J Re L(v - v,,) > a/2). U is w* open in K and contains 
M(Q). For all L E u”, Re L(v - vO) 2 a/2. By the regularity of V at v, , 
for all real h > 0, there exists a v,, E V with Re L(vA - vO) > 0 for all L E U” 
and (( v, - v0 Ij < h. For L E U and z E h*(L), 

Re(z - Lv,) = Re(z - Lv,) + Re(Lv,, - Lv,) 
< Re(z - Lv,). 

Since h*(L) is compact for each L E U, &h*(L), Lv,) < &h*(L), Lv,). 
On the other hand, K\U is weak* compact and is disjoint from M(v,). 
Therefore supLEK\U &z*(k), v,(L)) = E* < d(v,). If we set h := a(~,) - E* 
then for z E h*(L) we have 

Re(z - Lv,) = Re(z - Lv,) + Re(Lv, - LvA) < d(v,,). 

Hence $(h*(L), Q(L)) -C d(v,) and d(v,J = supLEK a(h*(L), Q(L)) < d(v,,). 
We now formulate a uniqueness result for the best approximation, 

analogous to Theorem 3.13 in [2]. 

THEOREM 3.4. If V C X is regular and v,, is a best approximation to h* 
from V, then the best approximation is unique, in the case that Re L(v - v,,) = 0 
on a subset of M(Q) which is sign-extremal for v,, implies v = v, on K. 

ProoJ Suppose v1 is another best approximation to h*. For any (L, z) E 
D[h*, 4 

Re(z - Lv,) = Re(z - Lv,) + Re L(v, - vJ 
d &*(O, v,(L)) 
d I@*, v,(L)) 
= Re(z - Lv,). 

Therefore Re L(v, - vO) > 0 for all L E M(v,,). But by Theorem 3.3 
minLEM(v,) Re L(v, - v,,) < 0. Hence 

Z’:={L~M(v,,)~ReL(v,-v,,)=O}# o. 

Assume 2:’ # M(Q), otherwise the result follows trivially. It follows by 
Lemmas 8 and 9 in [3] that .Z’ is sign-extremal and by the condition of our 
theorem v1 = v0 on K. 

4. APPROXIMATING FUNCTIONS WITH A FRGCHET DERIVATIVE 

Let D be an open subset of a Banach space E with norm 11 . IIE. Let V be 
the set of elements v(a) E X which depend on the parameter a ED, i.e., 
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V: D -+ X and V = (v(a) E X, a E D>. We shall henceforth assume that 
v(a) has a Frtchet derivative with respect to a for each a E D, i.e., for any 
b E E there exists a linear bounded mapping 21: : E -+ X which we denote 
by v’[b, a] with 

I! v(a + b) - v(a) - v’[b, all = o(ll b lid as /( b I& -+ 0. 

Let S?P[a] denote the linear subspace of X consisting of all elements 
v’[b, a], b E E. Let N be the dimension of 2’[a] and CD1 ,..., dj,y be a basis 
for &?[a] with CPi = cDi(a). 

If v(a) has a Frechet derivative at a, then 

For 

II u(a + tb) - v(a>il = Q(t) for any b E E. 

iI 4% + tb) - u(a)ll < II u’[tb, all1 + /I v(a + tb) - v(a) - v’[tb, ajil 
= I t I II 0% alii + o(t). 

Hence there exists a to > 0 such that for all t, 0 < t < t, , v(a + tb) lies 
in the 4ocality of v(a) defined by the norm sphere S(v(a), C) for some 
E = ~(t, , b) with E > 0. We define v(a) to be a local best approximation 
to h* when &v(a)) < A(v(c)) f or all U(C) E V and in an E-locality of ~(a) 
for some E > 0. 

T~~REM 4.1. v(a) is a (local) best approximation to !I.* implies that for 
all b E E 

Proof. Suppose to the contrary, there exists a b E E with 

We show that there exists a better approximation to h* than v(a). Lee Fl 
be the set of L E K for which 

Re Lv’[b, a] > 20 > 0. 

