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We present a unifying characterisation theory for best simultaneous approxima-
tion of a set of complex-valued bounded functions on a compact topological
space B in a normed vector space, by elements of a non-linear subset of C(B).
The linear problem in the uniform norm was first considered by Diaz and
McLaughlin [J. Approximation Theory 2 (1969), 419-432] and was further
developed by Blatt [J. Approximation Theory 8 (1973), 210248} for non-linear
subsets. We now generalise their approach to an arbitrary norm using the Hahn-
Banach theory.

1. INTRODUCTION OF PROBLEM, BASIC DEFINITIONS AND RESULTS

Let B be a compact topological space and S(B) the linear space of complex-
valued functions defined on B endowed with an arbitrary norm. For « a
positive number, denote by F = F(«) a nonempty subset of S(B) such that
if FeF, then || f|] < a. Let C(B) be the set of complex-valued continuous
functions defined on B and V = V(B) a non-linear subset of C(B). We
wish to characterise a best simultaneous approximation, v, , from ¥ to F,
if 1t exists, designated b.s.a. and given by supsr|lf — vyl = nf, y SUD ey
hf—vl

The case of the uniform norm has been treated by Blatt in [2]. In Section 2,
we show that this problem is equivalent to finding a best one-sided approzi-
mation from ¥ to a w* upper semi-continuous function A* (Definition 1.4)
where £* and V are defined now to be on a w* compact subset of the dual
space and A* is set-valued. In Section 3, we obtain a sufficient condition that
v, satisfies by generalizing the Kolmogoroff criterion. Furthermore, by im-

* The author’s work was carried out at Imperial College, London, in partial fulfiliment
of the requirements for a Ph.D. degree of the University of London, 1977.
179
0021-9045/80/070179-21502.00/0,

Copyright © 1980 by Academic Press, Inc,
All rights of reproduction in any form reserved,


https://core.ac.uk/display/82134814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

180 J. H. FREILICH

posing on V that it is regular (Definition 1.7), the Kolmogoroff criterion is
found to be a necessary condition for a global best approximation and we
can further deduce a uniqueness result.

In Section 4, we develop the characterisation of a local best approximation
for approximating families which depend on a parameter, with respect to
which they have a Fréchet derivative. This includes the case when V' is a
set of generalized rational polynomials and, with the norm being L, , we
indicate in Section 5 how under appropriate conditions a local best approxi-
mation is (i) locally unique, (i) locally strongly unique, and (iii) charac-
terized by a generalized “‘alternation” theorem.

Notation. Let R, C be the fields of real, complex numbers, respectvely,
endowed with the usual metric topologies given by d(x, ) =[x — y|. Let
X and Y be topological spaces, X* the dual of X, i.e,, the set of complex-
valued bounded linear functionals X — C.

Let AY):=[ECY|E # o] and #(Y):= [ECY|E compact in the
topology on Y and E = @] E° denotes the closure of E, C(E) the comple-
ment of E and co[E] the convex hull or cover of E. W(L, 8, €) is a w* open
neighbourhood (nbhd) of Z, i.e.,

W(L,0,¢):={leX*:|l— Lyx| <eforal xe?,
where 6 is some finite subset of X and ¢ > 0.

Where there is no loss of clarity we abbreviate W(L, 8, €) by W(L) or W.

DeriNtTiON 1.1, 2 X* — A(Y) is w* upper semi-continuous (u.s.c.) at
L e X*if to every open set G with f(L) C G there exists a w* open nbhd W(L)
such that f(W(L)) C G.

DermaTiON 1.2, f: X* — Ris w* ws.c. at L € X* if to every real number
¢ > f(L) there exists a w* open nbhd W{(L) with f(I) < ¢ for all e W(L).
The following theorems can be obtained by generalizations of standard
topology arguments [9]:

TuroreM 1.1. If EC X* is w* compact and f: E — H (Y} is w* ws.c.
on E, then f(E) is compact in Y.

THeOREM 1.2. If EC X* is w* compact and f- E — R is w* u.s.c. on E,
then there exists an L, < E such that

f(Lo) = sup f(L).

Henceforth, we shall further assume X to be a normed linear space.
We recall that to each x € X we can associate the evaluation %#: X* — C



SIMULTANEOUS APPROXIMATION 181

given by #(L) = Lx. We remark that & is continuous. We shall omit the cap
in the séquel when portraying x as a function on a subset of X*.

Dermrion 1.3. Let K be a subset of B*, the unit norm ball of X*
satisfying
(i) Kis w* closed.

(ii) Forevery fe Fandv e V, there exists an L € X with Re L{f — v) =
hf—uwl.

Remarks. (1) The existence of L in B* in (ii) above guaranteed by the
Hahn—Banach Theorem.

(2) We shall henceforth take all neighbourhoods of L to be in K.

(3) 'We understand by /, —¢ L that for this # and any « > 0, there
exists an ny == ny(6, €) such that [, € W(L, 6, ) for all # > n, . The following
definitions are generalizations of corresponding ones in [5].

