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Let M be a real infinitely differentiable closed hypersurface in X, a complex 
manifold of dimension n > 2, and let a,+, denote the induced Cauchy-Riemann 
operator on M. The problem considered in this paper is unique continuation 
for distribution solutions to the equation &MU = 0 (these solutions are called CR 
distributions). In a local version of the problem it is shown that a CR distribution 
u in an open set U CM which vanishes on one side of a C’ hypersurface S C U 
which is noncharacteristic at a point p E S necessarily vanishes in a neighborhood 
of p. If the CR distribution u is a continuous function on U, then it is only 
necessary to assume that u vanishes on S in order to prove that u vanishes in 
a neighborhood of p in M. It is also proved that if u is a CR distribution on M, 
then the boundary of the support of 21 is foliated by complex hypersurfaces. 
Thus a global unique continuation theorem is obtained by assuming that such 
a set is not contained in M. 

1. INTRODUCTION 

Suppose M is a real infinitely differentiable closed hypersurface in X, a 
complex manifold of (complex) dimension n > 2. Then the Cauchy-Riemann 
operator a on X induces a differential operator on M which is called the induced 
Cauchy-Riemann operator, and which is denoted by 8,,, . The problem con- 
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sidered here is unique continuation for distribution solutions to the equation 
&u = 0. 

The problem of unique continuation exists in two versions. For the local 
version we show in Theorem 3.1 that if u is a CR distribution (a distribution 
solution of i?iMu = 0) in an open set UC M which vanishes on one side of a C2 
hypersurface S C U which is noncharacteristic at a point p E S, then u necessarily 
vanishes in a neighborhood of p (we later show that we need only assume that 
S is a Cl surface). The main tool here is the result from [9], which shows that 
locally every CR distribution on M is the generalized boundary values of a 
holomorphic function in the complement of M. 

The global version of the problem of unique continuation involves putting 
global conditions on M which will ensure that any CR distribution on M which 
vanishes in an open set vanishes identically. In Theorem 4.2 we show that if u is 
a CR distribution on M, then the boundary of the support of u is foliated by 
complex hypersurfaces of M. This enables us to state a global unique continua- 
tion theorem by simply assuming that such a set is not contained in M. The 
foliation result is a special case of a more general result (Theorem 4.9) which 
may have independent interest. 

For CR functions (CR distributions which are continuous functions) the 
unique continuation results can be improved. In this case it is only necessary to 
assume that the CR function u vanishes on a Cl hypersurface S C M in a 
neighborhood of a point p E S at which S is noncharacteristic. These results are 
easy corollaries of the general results and a removable singularity theorem 
from [4]. 

Several papers have recently been written concerning unique continuation 
of solutions to homogeneous linear partial differential equations of first order. 
The paper of Strauss and Treves [lo] studies this problem for operators which 
satisfy the solvability conditions of Nirenberg and Treves [8]. In [5] the problem 
is examined for the induced Cauchy-Riemann equations for manifolds of 
arbitrary codimensions but with a restriction on the Levi algebra of the manifold. 

2. PRELIMINARIES 

Let X be a complex manifold of complex dimension n and let MC X be an 
infinitely differentiable closed submanifold of real dimension 2n - 1. The 
induced Cauchy-Riemann complex on M is described in several places (e.g., 
[3, 6,9]), so we will give only a brief description. Let T(M) denote the tangent 
bundle of M, and let T,(M) denote the tangent space at the point p. The holo- 
morphic tangent space at p is defined by H,(M) = T,(M) n JT,(M) where J is 
the almost complex structure on X induced by the complex structure. The 
bundle with fiber H,(M) at each point is denoted by H(M) and is called the 
holomorphic tangent bundle of M. 
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Assuming the existence of a Hermitian metric on X, and the induced metric 
on n/r, we can choose a complement of H(M) in T(M), which we will denote 
by Y(M). Corresponding to this decomposition we get a direct sum decomposi- 
tion of the cotangent bundle, T*(M) = H*(M) @ Y*(M). If we let T,*(M) = 
T*(M) Be C = Hom,(T(M), C) denote the complexified cotangent bundle, 
then we have the direct sum decomposition 

T,*(M) = fll,O(M) @ AOJ(M) 0 Y,*(M), 

where Y,*(M) is the complexification of Y*(M), and n:‘(M) and (l:‘(M) 
denote, respectively, the complex linear and the conjugate complex linear maps 
from H,(M) to C. Then for a function 4 defined on M we define a,& = rrdq5, 
where n: T,*(M) ---f A OJ(M) is the orthogonal projection. 