Since D is an open set in E, there exists a t, > 0 such that for all t E (0, t& 
a + tb E D and v(a + tb) lies in an e-locality of v(a). For L E U 

Re L[v(a + tb) - v(a)] 
= Re L[v’[tb, a]] + Re L[v(a + tb) - v(a) - v’[tb, a]] 
3 2at - o(t). 
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Hence there exists t, with 0 < t, < t,, such that for all t, 0 < t < tl and 
LEU 

Re L[v(a + tb) - v(a)] > ut > 0 

and therefore 

Re[z - Lv(a + tb)] = Re[z - Lv(a)] + Re[L(v(a) - v(a + tb))] 

-=c Re[z - Lv(a)]. 

Therefore d(h*(L), v(a + tb)(L)) -C d(v(a)) for all L E U. As shown, 

I/ v(a + tb) - v(a)ll < t II v’[b, alli i- 44. 

Hence there exists a tz , 0 < tz < tI such that for all t in 0 < t < t, 

II v(a + tb) - WI G 2t II 0, alli. 

We now consider the set W = K\U. This is weak* compact, and does 
not contain any member of M(v(a)). Therefore supLEW d(h*(L), v(a)(L)) = 
E* < d(v(a)). Let 7 be such that 

0 -c 7 < min ( tz , d(v(a)) - E* 
2 II v’tk alll ) ’ 

For L E W, z E h*(L) 

Re[z - Lv(a + Tb)] < Re[z - Lv(a)] + Re[L(v(a) - v(a + Tb))] 

,< SUP Re[z - L4a)l 4 II u(a) - 4a + ~b)ll 
zeh*(L) 

-c E* + 27 II 4l~, alll. 

Therefore a(h*(L), v(a + Tb)(L)) -C A(v(a)) for all L E W. Hence 
&(a + Tl-9,) -=I &(a)). 

We remark that in this theorem, we can replace M(v(a)) by its extremal 
points, denoted by E,(M), by applying Lemma 1.5. 

COROLLARY 4.1. If v(a) is a (local) best approximation to h* from V, then 

0 E co[(L@x )..., L@N)T over all L E M(v(a))]. 

Proof. Suppose to the contrary that 0 does not belong to the convex 
hull. Since [(L@+ ,.,., L@N)T over all L E M(v(a))] is a compact set in Euclidean 
N-space, there exists an N-dimensional vector c E E so that 

Re( ilciLCDi) >O forallLEM(u(a)). 
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But CEl c&Di E T[a] and Re L(cE, c,@J > 0 for all L E M(C(a)) wo 
imply that vfa) could not have been a (local) best a~~rox~rnatio~ by 
previous theorem. Hence the result. Here also we may replace ~(~(~)~ 
by E,(M) as a consequence of Lemma 1.3. 

We now wish to obtain a sufficient condition for u(a) to be a local best 
approxmation. For any b E E, let a + tb be represented by a(t) with a(O) = 
Suppose v(a(t)) satisfies an additional condition (17”)~ namely, th 
WtO> - 44W is in the linear span of (!~C~(a(t))>~~ , where 

dW> - @ita)ll = Ott> as t -+ 0 for i = I,..., $7. 

THEOREM 4.2. If v(a(t)) satisfies (T) therz a suj%ient condition .for u(a) 
to be a local best approximation to h* from V is that 

8 E interior co[(L@‘,(a),..., L@N(a))T over aE2 I, E E,(M)]. 

Proof. By the assumed condition and Lemma 1.4, for any b E E, there 
exists an co > 0 with 

0 E co[(L@,(a(t)),..., L@,(a(t)))T over all L E k;h(M)] 

for all t, 0 < t < Ed. 

Suppose to the contrary v(a) is not a local best approximation to h*. Ther%. 
for all E > 0, there exists a t, 0 < t d E and b E E such that a(t) E D and 
pv(h*) < A(v(a(t))) < A(v(a)), i.e., for all L E K 

Hence for all L E E,(M) and z E h*(L) 

i.e., Re[L(v(a(t)) - v(a))] < 0 for all. L E E,(M). Dividing through 
we find 

0 6 coC@WW,..., L@N(a(t)))T over all L E E,(M)]. 