DermiTioN 1.4, For LeK let A(L) := {zeC |there exists an fefF
with f(L) = Lf = z}. Now define

o= ( U ) forLek

8,e>0 leW(L.0,¢)

h*(L) is a set-valued mapping from K into A(C) and is a closed set for each L.
THeOREM 1.3.

for each 0 there exists at least
one sequence {(I, , z,)} satisfying
B3 — (1) ln € K9
h¥(L) = {zeC @ L1,
(3) zneh(ly),
4 z,—:z

Proof. Suppose first z € #*(L). Then by Definition 1.4,

z e( U h(l)) for all ¢ > 0, and all 4.

l€eW{L,0,¢)

For each 6 then, we have z € (Uiew(z.0,1/m 2(I))° and so there exists a sequence
{(Z, , z,)} depending possibly on 8 with |z — z,| < 1/n, z,€h(l,), I, €K
and [, W(L, 6, 1/n). Conversely, if for each 0 there exists a sequence
{(I., z,)} satisfying the four conditions, then for any « > 0 there exists an
ng such that forn > ny, I, € W(L, 8, ) and by (3) z,, € i(1,.) C Uhiewr.0.0 ().
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Now z = lim z,,, therefore z € (Uiemr.0.0 #(I))°. Since the arbitrary inter-
section of closed sets is again closed,
ze ) ( U k(l)) .
0 ‘leW(L,8,¢)

Finally, since this is true for each 8, the intersection may be taken over all
such 6.

Remark. Suppose for each 0;, i=1,..,m, there exists sequences
{(l. , z,)} depending on 9, satisfying (1)~(3) such that {z,} has limit points,
but not in A(L). Let 4(6,) be the set of all such limit points. Then if these
conditions are met by 8 = (i, 6;, we have o % A(6)C A(9,) for
i = 1,..., m. Now A(6,) are closed subsets of the compact disc {z: | z | < a}
and therefore the family {A(6): 8 C X} satisfies the finite intersection property.
Thus there exists a z € (), 4(6) C A*(L) with z ¢ A(L). We employ a modified
version of this argument, below.

CoROLLARY. If L =ML+ (1 —XNL,, where L, L,, L,cK and
0 <A< 1, then

h*(L) CA*(Ly) + (1 — ) A¥(Ly)

Proof. Since A(L)CAR(L) + (1 — X)) A(L;), we need only consider
zeh*(L), z¢ h(L). For any 6 and ¢ > 0, let W%(L,, 8, ¢) be a w* open
nbhd of L;, i = 1,2. Then AW® - (1 — A) W® is a w* open nbhd of
L=M,+(0-})NL,.

Setting

KDy = () ( 20)
0,e>0
it is obvious by their definitions that A*(L) C h(L).

Now k(L) = {ze C | for each 8, there exists sequence(s) {(/, , z,)} satis-
fying (1)-(4) where 7, = Ap, + (1 — A) g, with p,, e WD, g, € WP}, Thus
R(L) C A¥(L). Furthermore p, —° L, , g, —° Ly, and since there exists an
fneF with [, f, = z,, we have {(v,,wn)}, v.ch(p,), w,<Hklg,) and
Z, = A, + (1 — ) w, . Let A(f) be the set of all limit points of all such
sequence pairs {v, , w,}. Since z, — z ¢ (L), A0 N L) X L) = &.
Now {A4(f): § C X} satisfies the finite intersection property in the product
topology.

Thus there exists a (v, w) € o A(B) CA*(L) X h*(Ly) with z = Av +
1 —-)w.

teaw W 10w @

DerinvaTioN 1.5. A non-void subset of ¥ C X is an extremal subset of



SIMULTANEOUS APPROXIMATION 183

X if a proper convex combination Ax; -+ (1 —A)x,, 0 <A < 1, of two
points x; , x, € X, is in ¥ only if both x, and x, are in Y.

An extremal subset of X consisting of just one point is called an extremal
point of X.
The collection of extremal points of X is denoted by ext (X).

Iemma 1.1, If C is a convex and compact subset in R then C =
colext(C)] (see, e.g., [13, p. 232]).

Lemma 1.2. Let ¢ be a continuous linear mapping of E, into E, (two
Hausdorit locally convex topological spaces) and M be a compact subset
of E,. Then for every extremal point e, of $(M) there exists ai least one
extremal point e, of M such that ¢(e;) = e, (see [10, p. 333]).

Given ¢, ,..., oy clements of X and M a w* closed subset of B*, let ®
denote (¢, ,..., dx)7 and 0 the origin of N-space.

Let [M, ®] denote [(L¢y ,..., Loy)T over all L e M]. This is a compact set
in Euclidean N-space as is its convex hull, co[ M, ®] (see [4, p. 18]).

By || @ || we shall understand max [|| ¢;{, i = 1,..., N].

Lemma 1.3. co[M, ®] = colext (M), ®].

Proof. By definition of extremal points and Lemma 1.2,
ext(colM, ®)) Cext[M, ®] C [ext(M), ®].
Furthermore, by applying Lemma 1.1,

co[M, ®] = colext(colM, ®])]
C cofext(M), ®].