We can now identify the characteristics of 8, . If we let (T denote the symbol 
of &# , then for f E T,*(M), ~(5) = rr,.$ E cl:‘(M). Clearly u(f) = 0 if and only 
if ,$ E Y,*(M), or equivalently, if and only if 5 annihilates the holomorphic 
tangent space H,(M). In particular if p E S, where S C M is a hypersurface 
defined by the equation 4(x) = 0 with d+(p) # 0, then S is characteristic at p if 
and only if d+(p) E Y,*(M), or equivalently if and only if T,(S) = H,(M). 
If S is a Cl characteristic surface (i.e., S is characteristic at each of its points), 
then T(S) = H(M) Is. Thus T,(S) is a complex subspace of T,(X) for each 
p E S. We will refer to a real hypersurface of M which is also a complex manifold 
as a complex hypersurface of M. 

We will let 9’ denote the sheaf of germs of distributions on X. More generally 
we let 9’~** denote the sheaf of germs of (p, 4) forms on X with distribution 
coefficients (i.e., 9’ = B’s,O). In addition we let 92.” denote the subsheaf of 
9’p.q consisting of these forms which have their supports contained in M. 
Finally let ‘9 denote the sheaf of germs of distributions on hf. There is a 
natural injection CL*: ‘53’ + 9$’ defined by (p*h, 4) = (h, j*$) for 41 a com- 
pactly supported smooth form of type (n, 1z - l), where j: M-t X is the 
inclusion and j* is the induced map on forms. 

2.1. PROPOSITION [9]. &h = 0 if and only if @,h = 0. 

Proposition 2.1 presents a useful extrinsic way of characterizing solutions to 
the induced Cauchy-Riemann equations. 

Let a’9.q denote the quotient sheaf 9’p*q/92*“. Since 8: 92~~ -+ B$*q+l, we 
get an induced map 3: gp.q - gp*q+l. For p = q = 0, let 6 denote the solution 
sheaf. Clearly for an open set UC X, g(U) = 0(U - M) n LZ’(U)/~~‘(U), 
where 0 is the sheaf of germs of holomorphic functions on X. Thus 8(U) is the 
space of holomorphic functions on U - M which have distribution extensions 
to u. 
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2.2. LEMMA. Given $ E O(U - M) n 9’(U) there exist unique distributions 
w E BM’( U) and h E ‘9’( U n M) such that a$ = $w + p*h. 

Lemma 2.2 is an easy consequence of [9, Lemma 5.21. The proof will not be 
presented. [9, Lemma 5.21 is stated in terms of hyperfunctions, but the same 
result is true for distributions. The proof is identical except for the substitution 
of the dual of the formal Cauchy-Kowalewski Theorem [9, Theorem 6.1 l] for 
the dual of the Cauchy-Kowalewski Theorem. 

As a consequence of Lemma 2.2 we can make the following definition. 

2.3. DEFINITION. We define the boundary value map b: d + ‘9’ by b$ = h, 
where h is the unique distribution determined by 4 according to Lemma 2.2. 

For + E Lo(U - M) n W(U), b$ is defined as the boundary values of the 
image of 4 in o(U). If + happens to be continuous up to M separately from each 
side of M, then b+ is the difference of the two boundary values (see [9]). In 
general we will call b$ the (generaEked) boundary values of $. Notice that b is a 
sheaf map and consequently is local in nature. In particular suppose 
4 E 8( U - M) n g’(U). Then b4 = 0 in w where w C U n M is an open set, 
if and only if there is a $i E g’(U) such that & = 4 in U - M and @i = 0 
in(U-M)uw. 

Let ‘0 denote the sheaf of germs of distribution solutions to the equation 
a,h = 0. A section of ‘0 will be called a CR distribution. A section of ‘0 which is 
a continuous function will be called a CR function. The following is a special 
case of the results in [9]. 

2.4. THEOREM. Suppose U is an open set in X. Then the sequence 

O+O(U)+B(U)S’U(Un M)-tW(U,8) 

is exact. 

