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Abstract

In this paper, we consider the factor properties of the Tribonacci sequence. We define the singular words,
and then give the singular factorization and the Lyndon factorization. As applications, we study the powers
of the factors and the overlap of the factors. We also calculate the free index of the sequence.
c© 2006 Elsevier Ltd. All rights reserved.

0. Introduction

The Tribonacci sequence, which is a natural generalization of the Fibonacci sequence, has
been studied extensively by many authors. Rauzy [13] set up a link between the Tribonacci
sequence and the distribution in R2 modulo Z2 of a certain sequence (Nη)N∈N . Arnoux and
Rauzy [2] gave the geometric representation of the so-called Arnoux–Rauzy sequence, and the
Tribonacci sequence is maybe the simplest sequence amongst the Arnoux–Rauzy sequences.
Sirvent [18] studied the Tribonacci substitution from the associated numeration system. Justin
and Pirillo [8] introduced the epi-Sturmian sequences which also include the Arnoux–Rauzy
sequence and they described the palindrome factors of the epi-Sturmian sequences.

For the Fibonacci sequence, Wen and Wen [20] studied the factor structure and gave the
singular factorization; Levé and Séébold [9] studied the singular factorization of the Fibonacci
sequence and its conjugates; Melançon studied the Lyndon factorization of the Fibonacci
sequence [11] and the link between the singular factorization and the Lyndon factorization [12].
Cao and Wen [3] studied the factor property of the Sturmian sequences; in particular, given
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a Sturmian sequence, they calculated its free index (that is, the highest power of factor). See
also [5,19]. It should be mentioned that some of the ideas and techniques are taken from these
papers.

In this paper, we shall present some new properties of the factors of the Tribonacci sequence.
After giving notation and listing some known facts, we study the factor structure of the Tribonacci
sequence, and introduce the singular words, then give the singular factorization of the Tribonacci
sequence. The Lyndon factorization is also given. As applications, we study the power property
and the overlap property of the factors. We also calculate the free index of the Tribonacci
sequence.

1. Notation and basic properties

Let S = {a, b, c} be a three-letter alphabet. Let S∗ and S̃ stand respectively for the free monoid
and the free group generated by S. The empty word ε is their neutral element. Let Sω be the set
of sequences (or infinite words), indexed by N (0 ∈ N by convention), on S.

If w ∈ S∗ is a word, we denote by |w| its length and by |w|a (resp. |w|b, |w|c) the number
of occurrences of the letter a (resp. b, c) in it. Let P(w) stand for the vector (|w|a, |w|b, |w|c),
called the Parikh vector of w.

A word v is a factor of a word w, written v ≺ w, if there exist u, u′ ∈ S∗, such that w = uvu′.
We say that v is a prefix (resp. suffix) of a word w, and then we write v � w (resp. v � w) if
there exists u ∈ S∗ such that w = vu (resp. w = uv). The notions of prefix and factor extend in
a natural way to infinite words. The language of length n of w, denoted by Ωn(w) (Ωn for short
if there is no confusion), is the set of all factors of length n of w.

If v ≺ w, where w = w0w1 · · · wn · · · (with wi ∈ S) is a finite word or a sequence, v is said
to occur at place m in w if wmwm+1 · · · wm+|v|−1 = v. In this case, we also say that m is a place
where u occurs in w.

Let w = w0w1 · · · wn−1 ∈ S∗, where wi ∈ S. The mirror word w of w is defined to be
w = wn−1 · · · w1w0. A word w is called a palindrome if w = w.

A morphism τ : S∗ → S∗ is called a substitution of S∗. We denote by Fτ any one of the fixed
points of τ (i.e. τ (Fτ ) = Fτ ), if it exists, and by Mτ the matrix (P(τ (a))t , P(τ (b))t , P(τ (c))t )

(where the superscript t means the transposition of a vector) called the matrix of the substitution
τ . A substitution is said to be primitive if its matrix is.