On the other hand, cofext(M), ®] C co[M, ®]. Hence the two are identical.

Levva 1.4, If O is an interior point of co[M, ®), then there exists an
€ > 0 such that for all ®" satisfying | ® — @’ | < ¢, we have 0 € co[ M, 2'1.

Proof. Suppose to the contrary that for every e > 0, there exists a
®(c) with || @ — ®(e)]] < ¢ and 0¢ co[M, ®(¢)]. Then since co[M, &{<)]
is compact, there exists a separating hyperplane. That is, there exist constants
¢1(€),-.., cnfe) not all zero, and a real number A(e) such that

N
Re Y cle) Lofe) = Me) >0  forall Le M.

i=1
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Without loss of generality, we can normalise c,(¢) so that | c,(e)] < 1 for
i=1,.,N. :

Let € — 0. Then L¢,(e) - L, for each i, and we can also extract a
subsequence from c,(€) such that lim,., ¢{(€) = c; for each i, Hence we can
deduce that for all Le M

N
Re Y ¢;L¢; > 0.

It follows that co[M, ®] lies to one side of this hyperplane. Furthermore,
0 belongs either outside co[M, @] or on a hyperplane supporting co[M, ®]
at 0.

It could not, however, be in the interior of the convex hull for then there
would be points of the convex hull to either side of this hyperplane.

Hence we have been led to a contradiction.

DeFNITION 1.6. A non-empty subset 2 of B* is sign-extremal for
o€ VC Xif ming.z Re L{v — vy) < Oforallve V.

LemMma 1.5. If X is a w* closed subset of B* then 2 is sign-extremal for
vy € V if and only if ext(X) is sign-extremal for v, .

The proof is given in [3, Lemma 2}.

We define regular subsets of X in the sense of Brosowski.

DrriniTiON 1.7V C X is regular at a point v, € V if for each real number
A > 0 and for each w* closed subset 4 of B* satisfying Re L(vx — 1) > 0
for all L € A, there exists a v, € V with

(R1) ReL{yy — vy) > 0forall LeA,
R2) [y — vyl <A

The subset ¥ of X is regular if it is regular at every point of V. In [3, p. 155},
Brosowski shows that if ¥ is a linear space or a convex set then it is regular.

DernrrioN 1.8, An n-dimensional subspace V is an interpolating sub-
space on M, M C ext(B*) if for every set of » linearly independent functionals
Ly, L,inM,

det[L{($)] # O,
whefe V = span[¢y ,..., ¢n].

In particular if M has finite cardinality m > n, then inf | det[L{¢,)]] > 0
when the inf is taken over all selections of » linearly independent functionals.
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2. CONVERSION OF PROBLEM TO APPROXIMATION OF A*
We first deduce a basic property of A%,

Lemma 2.1 A*(L) is w* w.s.c. on K and h*: K — #°(C).

Proof. Suppose at Ly K it is not w* ws.c. Then there exists an open
neighbourhood G of h*(Ly) such that for every w* open nbhd W(L,, 8, )
there exists at least one le W(L,,0,¢) with A*() T G. If, however,
le WL, 8, €) then W(I, 8, ) C W(L,, 8, 2¢). Thus for each # and ¢ > §

(U #p)c( U o)
PEW(1.6,8) 1eW (Ly,0,2¢)
and A*(/) C h*(L,y) C G, leading to a contradiction.
Now A*(L,) is a closed set and furthermore, A*(L;) is bounded, since
I f]] < o for all feF and the neighbourhoods of L, are subsets of X, =
subset of B. Hence #*(L,) is compact.

Remark. This proof does not depend on a countable base at L; as opposed
to the proof given in [2, Lemma 2.1].
The following “distance” function is most suitable for our problem.

DerNITION 2.1, d(4, b) = sup,e4 Re(a — b).

We are now able to take the first step towards an equivalent formulation
of our original problem.

LEMMA 2.2, supsep |l f — vl = suppex d(h*(L), (L))

Proof. Forany feFand Lek,

Re L(f—v) < sup Re(z — Lv) < sup Re(z — Luv).
zeh({L zeh*(L)
But there exists an L e K such that Re L{f — v} = || f — v|. Therefore
I f— ol < d*L), W(L)) < supgex dA*(L), »(L)). The right-hand bound
is independent of f. Therefore sups.rllf — vl < suppex d(A*(L), o(L)).
On the other hand, consider the sequence {L, , z,} with L, € K, z, € A*(L,)
and
hm Re(z, — L,v) = sup sup Re(z — Lv).
LeK zeh*(L)
By Theorem 1.3, for 6 = v, there exists a sequence {g\”, n{"} with (1)
gP ek, (2 ¢ —>*L,, 3) 7 eh(q‘") @ 7]”" ~» z,. Choose k, so
that (i) | 9" — z, | < l/n and (i) { g — Lo | < 1/n.
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Then
I fe, — 21 = Re (£, — v) = Re(n® — ¢{v)

> Re(—Lno + 2z, + Lo — g0 + 9 — 2,)
> Re(z, — Lat) — | Re(L, — gi) v | — | Re(n) — z,)|
> Re(z, — Lv) — 2/n.