Theorem 2.4 is especially useful in case H1( U, Co) = 0 (which is true for 
example if U is a domain of holomorphy). In this case the boundary value map 
is surjective, so every CR distribution in U n M is the boundary values of a 
holomorphic function in U. Since every point of M has a fundamental system of 
neighborhoods in X which are domains of holomorphy we see that locally at 
least every CR distribution is the boundary values of a holomorphic function. 
This result is a generalization and improvement of the extension theorem of 
Lewy [7] and of the results of Andreotti and Hill [I]. 

3. LOCAL UNIQUE CONTINUATION 

Suppose SC M is a hypersurface which is a characteristic surface for 2M . 
Then as pointed out in Section 2, S is actually a complex submanifold of M and 
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of X. If p E S then S is defined near p by an equation 4(z) = 0 where $ is a 
holomorphic function defined on a neighborhood of p in X and d+(p) # 0. 
Suppose UC X is such a neighborhood with the additional property that if 
w = U n M, then w - S = W+ u w- where w+ and w- are disjoint open 
subsets of M. For k a nonnegative integer define 

Clearly fk E CL(w) and aMfk = 0 in w - S. Since each fk is continuous in w, 
a removable singularity result [4, Theorem 4.21 implies that &fk = 0 in w 
for each k > 0. Since S is the intersection of the real hypersurfaces defined by 
Re 4(z) = 0 and Im$(z) = 0, by multiplying 4 be a complex constant of 
absolute value 1 and by shrinking U we can arrange 0 < 1 Im +(x)1 < c Re $(z) 
for a E w+. Then if we define 

exP(- l/d(z)) f&> = lo 
XEWf, 

XEW-u s, 

we see that fm is a Cm CR function in w. Each of these CR functions fk, 
0 < k < co, vanishes in w- but does not vanish identically. 

Finally notice that I/$ E @(U - M) n B’(U). Hence u = b(l/$) is a CR 
distribution in w with supp u = S n w. 

The previous two paragraphs amply demonstrate that there can be no local 
unique continuation for CR distributions across characteristic hypersurfaces. 
For noncharacteristic surfaces we have the result, 

3.1. THEOREM. Let l2 C M be open and let p E 52. Let r E Ca(Q) satisfy y(p) = 0 
and dr(p) # 0. Suppose that the level surface S = {x E l2 j r(x) = 0} is non- 
characteristic for & at p. Then there is a neighborhood w of p such that if u is a 
distribution solution of the equation &u = 0 in D and u = 0 in Qf = {x: r(x) > 0}, 
then u = 0 in w. 

Remark. Thus we do have unique continuation across Ca noncharacteristic 
hypersurfaces. As a consequence of the Section 4 results we will be able to prove 
this for Cl hypersurfaces (Theorem 4.8). 

Proof. Let U be a neighborhood of p in X which is a domain of holomorphy 
and satisfies U r\ MC Q. We may assume that the function r has been extended 
to U, belongs to C2( U), and that the manifold M is defined in U by the equation 
p(z) = 0 with d&s) # 0 on M n U. As a submanifold of U, S is defined by the 
pair of equations p(z) = 0, r”(z) = Y(Z) + &Y’(z) = 0 where A is any real 
constant. We will choose A so that the Levi form for the hypersurface N = 
{z E U: f(z) = O> has at least one positive eigenvalue at p. 

The Levi form for N at p is L(w) = (a%(p), w A W) restricted to w E H,(N) 
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(the pairing is that between dlJT*(X) and (IlJT(X)). Since S is not character- 
istic at p we know that H,(N) # H,(M). Choose w E H,(N) such that w $ H,(N) 
This means precisely that w E T,(X), (Z(p), w) = 0 and (+(p), w) # 0. Both 
of these conditions are independent of A since a? = ar + 2Apap and a?(p) = 
a+). But ai% = a& + 2Aaf A + + 2Apa$ SO (a&(p), w A w) = (a&r(p), 
w A W) + 2A \(a,+), w)j”. Since (a&), w) # 0, this will be positive if A is 
chosen to be sufficiently large. 

Since the Levi form for N has a positive eigenvalue we can apply the classical 
KontinuitPtssatz to conclude that there is a neighborhood u’ of p contained in U 
with the property that if $ E 0( U,‘), where U+’ = (z E U’ j F(z) > 01, then 
there is a 6 E 0( U’) with 6 = $ in U,‘. 