Let w = w0w1 · · · wn−1 ∈ S∗ (wi ∈ S); we denote by w−1 the inverse word of w, that is
w−1 = w−1

n−1 · · · w−1
1 w−1

0 . Let w = uv; then wv−1 := u and u−1w := v by convention.
Let w = w0w1 · · · wn−1 ∈ S∗ (with wi ∈ S) and 0 ≤ k < |w|; we define the kth

conjugate of w by Ck(w) := xk · · · xn−1x0x1 · · · xk−1. The set of conjugates of w is defined
by C(w) := {Ck(w); 0 ≤ k < |w|}. A word w ∈ S∗ is said to be primitive if w = u p with p ∈ N

implies p = 1, in other words, if the conjugates of w are distinct (see [10] for example).
Let w ∈ S̃; we denote by ıw the inner isomorphism u 	→ wuw−1, u ∈ S∗. If there exists a

w ∈ S∗ such that φ = ıw τ or τ = ıw φ, we say that φ is conjugate to τ and write φ ∼ τ .
As usual, the substitution σ = (ab, ac, a) (this means σ(a) = ab, σ (b) = ac, σ (c) = a) is

called the Tribonacci substitution and its fixed point

ξ = abacabaabacababacabaabac · · ·
is called the Tribonacci sequence.

On the Tribonacci sequence, the following are known (see [1,2,4,6] for more details):
0. As a fixed point of a primitive substitution, it is uniformly recurrent.
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1. The complexity function is 2n + 1, that is, for any n, there are 2n + 1 factors of length n of
the Tribonacci sequence ξ .

2. The language is closed under taking the mirror.
3. There is a unique left special word (resp. right special word) of each length, that is, for any

n, there is a unique factor w (resp. w′) such that aw, bw and cw (resp. w′a, w′b and w′c) are
all factors of ξ . Moreover, every left special word is a prefix of ξ . And from 2, the right special
word is the mirror of the left special word.

4. The palindrome complexity is 3 for odd length and 1 for even length, that is, for odd n,
there are three palindrome factors of length n, and for even n, there is one palindrome factor of
length n.

2. The factor structure of the Tribonacci sequence

In this section, we will study the factor structure of the Tribonacci sequence.

2.1. Elementary properties of the factors

Define the words

An = σ n(a); Bn = σ n(b); Cn = σ n(c).

By convention, A0 = a and A−1 = c (and thus σ(An−1) = An for n ≥ 0). Define the number
sequence { fn}n≥−1 as

fn = fn−1 + fn−2 + fn−3 (n ≥ 2) with f−1 = f0 = 1 and f1 = 2.

Then

An = An−1 An−2 An−3, |An| = fn;
Bn = An−1 An−2, |Bn| = fn−1 + fn−2;
Cn = An−1, |Cn | = fn−1.

Proposition 2.1. An Am is a factor of the Tribonacci sequence for any n, m.

Proof. Since a is the first letter of the image of each word, Ana is a factor of the Tribonacci
sequence ξ , and thus An Am (n ≥ m) is also a factor of ξ (in fact An Am = σm(An−ma) and σ

fixes ξ ).
To see that An Am (n < m) is a factor of ξ , we only need to notice the following fact: An Am

is a suffix of An+3 Am . �
For n ≥ 1, let

Dn = An−1 An−2 · · · A2 A1 A0.

Thus D1 = A0 = a, D2 = A1 A0 = aba. By convention, D0 = ε.

Proposition 2.2. For n ≥ 1, Dn is a palindrome.

Proof. This is a direct result of the following lemma and the fact that Dn = σ(Dn−1)a for
n ≥ 1. �

Lemma 2.3. If w is a palindrome, σ(w)a and a−1σ(w) are palindromes.
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Proof. It is easy to see that for any word u, σ(u) = a−1σ(u)a. If w is a palindrome,
σ(w)a = aσ(w) = σ(w)a = σ(w)a, and thus σ(w)a is a palindrome. Likewise, a−1σ(w)

is also a palindrome. �

We can say more on the structure of the palindrome factors of ξ .

Lemma 2.4. If w is a palindrome factor of the Tribonacci sequence, we have
1. If a � w, then there exists a unique palindrome u factor of ξ such that w = σ(u)a.
2. Otherwise, a is not the prefix of w; then there exists a unique palindrome u factor of ξ such

that w = a−1σ(u).

Proof. Mathematical induction on the length of w. �

Theorem 2.5. For n ≥ 2:
1. The longest common prefix of An−2 An−3 An−1 and An is Dn−1.
2. The longest common prefix of An−3 An−1 An−2 and An is Dn−2.