Therefore

sup |/ — ol > limlfi, = vl > lim Re(z, — Lyo) = sup din#(L), v(L)).

A consequence of Lemma 2.2 is that we can reformulate our problem as
that of finding the best approximation from ¥ to A* on K using the distance
function 4 on C for approximating a set-valued function. It is desirable to
investigate further the function on the right-hand side of Lemma 2.2.

LEMMA 2.3. Set g(L) := d(h*(L), o(L)) for L < K. Then g, is a mapping
of K into R and g (L) is w* w.s.c. on K for each v.

Proof. Let Lye K and B > g(L,) with € = (8 — g.(L))/2 and

)

fi

U O0Lz) where Of2)={w:|lw—z|<eh.

zeh*(Lo)

O is w* open and A*(L,) C O. By Lemma 2.1, A* is w* u.s.c. at L, . Hence
there exists a w* open nbhd W,(L,) such that for all /e Wy(L,), h*(1) C O.
But for each 7 € #*(J) where /€ Wy(L,), there exists a z, € #*(L,) such that
| 9 — z, | < e by definition of O. Therefore for I € W;(L,),

dh* (1), v(Lo)) = sup, Re(y — v(Ly))

< sup Re{(z, — v(Lo) — (z, — )}

neh*(1)

< sup Re(z — o(Ly) + «

zeh*(Ly)
= gv(LO) + e
Now

&) = sup, Re(z — o) < sup, Re(z — o(Lo)) + | o(I) — v(Ly)|

= | o(l) — o(Lo)| + d(a*(D), v(Ly)).
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Take a w* open nbhd W,(L,) such that | lv — Ly | < € for all [e Wy(Ly).
Then for all e Wy(Lg) N Wy(Ly)

gv(l) < gv(LO) + 2e = Bs

which completes the proof.
We remark that by Theorem 1.2, g, attains its supremum on K.

LemmA 2.4, g (L) is a comvex functional on K in the following sense.
Suppose L = ALy + (1 — X) Ly where L, Ly , Lye K and 0 <\ A < 1. Then

g'v(L) < )‘g'v(Ll) + (1 - A) gv([‘z)'

The proof follows from considering sup,.+«) Rez and applying the
corollary to Theorem 1.3.

We now restate our problem as that of finding inf,., sup;cx g24L) and
for convenience introduce the following non-negative functions:

A@) 1= sup g.(L), py(R*) 1= inf A(v).
LeK veV
Furthermore, we set

M) := [Le K |gL) = A},
Dlh*, v] := (L, 2) € KxC | z € h*(L), Re(z — Lv) = A(v)],
plh*, v, L] := [z e A*(L) | Re(z — Lv) = g(L)].

Since K and A*(L) are compact, M(v), D[i*, v} and n[h*, v, L] are non-empty.,
We observe

{(L,2) | Le M), z € ylh*, v, L]} = D[h*, v].

Lemma 2.5, M) is w* compact in K.

Proof. If Le C(M(v)) then g, (L) < 4(v). Since, however, g, is w*
u.s.c. on K, there exists a w* open nbhd U(L) such that

g) <d4@) forallle UL).

Hence C(M(v)) is w* open and therefore M(v) is w* closed and the result
follows.

LemMaA 2.6, ext(M(v)) Cext(K)
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Proof. Suppose to the contrary, there exists an L e ext(M(v)) and
L ¢ext K. Then there exists L;, Lye Kand A, 0 <A < 1 with L = AL; 4
(1 — X)) L, . Hence g(L) = A@) < Ago(Ly) + (1 — A) g,(L,) by Lemma 2.4.
But g, (L) < 4(v) for all LeK. Therefore g,(L,) = g,(l,) = 4A(v), ie,
L, L, € M(v), which contradicts L € ext(M(v)).

We now consider relating two separate approaches to describing the
envelope of F.

First we define FH(L) := sup.cuxr) Re z. Since g (L) = F+(L) — Re v(L)
we have that F*(L) is w* w.s.c. on K. Now define Up(L) := sup;.r Re Lf.
Let (L) denote the collection of all w* open nbhds in K of L.

Let UpH(L) := infyeqq) SUDew Ur()).

The characterization of the b.s.a. from a linear subspace has been obtained
in [8) in terms of Uz+(L). It is now obtainable from the results in Section 3
by employing the following lemma.

LeMMA 2.7. UgH(L) is identical to F+(L) on K.

Proof. Suppose to the contrary there exists an L éK with
FHL)=a and a > UgH(L).
Then there exists a W e n(L) with

a > sup sup Re If

ileW feF

=sup sup Rez "~

1eW zeh(l)

= sup gRé‘z: z G(U h(l))ogl

lew

On the other hand

a < sup {Re znze () ( U ”(D)O}

Wen(L) * IeW

< su ez.z€ Al
<o (rezze( Y 10))
leading to a contradiction.