Let w = U’ n M. If u E ‘U(Q) then u E ‘U( U n M). Since U is a domain of 
holomorphy by Theorem 2.4 there is a $ E O(U - M) n 9’(U) such that 
b$ = u. Since u = 0 in 9+ by the remarks following Definition 2.3 we may 
assume that $ E U((U - M) U G+). In particular 4 E U(U+‘), so there is a 
6 E U( U’) such that 4 = $J in U+’ and therefore in (u’ - M) U ii’+. Hence 
u=b$=b$=Oinw=U’nM. Q.E.D. 

If we restrict our attention to CR functions we can improve the result of 
Theorem 3.1 

3.2. COROLLARY. Let Q C M be open and let p E Q. Let r E Cl(Q) satisfy 
r(p) = 0 and dr(p) # 0. Suppose that the level surface S = {x E M j r(x) = 0} 
is noncharacteristic for 8M at p. Then there is a neighborhood w of p such that if u 
is a continuous solution of the equation zMu = 0 in Q and if u = 0 on S, then 
u = 0 in w. 

Proof. Choose w1 by Theorem 3.1 (as improved in Theorem 4.8). Given 
the CR function u in Q, define 

241(x) = I0 
XEQZf, 

w> XEP. 

Then u1 E C(sZ), and aMu = 0 in D - S. As a consequence of a removable 
singularity theorem [4, Theorem 4.21 we conclude that aMu, = 0 in 52. By 
Theorem 3.1 u1 3 0 in w1 , and so u E 0 in w1 n s1-. Repeating the same argu- 
ment with r replaced by --Y we get a neighborhood w2 with u = 0 in w2 n ii-+. 
Let w = w1 n w2 and the result follows. Q.E.D. 

4. GLOBAL UNIQUE CONTINUATION 

In this section we examine the following problem: What conditions on M 
will ensure that every CR distribution on M which vanishes on an open set is 
identically equal to zero ? For convenience we make the following definition. 

505/23/3-9 
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4.1. DEFINITION. The manifold M is said to have global unique continuation 
if every CR distribution on M which vanishes on an open set vanishes identically. 

Obviously for M to have global unique continuation it is necessary that M be 
connected. Therefore, we will assume that M is connected in the remainder of 
this section. 

Remark. For CR functions the property of global unique continuation takes 
on a different light as a result of Corollary 3.2. If M has global unique continua- 
tion then any CR function on M, which vanishes on a Cl hypersurface of M 
that is noncharacteristic at a point, vanishes identically. 

Let us approach the question from a different standpoint. Suppose M does 
not have global unique continuation. Then there is a nontrivial CR distribution 
u on M which vanishes on an open set. It is clear that Theorem 3.1 puts a strong 
restriction on the boundary of the open set on which u vanishes, or what is the 
same thing, on the boundary of the support of u. The implications of this 
restriction are the subject of the next theorem. 

4.2. THEOREM. Suppose u is a CR distribution on M. Let A denote the boundary 
of the support of U. If A # @ then for every point p E A, there is a neighborhood 
U of p, a real valued function f 6 Cm(U) with df (x) # 0 for all x E U, and a 
closed nowhere dense set E C R such that 

(1) An U=(x~lYjf(x)~E}, 

(2) for each t E E, S, = (x E U 1 f(x) = t} is a complex manifold with 
WU = fWf) Lt . 

Remark. We will express the results of Theorem 4.2 by saying that the 
boundary of the support of u is foliated by complex hypersurfaces. 

The proof of Theorem 4.2 will be given at the end of this section. First we 
wish to examine the consequences and point out some examples. 

EXAMPLE 1. Let M = P-l x [w CC”. Any distribution on M which 
depends only on the real variable is a CR distribution. Consequently given any 
closed EC IR there is a CR distribution with supp u = P-l x E. 