Hence a contradiction follows by taking E = Q r 

5. APPROXIMATIONOF REAL-VALUED FUNCTIONSBYGBNERAJJSED R~T~~~~~ 
IN INTERPOLATING SURSPACES OF L, 

We may relate the results of Section 4 to the following setting. Suppose we 
are working in the space S(B) := L,(B, Z, p) with the L, norm, abbreviate 
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L&u), where B with an appropriate topology is a compact Mausdorff space, 
and p is a o-finite measure (see, e.g., [6, Chapter III]). If we further assume 
that B is the union of at most countably many atoms, say B = uiEI A, , 
then it has been shown that ext(B*) is weak* closed and that each L E ext(B*) 
has the representation 

-W) = c f(A) 44,4&) 
ier 

where 1 o(AJI = 1 and f(AJ denotes the constant value off a.e., on Ai . 
(See [l, p. 170,175]; [12, Section 21). The relevance of these poihts is immediate 
if we take K in Section 4, to be B* or ext(B*) and recall Lemma 2.6 that 
E&U) C ext(K), i.e., the above representation is valid for Et,(M). Further- 
more, the presence of atoms’enables us to use the concepts of interpolating 
subspaces (see Definition 1.8). We remark that in computational work with 
the L, norm, we are obliged to discretise and hence our setting is a practical 
one. 

Suppose we are given a set of real-valued functions F C L&u> and we wish 
to characterise local best approximations from V = W$,, . To recall, let 
c t gl , . . . . gn) and [hl ,..., h,] be fixed sets of linearly independent real-valued 
continuous functions on B. 

Let 

P := spdih ,..., g& 
Q : span{h, ,..., k,J, 

and 
Q+ := (q E Q, q(x) > 0 on B). 

We define I?& := Iplq:p E P, q E Q+) and assume it is non-empty. Let 
D := ((a1 ,..., 01, ; PI ,..., pm) E Em+“; CL1 /3&(x) > 0 on B). 

For (al ,..., a, ; b, ,..., b,) E D, (cl ,..., c, ; dl ,..., d,) E Eafm and real h set 

rh(X) .= CL ei + w g4-4 
. Czl (bi - Adi) Wd 

with the normalisation XT=, ) bi - /\di j = 1. In particular 

For any d = (4 ,..., d,) we can always find a r\ = i(d) > 0 and a A* E 
X*(c, d), 0 < A* < i such that 

i i 5 d&i(x) / < 5 b,&(x) on B 
i-l Z=$ 
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and r, belongs to an +locality of r0 in Rz,, fol- j X j < A*. We shall use the 
folIowing abbreviations: 

q&I, d, x) := g (bi - XdJ h&x) 
i=l 

and qm(x) := 5 bihi(X). 
i=l 

We have a simplification of our problem to that of approximating a single- 
valued w* u.s.c. function F-k K -+ R defined by F+(L) := ma&&*(L) z 
(see remarks after 2.6) with A@,) = ~up~~~g,~(L) = supLEK [F+(L) - ~~(~~~. 
We note that if q$ ,..., C& is a basis for 

~h1:=$+‘U-&, 

and 0 < / h / < Am, then 

&(h, d) : = i = l,...,Iv 

is a basis for P/q&, d) + r,,(Q/q& d)) and furthermore, condition ( 
is satisfied. 

THEOREM 5.1. Let pn E P, qm E Q+ and r0 = pn/qm . If (a) r, is a locally 
best L, approximation to F+ and(b) Pp[r,,] = P/q, + rO(Q/qm) is an ~-d~rne~- 
sional interpolating subspace of L&j, with basis +I ,.-., c&, then 

(i) There exist N + 1 independentfinctionals L, )..., LN+l in e~t(~~r~j~~ 
abbreviated EO(M) such that 

0 E interior co[(L& ,..., L+&)* i = l,..., N + I]; 

(ii} 0 is the only element C$ of P/q,, + rO(Q/q,,%j having the property 
Lic$ 3 0 for i = l,..., N + 1, Li as in (i); 

(iii) There exists a u = u(d), 

0 < cr < A* such that for all h, 1 X / < 0 

Wd~~ 4 f rotQ/dk 4) is an interpolating subspace on (Li)Tz>l fop w&c 
the result of (ii> is valid by similar argument; 

(iv) rD is a unique locally best approximation in the 4ocality of r0 
restricted to j h j < CJ and denoted by U(r, , 0). 

The proofs are virtually identical to those given in [7, Theorem 4.2(i)+).]. 
We now strengthen (iv) of Theorem 5.1 and show that under suitable 

conditions there is local strong unicity in the sense of Newman and Shapiro 
[l l]. The proof corrects that given in 17, for Tlaeorem 4.2(v)]. We will need 
the following lemma adapted from [4, p. 1621. 
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LEMMA 5.1. Ifro := plz/qm E l-l;,, such that 

(c) dim [$- +- r,, $1 = dim [-$--I 
m m 

+dim[$]-I 

and tfp E P, q E Q satisfy 

(9 I/ q II = It qm IL 
.@I P = w, 
(iii) q(x) > 0 on B, 

then p = pn , q = qm . 