Now suppose there exists an LeXK with F +(L) =q<r= UF+(L)
Since F*+ is w* u.s.c. on K, there exists a W e n(L) such that for a < r’ < r,
F+() < 7' forallle W. But A(I) C h*(]) for all/ € W. Therefore sup..,q) Rez <
SUP,en+qy Re z = FH(l) for all /e W and sup {Re z: z € (Uewny £(D)° < r’}
However, sup;cy supsy Re If > r, leading to a contradiction.
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3. CHARACTERISATION OF THE BEST APPROXIMATION TO A*

We first find circumstances under which p,(A*) is bounded between two
real numbers.

TrEOREM 3.1. Suppose vye V and £ a subser of K have the following
properties.

(i) Re(z — Lvy) > 0 for all L €2 and z € y[h*, vy, L}.
(iiy For no v in V do we have the inequality Re L{v — vy) > O satisfied
Jor all Le.
Then 0 < infyeq d(*(L), v(L)) < pp(h*) < (o).

Proof. Suppose 0 < pp(h*) < infy.q d(h*(L) vs(L)). Then there exisis
a veV with pV(h*) < A(v) < infyeq d(h*(L), vo(L)). Hence for every
LeQ, dh*(L), (L)) < J(h*(L), vo(L)). Therefore for all LefQ and
zenlh*, v,, L]

Re(z — o(L)) < sup Re(z — o(L)) < Re(z — L)

Hence 0 << Re[o(L) — vy(L)], contradicting (ii).
We are now in a position to generalise the global Kolmogoroff criterion
for a sufficient condition for the best approximation from V.

THEOREM 3.2. v, €V is a best approximation to h* if for allve V

Lg‘l}(n Re L(v — 1y) <
Proof. Take 2 = M(v,) in Theorem 3.1. If there exists a (£, z) € DA™, v,]
such that Re(z — Lvy) = dv, = 0, then obviously v, is a best approximation.
If for all (L, z) € D[A*, vy}, Re(z — Lvyy > 0, then by Theorem 3.1

Aeo) = ,dnf | d*(L), L) < prth) < A(wo)

and hence v, js a best approximation.
The condition of Theorem 3.2 is not always necessarily satisfied by a best
approximation from V. However, if ¥ is regular, we can prove the following.

TurorReM 3.3. If VC X is regular at vy then v, is a best approximation
to i* if and only if for all v e V, mingepy) Re L(v — v5) < 0.

Proof. The sufficiency of the condition follows from Theorem 3.2.
Tt remains to show the necessity.
Suppose there exists a veV with ming, My Re Ly — vg) = a > 0.
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Set U:={LeK|ReL(v— v, > a/2}. Uis w* open in K and contains
M(v,). For all Le U®°, Re L(v — vy) = a/2. By the regularity of V at v,,
for all real A > 0, there exists a v, € V with Re L(v;, — v,) > Oforall Le U°
and || v, — vy |l < A. For L e U and z € A*(L),

Re(z — Lv,) = Re(z — Lv,) + Re(Lvg — Lv,)
< Re(z — Luy).

Since A*(L) is compact for each Le U, dh*(L), Lv,) < d(h*(L), Lv,).
On the other hand, K\U is weak* compact and is disjoint from M(v,).
Therefore sup;cx\y dA*(L), vo(L)) = E* < A(vy). If we set A := A(v,) — E*
then for z € A*(L) we have

Re(z — Lv,) = Re(z — Lvy) + Re(Lv, — Lvy) < A(vy).

Hence d(h*(L), v,(L)) < A(z,) and 4(v,) = supzex dh*(L), va(L)) < A(vo).
We now formulate a uniqueness result for the best approximation,
analogous to Theorem 3.13 in [2].

THEOREM 3.4. If VC X is regular and v, is a best approximation to h*
Jrom V, then the best approximation is unique, in the case that Re L(v — v,) =0
on a subset of M(vy) which is sign-extremal for vy implies v = vy on K.

Proof. Suppose vy is another best approximation to #*. For any (L, z) €
DIA*, vy]
Re(z — Lvy) = Re(z — Lvy) + Re L{vy — vy)
< d(FH(L), vi(L))
< d(FH(L), vo(L))
= Re(z — Lu,).

Therefore Re L(v; — v,) = 0 for all L M(vy). But by Theorem 3.3
Minyep() Re L(v; — vy) < 0. Hence

2= {LeM(,)|Re Lty — vy) = 0} 5= &.

Assume 2’ 5= M(v,), otherwise the result follows trivially. It follows by
Lemmas 8 and 9 in [3] that 2" is sign-extremal and by the condition of our
theorem v; = v, on K.

4. APPROXIMATING FUNCTIONS WITH A FRECHET DERIVATIVE

Let D be an open subset of a Banach space E with norm | - ||z . Let ¥ be
the set of elements z(a) € X which depend on the parameter ae D, ie.,
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V:D—> X and V = {v(a)e X,ac D}. We shall henceforth assume that
v(a) has a Fréchet derivative with respect to a for each ae D, i.e., for any
b & E there exists a linear bounded mapping v, : £ — X which we denote
by ¢’[b, a] with

lv(a +4-b) — (@) — o', al| = o(iblz) as (biz—0.