EXAMPLE 2. In the first example M itself is foliated by complex manifolds. 
In this example this is not the case. Let MC C2 be defined by the equation 
p(x, w) = Im w - h(Re w) Re z = 0 where h E Cm@). The Levi form for M 
must vanish identically on any complex submanifolds of M. A calculation shows 
that the Levi form vanishes if and only if h(Re w)(h(Re w) h”(Re w) - 
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2h’(Re w)“) Re z = 0. Now if EC Iw is any closed set then [w - E = uz=‘=, Ik, 
where Ik = (ak , b,) are open intervals. Define 

h(t) = fE4c, 
t E E, 

with suitable modifications if aK = --oo or if b, = 03. Then h E Cm(R) and 
vanishes precisely on E. Furthermore an easy calculation shows that 
hh” - 2K2 > 0 in [w - E. Consequently the only complex manifolds contained 
in M are those complex lines of the form C x {t} with t E EC R C C. The 
manifold M can be parametrized by C x Iw with M = ((2, t + ih(t) Re a): 
z E @, t E lR}. With respect to this parametrization a distribution u on M is a CR 
distribution if and only if 2(1 + S’(t) Re x)(&/Z) - ih(t)(au/at) = 0. Now if 
u is any distribution on [w with supp u = E and if we consider u to be a distribu- 
tion on @ x (w which is independent of x, then, since h vanishes to infinite 
order on E, u satisfies the above equation. Consequently u represents a CR 
distribution on M and supp u = @ x E. 

EXAMPLE 3. Let F C Iw be closed and let E = aF. Let M be the manifold 
of Example 2. Then P = u,“_, Jk where Jk = (ak , /3,) are open intervals. 
Define 

g(w) = exP{-1 /(w - %) - l/(/G - w)> if RewEJ,, 

with suitable modification if 0~~ = --oo or if & = + co. Then g E S(fi + ilk?), 
An easy calculation shows that if Re w E _T, and ) Im w 1 < B(Re w - 01~) and 
I Im w / < B& - Re w) then I g(w)] < exp(-[(1 + B2)(Re w - aJ]--‘) * 
exp(-[(1 + B2)(flk - Re w)]-I). Define the function $ on C2 by 

and let f = 4 lM. Clearly 4 E 0(C2 - (C x E)) and consequently 2Mj 3 0 in 
M - (C x E). If (z, w) EM, then Im w = h(Re w) Re z. Clearly h(Re w) < 
H(Re au, E). Thus if I Re z j < B, then j Im w j < Bd(Re w, E), and so 

I fb, w>l < exp(-[(l + B2) d(Re w, El]-l). 

Consequently f vanishes on @ x E to infinite order and we conclude that 
fe Cm(M) and &,j 3 0. Th us f is a smooth CR function on M and a(suppf) = 
@ x E. Furthermore in this case it is only a(suppf) that is foliated and not 
suPP f* 

The examples clearly illustrate that Theorem 4.2 cannot be improved upon 
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even for smooth CR functions. We can now return to the original problem and 
solve it by legislating against the behavior indicated in Theorem 4.2. 

4.3. THEOREM. Suppose M is connected and contains no complex hypersurface 
the closure of which is foliated by complex hypersurfaces. Then M has global unique 
continuation. 

Proof. Suppose on the contrary that there is a nontrivial CR distribution 
u on M which vanishes on an open set. Let p E i?(supp u) and let S denote the 
component of a(supp u) which contains p. By Theorem 4.2 S is a complex 
hypersurface and since s C a(supp u), it is easily seen that s is foliated by 
complex hypersurfaces. Q.E.D. 

EXAMPLE 4. Let h E Cm(R) satisfy h(t) = 0 for t < 1, h(t) = t - A, h the 
appropriate constant, for t > 2 with h’(t) > 0 for t > 1, and h”(t) > 0 for 
1 < t < 2 (choose g E Cam@), nonnegative, supp g = [l, 21 and s g(t) dt = 1. 
Solve h” = g with h(0) = h’(0) = 0). Let MC Q? be defined by Im w = h(l z I”). 
Then the Levi form for M vanishes if and only if 1 z 1 < 1. Since the Levi form 
must vanish on any complex submanifold of M, the only such submanifolds 
are St = ((z, t) 1 1 x I < l} f or t E R. Since & = {(z, t) j 1 z j < l} is not 
foliated (if j z 1 = 1 then (x, t) is not contained in a complex submanifold) we 
conclude by Theorem 4.3 that M has global unique continuation. This is an 
example of a manifold which has global unique continuation but does not have 
local unique continuation. 

The next result provides a partial converse of Theorem 4.3. 