Proof. We have the following:
Claim: For any n ≥ 2, the word An−3 An−1 is not a prefix of An and the maximal common

prefix of the words An and An−3 An−1 is the word Dn−2.
In fact, when n is small:

n = 2 : A2 = abac A−1 A1 = cab D1 = ε

n = 3 : A3 = abacaba A0 A2 = aabac D1 = a
n = 4 : A4 = abacabaabacab

A1 A3 = ababacaba D2 = A1 A0 = aba
n = 5 : A5 = abacabaabacababacabaabac

A2 A4 = abacabacabaabacab D3 = A2 A1 A0 = abacaba.

If n ≥ 6, we have

An = An−3 An−4 An−5 An−3 An−4 An−2 An−3

An−3 An−1 = An−3 An−4 An−5 An−6 An−4 An−5 An−3 An−4.

Since An−6 An−4 is not a prefix of An−3 and their longest common prefix is Dn−5, we know
that An−3 An−1 is not a prefix of An and the longest common prefix of An and An−3 An−1 is
An−3 An−4 An−5 Dn−5 = Dn−2. The Claim follows.

1. Since An = An−2 An−3 An−4 An−2 An−3, the longest common prefix of An and
An−2 An−3 An−1 is An−2 An−3 Dn−3 = Dn−1.

2. This is a direct result of the above Claim. �

Let En (n ≥ 1) and Fn (n ≥ 2) be the words defined by the equations

An = Dn−1 En = Dn−2 Fn .

Thus E1 = ab, E2 = bac, . . . and F2 = abac, F3 = bacaba, . . ..

Proposition 2.6. With the notation above, for n ≥ 2, we have

An−2 An−3 An−1 = Dn−1 En;
An−3 An−1 An−2 = Dn−2 Fn .



B. Tan, Z.-Y. Wen / European Journal of Combinatorics 28 (2007) 1703–1719 1707

Proof. From the definitions of Dn and En , we have Dn = σ(Dn−1)a and En = a−1σ(En−1).
We also have σ(En−1) = aσ(En−1)a−1 (recall that σ(u) = aσ(u)a−1 for any word u).

We will show that An−2 An−3 An−1 = Dn−1 En :
The cases n = 2 and n = 3 can be checked directly.
If n > 3, we have

An−2 An−3 An−1 = σ(An−3 An−4 An−2) = σ(Dn−2 En−1)

= (Dn−1 A−1
0 )(aσ(En−1)a

−1) = Dn−1σ(En−1)a
−1

= Dn−1 En.

In the same way, we can show the second equality. �
This proposition has the following corollary.

Corollary 2.7. We have that

An−1 An = Dn En, An An−1 = Dn En (n ≥ 1) and An−2 An = Dn−1 Fn (n ≥ 2).

In the following, we will study the properties of the words Dn , En and Fn :

Proposition 2.8. Fn = En+1 (n ≥ 2) and En+1 = En An−2 (n ≥ 1).

Proof. If n ≥ 2,

An+1 = Dn En+1,

An+1 = An An−1 An−2 = An−1 An−2 An−3 An−1 An−2

= An−1 An−2 Dn−2 Fn = Dn Fn,

and then En+1 = Fn and Fn = En+1.
If n ≥ 1,

An+1 = Dn En+1,

An+1 = An An−1 An−2 = Dn En An−2,

and thus En+1 = En An−2. �
An easy induction provides the following result.

Proposition 2.9. The lengths of Dn and En satisfy

|Dn | = 1

2
( fn+1 + fn−1 − 3) (n ≥ 1);

|En| = 1

2
( fn − fn−2 + 3) (n ≥ 2).

From here, we have that |Dn | is even if and only if n = 4k for some integer k and |En| is odd if
and only if n = 4k + 2 for some integer k.

The following proposition on the first letter and the last one of An and En is easy to check.

Proposition 2.10. We have:
if n ≡ 0 (mod 3), then a � An and c � En, a � En;
if n ≡ 1 (mod 3), then b � An and a � En, b � En;
if n ≡ 2 (mod 3), then c � An and b � En, c � En.
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2.2. Occurrences of Dn

Now we determine the set of places where the factor Dn occurs in ξ . It plays a very important
role in the following studies.