Let #[a] denote the linear subspace of X consisting of all elements
v'[b, 3], be E. Let N be the dimension of #[a} and D, ,..., Py be a basis
for Z[a] with @, = DJa).

If v(a) has a Fréchet derivative at a, then

fo(a + th) — v(a)l| = O®) for any be E.
For
i o(a + tb) — v(@)] < || o'[#b, 2]l + |l v(a + #b) — v(a) — v'[¢b, a]|
= [t [{ o'[b, a]ll + o).
Hence there exists a ¢, > 0 such that for all 7, 0 < ¢ < ¢,, v{a -+ rb) lies
in the elocality of o(a) defined by the norm sphere S(x(a), ¢) for some
€ = €(ty, b) with € > 0. We define v(a) to be a local best approximation

to A* when 4(v(a)) < 4(v(c)) for all v(c) e V and in an e-locality of v(a)
for some € > 0.

TeeEOREM 4.1. 0(a) is a (local) best approximation to #* implies that for
all be £

min Re Lv'[b, 2] < 0.

LeM{(v{a))
Proof. Suppose to the contrary, there exists a b e £ with

Lain Re Lv'[b, a] > 0.

We show that there exists a better approximation to A* than v(a). Let U
be the set of L € X for which

Re Lv'b,a] = 20 > 0.

Since D is an open set in E, there exists a 7, > 0 such that for all 1 (0, 1),
a + the D and v(a + tb) lies in an e-locality of v(a). For Le I/

Re Liv(a + b) — v(a)]
= Re L[v'[tb, a]] + Re L{v(a + tb) — v(a) — v'[th, a]]
= 20t — o).

640(29/3-2
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Hence there exists #; with 0 < # < £, such that for all ¢, 0 < ¢ < ¢, and
LelU,
Re Llv(a + th) — v(a)] = ot >0

and therefore
Re[z — Lv(a + th)] = Relz . Lv(a)] + Re[L(v(a) — v(a + th))]
< Relz — Luv(a)].
Therefore d(h*(L), v(a < th)(L)) < A(v(a)) for all Le U. As shown,
[ v(a + tb) — v(@)ll < 2] v'[b, a]|| + o(2).
Hence there exists a #,, 0 <, << # such thatforall 1in 0 < ¢ < 1y
lv(a + tb) — v(@) < 2¢{v'[b, af.

We now consider the set W = K\U. This is weak* compact and does
not contain any member of M(v(a)). Therefore sup;.p d(h*(L), v(a)(L)) =
E* << A(v(a)). Let 7 be such that

Ae@) — £

0 <7 < min (tz 27 a]l

For Le W, ze h*(L)
Refz — Lo(a + b)] < Re[z — Lov(a)] -+ Re[L(v(a) — v(a -+ 7b))]

< sup Relz — Lv(a)] + [ v(a) — v(a + 7h)|
k¥ (L)

< E* + 27 [[v'[b, a]ll.

Therefore  d(h*(L), v(a -+ Th)(L)) < A(v(a)) for all Le W. Hence
A@(a + ) < d(v(a)).

We remark that in this theorem, we can replace M(v(a)) by its extremal
points, denoted by Ey(M), by applying Lemma 1.5.

CoroLLARY 4.1. If v(a) is a (local) best approximation to h* from V, then
0 € co[(LDy ..., LDN)T over all L € M(v(a))].

Proof. Suppose to the contrary that 0 does not belong to the convex
hull. Since [(LD, ,..., LOy)T over all L € M(v(a))] is a compact set in Euclidean
N-space, there exists an N-dimensional vector ¢ € E so that

N
Re ( > cZ-L@i) >0  for all L e M(v(a)).

=1
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But 3, ¢;®; € Z[a] and Re L(Ti, ¢;B;) > 0 for all Le M(x(a)) would
imply that p(a) could not have been a (local) best approximation by the
previous theorem. Hence the result. Here also we may replace M{v(a})
by E(M) as a consequence of Lemma 1.3.

We now wish to obtain a sufficient condition for v(a) to be a local best
approxmation. Forany b € E, let a -+ rb be represented by a(¢) with a{0) = a.
Suppose o(a(f)) satisfies an additional condition (77, namely, that
(v(a(r)) — v(a))/t is in the linear span of {P(a(r))}Y, , where

Il DLa(t)) — Pa)) = 0(r) as t-—->0fori=1,.,N.

TaeoREM 4.2. If v(a(t)) satisfies (T') then a sufficient condition for v{a)
to be a local best approximation to h* from V is that

0 < interior co[(LPy(a),..., LP(a))" over all L ¢ E(M)].

Proof. By the assumed condition and Lemma 1.4, for any b e £, there
exists an €, > 0 with

0 € co[(LD(a(r)),..., LD(a()))” over all L e EM)]
foralie, 0 <t < ¢.