4.4. THEOREM. Suppose UC X is open and $ E 0(U) has the property that 
s = {z: yyx) = o> is a closed subset of M. Then M does not have global unique 
continuation. 

Proof. By hypothesis I/+ E O(U - M) and since q5 vanishes on S to finite 
order, l/4 has a distribution extension in 9’(U). By Theorem 2.4 the generalized 
boundary value b( l/4) is a CR distribution on U n M and b(l/$) = 0 in 
(U n M) - S. Define 

u = 
I 
WM) in UnM, 
0 in M-S. 

Then u is a CR distribution on M and supp u C S, so M does not have global 
unique continuation. Q.E.D. 

If we have some a priori knowledge about the size of a(supp U) we can improve 
Theorem 4.2. Let Ad denote Hausdorff measure in dimension d. Notice that the 
concepts Ad(A) = 0, Ad(A) > 0, Ad(A) < CO are invariant under coordinate 
changes, and consequently have meaning on a manifold. 
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4.5. COROLLARY. Suppose u is a CR distribution on M and a(supp u) has 
locally jnite Hausdorfl measure in dimension 2n - 2. Then a(supp u) is a complex 
hypersurface of M. 

Proof. The hypothesis implies that for each p E a(supp u) the set E given 
by Theorem 4.2 is a finite set. The result now follows easily. Q.E.D. 

It is well known that the Levi form for M must vanish on any complex 
hypersurface in M. Let F denote the set of points of M at which the Levi form 
vanishes. Then F is a closed set, and by Theorem 4.2 a(supp U) C F for any CR 
distribution on M. 

4.6. THEOREM. (a) If F has locally finite Hausdorff measure in dimension 
272 - 2, then a(supp u) is a complex hypersurface of M for any CR distribution 
u on M. (b) If A2n-2(F) = 0 and M is connected then M has global unique con- 
tinuation. 

Theorem 4.6 is an immediate consequence of the preceding discussion and 
Corollary 4.5. Theorem 4.6(b) ’ p im roves the result of [5] where it was proved 
that M has global unique continuation if F = 0. 

4.7. COROLLARY. Suppose M is connected and A2n-2(F) = 0. If f is a CR 
function on M which vanishes on a hypersurface S C M then f = 0. 

Proof. Since A anp2 ( S) > 0, there is a point p E S at which S is not character- 
istic. The corollary now follows from Theorem 4.6(b) and the remark following 
Definition 4.1. 

FinaIly we return to the local problem and state an improved version of 
Theorem 3.1. 

4.8. THEOREM. Let 52 C M be open and let 52” C Q be open. Let p E aJ2+ n Q 
and suppose that Tan(asZ+, p), the tangent cone of aB+ at p, is a hyperplane of 
T,(M), and that Tan@+, p) # H,(M). Then there is a neighborhood w of p such 
that if u is a CR distribution on 52 and u G 0 in sZ+, then u = 0 in w. 

Remark. The definition of tangent cone may be found in [2]. Notice that 
the theorem applies if sZ+ = {x: r(x) > 0}, where r E Cl@?) satisfies r(p) = 0 
and dr(p) does not annihilate H,(M). 

Proof. Suppose the theorem is not true. Then there is a CR distribution 
u on Q with u = 0 in G+ and p E supp u. Since p E a(supp u), by Theorem 4.2 
there is a complex hypersurface S C M with p E S C a(supp u) C Sz - 52+. 
Consequently H,(M) = T,(S) = Tan(S, p) C Tan@ - G+, p). However, since 
Tan(an+, p) is a hyperplane of T,(M), Tan@ - sZ+, p) is contained in one of the 
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half spaces bounded by Tan(aSZ+, p). But the hyperplane H,(M) is contained 
in the half space if and only if H,(M) = Tan(aG+, p), which is a contradiction. 

Q.E.D. 

Proof of Theorem 4.2. Let G = M - supp u. Notice that as a result of 
Theorem 3.1 52 has the following property: if w C &? is an open set with a C2 
boundary, then for each p E aw n a&J we have T,(&) = H,(M). Consequently 
Theorem 4.2 is a special case of the following result. 