For this, write

ξ = abacaba · · · = u0u1u2u3u4u5u6 · · ·
with ui ∈ {a, b, c}. Denote by O1 the set of places where the letter a occurs in ξ , that is,
O1 = {i ∈ N : ui = a}. Since ξ is a fixed point of the substitution σ , we can rewrite it as
follows:

ξ = σ n−1(ξ) = σ n−1(a)σ n−1(b)σ n−1(a)σ n−1(c)σ n−1(a)σ n−1(b)σ n−1(a) · · ·
= An−1 Bn−1 An−1Cn−1 An−1 Bn−1 An−1 · · · .

Define the set On = {|σ n−1(u0u1 · · · ui−1)|; ui = a} (0 ∈ On since u0 = a). We can regard
On as the set of the places where there is a formal (or visible) occurrence of An−1 in the above
factorization of ξ . Here we should point out that, when n ≥ 3, On is not the set of all places
where the word An−1 occurs in ξ (merely a subset).

Theorem 2.11. For n ≥ 1, the set of places where the factor Dn occurs in ξ is On.

Proof. Induction on n: From D1 = a there follows the result for n = 1.
Suppose that On is the set of places where Dn occurs in ξ . We need to show that the set of

places where Dn+1 occurs in ξ is On+1 which by definition is the set {|σ n(u0u1 · · · ui−1)|; ui =
a}.

On the one hand, Dn+1 = σ(Dn)a. Thus, by considering the image under σ (and noticing
that a is a prefix of σ(w) for any word w), at any place in On+1 there is an occurrence of Dn+1
in ξ .

On the other hand, suppose that Dn+1 occurs at place t in ξ , that is

ξ = u0u1 · · · ut−1ut · · · (ui ∈ {a, b, c}) and ut ut+1 · · · ut+|Dn+1|−1 = Dn+1.

The following fact is readily checked: If w is a prefix of ξ with a � w, then there is a unique
prefix w′ of ξ , such that wa−1 = σ(w′).

Since ut = ut+|Dn+1|−1 = a, using the above fact twice, there exist r, s ∈ N with s < r such
that

u0u1 · · · ut−1 = σ(u0u1 · · · us−1)

u0u1 · · · ut−1 Dn+1a−1 = σ(u0u1 · · · us−1us · · · ur−1).

Since Dn+1a−1 = σ(Dn) (and the substitution σ is injective), we have that us · · · ur−1 = Dn ,
and thus s is a place where Dn occurs in ξ .

Now by the induction hypothesis, s ∈ On . Hence there is an integer i ≥ 1 with ui = a
such that u0u1 · · · us−1 = σ n−1(u0u1 · · · ui−1). Therefore, u0u1 · · · ut−1 = σ(u0u1 · · · us−1) =
σ n(u0u1 · · · ui−1) and t ∈ On+1. �

2.3. Structure of the factors

Now we analyze the structure of the factors of length fn of the Tribonacci sequence ξ .
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Proposition 2.12. For any n, a factor of the Tribonacci sequence of length fn is either:
1. a conjugate word of An;
2. a factor of An−2 An−3 An−1 An; or
3. a factor of An−3 An−1 An−2 An.

Proof. Since ξ is the fixed point of σ ,

ξ = σ n(ξ) = An Bn AnCn An Bn An · · · .
Due to the fact that the words bb, bc, cb, cc are not factors of ξ , each factor of length fn of ξ

will be a factor of one of the following words:

• An An: the factors of length fn of An An are just the conjugates of An;
• AnCn An: since AnCn An = An−1 An−2 An−3 An−1 An , the first |An−1| = fn−1 factors of

length fn are the conjugates of An; other factors are just the factors of An−2 An−3 An−1 An;
• An Bn An: since An Bn An = An−1 An−2 An−3 An−1 An−2 An , the first |An−1| + |An−2| factors

of length fn are the conjugates of An−1 An−2 An−3 = An; other factors are just the factors of
An−3 An−1 An−2 An .