Suppose to the contrary v(a) is not a local best approximation to 2*. Then
for all € > 0, there exists a ¢, 0 << f <{ € and b e E such that a(f) € D and
pr(*) < A(w(a(t))) < A(w(a)),ie., forall Le K

d(I*(L), v@())(L) < sup d(h*(L), v(a)(L)).
Hence for all L € E(M) and z € h*(L)
Re(z — v(a(®))(L)) < Re(z — v(a)(L)),

i.e., Re[L(v(a(r)) — v(a))] < O for all I e EfM). Dividing through bv ¢,
we find

0 ¢ co[(LDy(a(D)),..., LDx(a())" over all L e EL{AM)].

Hence a contradiction follows by taking € = ¢, .
5. APPROXIMATION OF REAL-VALUED FUNCTIONS BY GENERALISED RATIONALS
IN INTERPOLATING SUBSPACES OF L,

We may relate the results of Section 4 to the following setting. Suppose we
are working in the space S(B) := L,(B, 2, n) with the L, norm, abbreviated
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L,(w), where B with an appropriate topology is a compact Hausdorfl space,
and p is a o-finite measure (see, e.g., [6, Chaptér III]). If we further assume
that B is the union of at most countably many atoms, say B = (J;er 4s,
then it has been shown that ext(B*) is weak * closed and that each L € ext(B8*)
has the representation

L(f) = .Z,f (4) o(A) (4 for fe Li(w),

where | 0(4,)] = 1 and f(4,) denotes the constant value of f a.e., on 4,.
(See [1, p.170,1751; [12, Section 2]). The relevance of these points is immediate
if we take K in Section 4, to be B* or ext(B*) and recall Lemma 2.6 that
E(M)Cext(K), ie., the above represéntation is valid for E(M). Further-
more, the presence of atoms enables us to use the concepts of interpolating
subspaces (see Definition 1.8). We remark that in computational work with
the L, norm, we are obliged to discretise and hence our setting is a practical
one.

Suppose we are given a set of real-valued functions F C L,(x) and we wish
to characterise local best approximations from ¥V = R}, . To recall, let
{81 s> &n} and [y ..., B,] be fixed sets of linearly independent real-valued
continuous functions on B.

Let

P = span{ g, ,..., &u}»
Q : span{hy ..., Ay},
and
Qt:={qeQ,q(x) > 0on B}

We define R, :={plg:peP,qc Q+} and assume it is non-empty. Let

D= {(oy ;.. ’an>ﬁln B,,JEE”‘*’ Zz lﬁz z(x)>00nB}
For (ay ,..., @y 3 by yoes by} € D, (€4 5eey €4 5 by ooy dy) € E?P and real A set

Zz—l (az + /\cz) gi(x)
N S, ) b

with the normalisation ZZI | by — Ad; | = 1. In particular

I"(,(X) Z‘l 1‘2123((55)) e R+

{=1

For any d = (4, ,..., d,;) we can always find a A = A(d) > 0 and a A* =
(e, d), 0 < A* < A such that ‘

lAZdh(x)l <zbh(x) on B

=1
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and r, belongs to an e-locality of ry in R} , for | A | < A*. We shall use the
following abbreviations:

Il &, X) 1= i (b; —‘)\dl-) h{x) and Gm(X) 1= j‘: b:hi(x).

We have a simplification of our problem to that of approximating a single-
valued w* wu.s.c. function F+: K — R defined by FH(L) :== max,. ) Z
(see remarks after 2.6) with A(r;) = suprex gTO(L) == $UPLex LF (L) — ro(L}}
We note that if ¢, ,..., ¢y is a basis for

Llrg) 1= ?P; tr 2

Gm
and 0 < |A| < A%, then

I
dA, Q) 1= D &, i=1,u, N

is a basis for Plg,(A, &) 4+ ro(Q/g.(A, d)) and furthermore, condition (T
is satisfied.

THeoREM 5.1. Lef p, € P, g, € OF and vy = p,/q,, . If (a) vy is a locally
best L, approximation to F+ and (b) L[ry] = Plgn + r(Q/qy) is an N-dimen-
sional interpolating subspace of Ly(w), with basis ¢, ,..., by , then

(i) There exist N + 1 independent functionals L, ..., Ly, inext(M{rg)),
abbreviated E(M) such that

0 e interior co[(L;¢y ..., Lipy)T i = 1,..., N -+ 1];
(il) O is the only element ¢ of Plqy, + r{Qlan) having the property

Lid=0fori=1.,N+1, L asin();
(iif) There exists a o = o(d),

0 < o < A* such that forall \, | A | < o

Pl (A, &) -+ r(0/q.(A, @) is an interpolating subspace on {L}% for which
the result of (i) is valid by similar argument;

(v) ry is a unique locally best approximation in the e-locality of ry
restricted to | A | < o and denoted by U(r, , o).

The proofs are virtually identical to those given in [7, Theorem 4.2(i)-(iv).].