?kEOREM 5.2. Under conditims (a) and (b) of Theorem 5.1 and (c) of 
Lemma 5.1 there exists a constant y > 0 such that for all m(x) E U(r,, , a) 

45) z &J f Y II PA - pll II- 

Proof. For 0 < / x ] 6 u, define for the set U(r, , 0) 

and suppose to the contrary, there exists a sequence (Q,) E U(r,, , G) Y,,,~ # r, 
and y(r+) + 0. We may suppose y(rnJ < 4 for k 2 n, . Then we can show 
0 -=c II elk - r, 11 -=c GO, k 3 no, For take anyff& 

II f”Ar - f-0 II < II f-A& -fll t I/ ro -4 

d wTl) + 8 II f”AR - ro II for k > ‘zO by our supposition. 

Therefore IJ yn, - P, // ,< 4d(r,,) & 4a, k > no . Now we show there exists 
a subsequence of r,,, relabelled the same, such that 

Since 0 < ] X, 1 < 0, either limk,, k - )I - 0 for every subsequence, in which 
case lim,,, rAR = r, , or there exists a subsequence relabelled the same with 
lim k+,m A, = A, , where 0 -C h, < CS. Assume the latter to be the case. 
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Hence for each i, 1 < i < m, and for all k we have j pi”’ j < 1 and there- 
fore bi - 1 < A,@’ < b, + 1. It follows that for each i, (djl”“) is a bounded 
sequence and we can extract a convergent subsequence such t 
Iim,,, dt”’ = dj”’ and hence lim ~&A, , d,) = c&@, , do). By definition 

24mJ II Thb - ro II = 4r,J - 4ro) > j=p”t”.“N+l Lj@, - QJ. I . > 
AS k + 00, the left-hand side converges to zero. Now we apply the va~~~i~~ 

of (ii) to (iii) of Theorem 5.1 for 

(lim rAa - ro) E 

to obtain lim rAk = r, . 
By Lemma 5.1, 

Consequently, as k -+ co, we can say heuristically, 

Next, we reason as follows. For Lj E E,(M) and 

we have by virtue of results (iii) and (ii) of Theorem 5.1 that for all k, in~~~di~~ 
the limiting case, 

and 

and is of norm one. Therefore y(rAk) 3 ck > 0. 
Finally, if we let co = min,,,,,,, maxj,l,...,N+l L&, 4 E 2[ro] with c, > 

as already deduced, we can show that for all E, 0 < E < cO, we have that 
ck > co - E for k sufficiently large. To prove this last conjecture, assume k 
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to be large enough that && , d,) N qm and hence &pi(& , d,) N $i . Suppose 
now to the contrary there exists a convergent sequence (in V) 

p P Q 
’ ’ qmtb > d,d + ” qmth, , a,> 

with jJ 42’ jl = 1 

and 

That is, there exists an R(k) such that for v > R(k) 

Assume v 3 R(k). If we represent 4:“’ as CL, a?$&(& , d,) then {&‘>E1 
are bounded by our assumption on 4:‘) and 4” := CL1 L$“‘+~ satisfies 
IJ $” - $Jk) 11 < e/4 by our assumption on k. Hence 1 - e/4 < j/ 4” 1) < 
1 + c/4. Now $v := $v/II $v II is of norm one, belongs to $4[r,] and 

II $k - +P’ II =G II A - $4 II + II $Y - 6’ II 

< (1 - II 4” II> + E/4 

< E/2. 

Consequently -c/2 < max Lp,$ - max Lj$$’ < ~12, j = l,..., N + 1, and 
maxi,l , ...,N+1 L& < co - ~14, which is clearly impossible. Thus we have 
shown that for k sufficiently large y(r,,J is bounded away from zero and we 
have been led to a contradiction. 

We can also reformulate Theorem 5.1 in terms of the more familiar 
“alternation” theorem. The result is identical to that given in [7, Theorem 4.41 
with f replaced by F+ and E,(S) by E,(M). For further applications, see 
[l, Theorem 4.3 et seq.]. 
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