On the other hand, the factors of the above three words are obviously factors of ξ . �

By Proposition 2.12, the set of factors of length fn (n ≥ 2) can be divided into the following
three classes:

• Ω0
n = {conjugates of An}.

• Ω1
n = {factor of length fn of the word α−1 En Dn−1 Enα

−1}.
(where α is the last letter of En .)
By Proposition 2.6 and the definition of En , An−2 An−3 An−1.An = Dn−1 En.Dn−1 En , and

thus the first |Dn−1|+1 factors of length fn are the conjugates of An−2 An−3 An−1 (so they are
also the conjugates of An = An−1 An−2 An−3), and the last one is just An . And other factors
of length fn are the factors of α−1 En Dn−1 Enα−1.

Let us call the factors in Ω1
n the singular words of the first kind.

• Ω2
n = {factor of length fn of the word β−1 En+1 Dn−2 En+1β

−1}.
(Here β is the first letter of En+1.)
Likewise, by Proposition 2.6, the definition of Fn and Proposition 2.8, An−3 An−1 An−2 An

= Dn−2 Fn Dn−2 Fn = Dn−2 En+1 Dn−2 En+1.
And the factors in Ω2

n will be called the singular words of the second kind.

For example, we have

Ω0
2 = {abac, baca, acab, caba};

Ω1
2 = {abab, baba};

Ω2
2 = {abaa, baab, aaba}.

When n = 1, we put Ω0
1 = {ab, ba}, Ω1

1 = {aa} and Ω2
1 = {ac, ca}.

Remark 2.13. Singular words were introduced in [20] for the Fibonacci case to study the factor
structure of the Fibonacci sequence. In that case, given a length, there is only one singular word,
but in our case, there are two classes of singular words, and thus the situation is much more
complicated.
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Let s = s0s1s2s3 · · · be a sequence, and u be a factor of s. Suppose that u occurs in s at places
p and q (p < q); then the distance between the two occurrences is defined to be the difference
q − p. If the distance between any two (distinct) occurrences of u is larger than or equal to (resp.
strictly larger than) the length of u, we say that u is separated (resp. positively separated) in s.

For instance, by Corollary 2.7, both 0 and fn−1 are places where Dn occurs in the word
An−1 An An−1 (which is a factor of ξ ). When n ≥ 2, |Dn| > fn−1 (this is implied by
Proposition 2.9), and thus Dn is not separated in ξ .

Theorem 2.14. For n ≥ 1, any factor in Ω1
n or Ω2

n is positively separated.

Proof. We consider the factor in Ω1
n first. When n = 1, Ω1

1 = {aa}, and aa is positively separated
(since aaa is not a factor of ξ ).

Let w be a word in Ω1
n (n ≥ 2). By definition, w is a factor of length fn of the word

α−1 En Dn−1 Enα−1. Comparing the lengths, we have that Dn−1 occurs in w. By Theorem 2.11,
the set of places where Dn−1 occurs in ξ is On−1, which can be regarded as the set of places of
formal occurrences of the word An−2 in the following factorization:

ξ = An−2 Bn−2 An−2Cn−2 An−2 Bn−2 An−2 · · · . (∗)

Firstly, in the word w, the letter just before Dn−1 is the last letter of En (by Proposition 2.10)
which is the last letter of Bn−2, but not the last letter of either An−2 or Cn−2; secondly, in w the
letter just after Dn−1 is the first letter of En , and a direct calculation using Corollary 2.7 gives

An−2 Bn−2 An−2 = Dn−1 En−1;
An−2Cn−2 An−2 = Dn−1 En−2;
An−2 An−2Cn−2 = Dn−1 En−2,

and amongst the words En−1, En−2 and En−2, only En−1 has the same first letter as En .
Thus each occurrence of w in ξ gives a formal occurrence of Bn−2 An−2 Bn−2 in the

factorization (∗). Consider another factorization

ξ = σ n(ξ) = An Bn AnCn An Bn An · · · . (�)

There is a one-to-one correspondence between the places where there is a formal occurrence of
Bn−2 An−2 Bn−2 in (∗) and the places where there is a formal occurrence of Cn in (�).