4.9. THEOREM. Let M be a Cm manifold of dimension II. Let H be a subbundle 
of the tangent bundle of M with fiber dimension n - 1. Suppose Q C M is an open 
set with the property that if u C Q is an open set with a C2 boundary, then for each 

p E &U n ai2 we have T,(&) = H, . Then for each point p E oQ, there is a 
nesghborhood U of p, a real valued function f E Cm(U) with df(x) # 0 for all x E U, 
and a closed nowhere dense set R C R such that 

(1) aQn u={XEujf(X)EE), 
(2) for each t E E, S, = {x E U 1 f(x) = t> is an integral manifold of H. 

We will need the following lemma, which contains the main elements of the 
analysis of this problem. 

4.10. LEMMA. Let X be a nonvanishing vector field on M defined near a point 
p E aQ which is a section of H. If y is any integral curve of X, which intersects aQ, 
then y C Z?. 

Proof. Suppose p E y n aGr and choose local coordinates near p with p 
corresponding to 0 and X = (a/ax,). Then the curve y is parametrized near 0 
by y(t) = (0, t) E W. Let f(t) = d(y(t), -SZ) denote the Euclidean distance 
from y(t) to the complement of Sz. Let St = {x: / x - y(t)1 = f (t)} denote the 
sphere with center y(t) and radiusf(t). F or each t there is a point xt E S, n ail. 
If f (t) # 0 then St is a smooth hypersurface contained in a. By the hypothesis 
therefore T,JS,) = Hz, . Consequently the tangent vector (a/ax,) E TJS,), 
which can happen if and only if xt = (xt’, t), where x6’ E [w”-l. This means in 
particular that if s # t then 1 xt - y(s)! > f(s). Rewriting this inequality we 
have f”(s) < f2(t) + 1 s - t j2. Since the argument is symmetric in s and t we 
conclude that if”(s) -f2(t)) < 1 s - t I2 f or all s and t. This can be true only if 
f is a constant function, and, since f (0) = 0, f(t) 3 0. Thus any integral curve 
of X which meets %J must stay in -.0. 

Suppose there is a point 4 E y n (-D). Parametrize y so that y(0) = q and 
suppose y(t,) = p E y n aQ. Let y(x; t) denote the integral curve of X with 
y(x; 0) = x and let F,(x) = y(x; t) denote the corresponding flow. Then F”, is a 
diffeomorphism defined on a neighborhood of q and F,@(q) =p. Let U be a 
neighborhood of q with q E UC (-n). Then FtO( 77) is a neighborhood of p. 
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Since p E aJ2, there is a point y E FzO(U) n 52. Suppose y = Ft,(x), x E U. 
Consider the curve y(x; t). y(x; 0) = x E (ND), and y(x; to) = y E G’, so there 
must be a t between 0 and t, with y(x; t) E aJ2. However, by the previous para- 
graph we know that if an integral curve meets aJ2 then that curve must stay in 
(-a) and this contradicts the fact that y(x; t,,) = y E 1;2. Q.E.D. 

Proof of Theorem 4.9. Let p E a52 and let X be a nonvanishing section of H 
defined near p. Since the result is local we may assume that we are in Rn in a 
neighborhood U = (( x’, x,): 1 x’ 1 < 1, j x, 1 < l} ofp = 0 and that X =8/8x, . 
The integral curves of X are y(t) = (x’, t), and by Lemma 4.10 these are com- 
pletely contained in one of the three sets ~2,a!2, ~0. Thus if 1;2,-, = 
(x’ 1(x’, 0) E Sz n U,}, we see that 52 n U, = sZ,-, x (-1, 1). Let H”-l denote 
the bundle on the unit ball B,-, in Rn-l defined by H”-1 = H JBnwl n T(B,-,). 
Then !2+, , B,-, , and Hn-l satisfy the hypotheses of the theorem with the 
dimension decreased by one. Proceeding inductively we finally get new coordi- 
nates (x1 , x2 ,..., x,) such that if U={~iIx~~<I,l<~fn) there is an 
open set G$ C iwr such that S2 n U = {x E U: x1 E .0,}. Set f(x) = x1 and 
E = %2r and we have proved part (1) of the theorem. 

Clearly T,(S,) = H, . It remains to show that T(S,) = H Is, for all t E E. 
Choose any point q E S, and repeat the argument with p replaced by q. We get 
a new function f’ and level sets S,’ and T&S,,‘) = Hq. Since the various level 
sets are disjoint and connected we must have S,’ = St near q and consequently 
T,(&) = H, . Q.E.D. 
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