We now strengthen (iv) of Theorem 5.1 and show that under suitable
conditions there is local strong unicity in the sense of Newman and Shapiro
[11]. The proof corrects that given in [7, for Theorem 4.2(v)]. We will need
the following lemma adapted from [4, p. 162].
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LemMA 5.1, Ifry := pu/qm € R 4 such that

© dim[ —i»rOQ]wdlm[ ]+d1m[Q]-1

qm m
and if p € P, q € Q satisfy
@ gl =1Ngul,
() p = ry,

(iit) g(x) = Oon B,
then p = py,q = G -

THEOREM 5.2. Under conditions (a) and (b) of Theorem 5.1 and (c) of
Lemma 5.1 there exists a constant y > 0 such that for all r\(x) € Ulry , o)

A(r)) = Alrg) + v lira — roll
Proof. For 0 < |A| < o, define for the set U(r,, o)
A(ry) — 4(ry)

75— rofl

y(r) =

and suppose to the contrary, there exists a sequence {r, } € Ulry, 0) 1a, # Iy
and y(r, ) — 0. We may suppose y(r,) < % for k > ny . Then we can show
0 <[, — roll < @,k = ny. For take any fe F,

l 13, — 1o <l T —fll =+ llre — Sl
<suplin, —fII +supllr —fll
f&F feF
< A(").k) -+ A(ry)
< 24(rg) + 1l — 1ol for k > n, by our supposition.

Therefore || r, — roll < 44(r,) < 4o, k == ny. Now we show there exists
a subsequence of r, relabelled the same, such that

ll{l_{g Fp, == To -
Since 0 < | A; | < o, either limy_,, A, = O for every subsequence, in which
case limy.., 1, = ro , or there exists a subsequence relabelled the same with
limy e Ay = )\(, , where 0 << A, < o. Assume the latter to be the case.

0O d) = S BPhG),  where 3 |8 | = 1.

2=1 7==1
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Hence for each i, 1 < i < m, and for all k¥ we have | B{* | < 1 and there-
fore b, — 1 < \d® < b, + 1. It follows that for each i, {d{*"} is a bounded
sequence and we can extract a convergent subsequence such that
limy,o d® = d{® and hence lim g, (A, d2) = ¢m(Ay , do). By definition

y(r) |l Fa = Foll = A("Ak — d(ry) = j:g%‘ii.)fzvﬂ Lirg — 1)

As k — oo, the Ieft-hand side converges to zero. Now we apply the validity
of (ii) to (iii) of Theorem 5.1 for

. P . Q
7 =10 € e ) T e 9

to obtain limr, = ry.
By Lemma 5.1, '

QmO\o 3 dl)) = n -
Consequently, as k& — oo, we can say heuristically,

P 0 0
qm(}\k ’ dic) + fo Q'm(Ak s dlc) G Tl dm '

Next, we reason as follows. For L; € E,(M) and

P

0
$e Gl A » ) T GnlA , dy)

we have by virtue of results (jii) and (ii) of Theorem 5.1 that for all k, including
the limiting case,

¢, = min max L;¢ > 0.
BT =1 =1 N i%

But,

Y I —roll = | _max  Lirg —ry)

and ‘
To — Iy P + Q
e r
Frg — Fa |l Il » ) ® g > )

and is of norm one. Therefore y(n) = ¢ > 0.

Finally, if we let ¢, = minggy- max, ;. nyy Lid, ¢ € Flry] with ¢, >0
as already deduced, we can show that for all €, 0 < € < ¢y, we have that
¢ > ¢y — € for k sufficiently large. To prove this last conjecture, assume &
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to be large enough that g,,(\; , d) ~ ¢,, and hence ¢}, , d;) ~ &; . Suppose
now to the contrary there exists a convergent sequence (in »)

® i Q0 ; Wy _
e Gm(Ae » 8) T GufAz , 42) with | ¢," || =1
and
lim max  LbP =c <c—-e

That is, there exists an N(k) such that for v > N(k)

=ik jqbfk) < ¢ — fe
Assume » > N(k). If we represent ¢ as Yr, a”dy(\s, dk) then {1,
are bounded by our assumption on $* and ¥, := =3, a¢; satisfies

|6, — ¥ || < /4 by our assumption on k. Hence 1 — /4 <[4, | <
1 + €/4. Now ¢, := 4,/|l ¢, || is of norm one, belongs to Z[r,] and

Iy — &1 <My — &+ 113, — ¢
< =N+ €4
<< €f2.

Consequently —e/2 < max L, — max L, < ¢/2,j = 1,..., N+ 1, and
max;_y . w1 L, < ¢ — €/4, which is clearly impossible. Thus we have
shown that for & sufficiently large y(r, ) is bounded away from zero and we
have been led to a contradiction.

We can also reformulate Theorem 5.1 in terms of the more familiar
“alternation” theorem. The result is identical to that given in [7, Theorem 4.4]
with f replaced by F* and Ey(S) by E(M). For further applications, see
[1, Theorem 4.3 et seq.].
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