Now in (�), the factor occurring just before Cn is An , and the factor occurring just after Cn

is also An . And AnCn An = An−1 An−2 An−3 An−1 An = An−1 Dn−1 En Dn−1 En (see the proof of
Proposition 2.12 and the remarks after the definition of Ω1

n ); thus an occurrence of w appears.
Therefore there is a one-to-one correspondence between the places where w occurs in ξ and

the places where there is a formal occurrence of the word Cn in the above factorization (�).
Now we consider the distances between two adjacent formal occurrences of Cn in (�):

Writing

ξ = u0u1u2u3 · · · , ui ∈ {a, b, c},
we have

{ui ui+1 · · · u j−1; j > i ≥ 0, ui = u j = c and uk = c for i < k < j}
= {cabaaba, cababa, caba}.

Thus, in (�), the distance between two adjacent formal occurrences of Cn is one of the three
numbers |σ n(cabaaba)| = fn+3, |σ n(cababa)| = fn+2 + fn+1 and |σ n(caba)| = fn+2.
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Now, due to the one-to-one correspondence, the distance between two adjacent occurrences
of w in ξ is also one of the three numbers fn+3, fn+2 + fn+1 and fn+2. Each number is strictly
larger than the length fn of w; therefore w is positively separated in ξ .

Likewise, for a word v in Ω2
n , there is a one-to-one correspondence between the places where

v occurs in ξ and the places where there is a formal occurrence of the word Bn in the above
factorization (�). Thus the distance between two adjacent occurrences of v in ξ is one of the
three numbers fn+2, fn+1 + fn and fn+1, and v is positively separated in ξ . �

Remark 2.15. As we have seen in the above proof,
1. for a word w in Ω1

n , the distances between two adjacent occurrences of w in ξ are in the
set { fn+2, fn+2 + fn+1, fn+3}; moreover, among any two adjacent distances, at least one is fn+3
(this is because, for three consecutive places i, j, m where c occurs in ξ , at least one word of
ui ui+1 · · · u j−1 and u j u j+1 · · · um−1 is cabaaba);

2. likewise, for the word w in Ω2
n , the distances between two adjacent occurrences of w in ξ

are in the set { fn+1, fn+1 + fn, fn+2}; moreover, among any two adjacent distances, at least one
is fn+2.

See also Remark 3.3 for an alternative proof of certain special cases.

Now we can say more on the sets Ω i
n (i = 0, 1, 2).

Theorem 2.16. For n ≥ 1, the union of the sets Ω i
n (i = 0, 1, 2) is the set of factors of length fn,

and the union is disjoint. #Ω0
n = fn , #Ω1

n = |En | − 1 and #Ω2
n = |En+1| − 1, where # denotes

the cardinality of a finite set. Moreover, each Ω i
n (i = 0, 1, 2) is closed under the operation of

taking the mirror, i.e. Ω i
n := {w; w ∈ Ω i

n} = Ω i
n .

Proof. We have already shown that the set of factors of length fn is the union of Ω0
n , Ω1

n and Ω2
n .

Also the cases with n = 1, 2 can be checked directly. So in the following we assume that n ≥ 3.
First we study the properties of the sets Ω0

n , Ω1
n and Ω2

n one by one.
Ω0

n : 1. The conjugates of An are different from each other, and thus #Ω0
n = fn .

Indeed, the Parikh vector of An is P(An) = (|An|a, |An|b, |An|c) = ( fn−1, fn−2, fn−3). An
easy induction shows that gcd( fn−1, fn−2, fn−3) = 1, and this implies that An is primitive
(otherwise, if An = wm , then gcd(P(An)) ≥ m). Thus these conjugates are distinct and
#Ω0

n = fn .
2. Ω0

n is closed under the operation of taking the mirror.
Since Ω0

n consists of all the conjugates of An , we only need show that the mirror word An of
An is a conjugate of itself.

By the definition of En , An = Dn−1 En , thus An = En Dn−1 = En Dn−1 (the last equality
is due to Proposition 2.2). On the other hand, by Proposition 2.6, An−2 An−3 An−1 = Dn−1 En .
Since An−2 An−3 An−1 is a conjugate of An = An−1 An−2 An−3, An is also a conjugate of An .
Ω1

n : 1. There is just one occurrence of Dn−1 in the word Anα
−1, where α is the last letter of An .

Anα
−1 is a prefix of ξ ; then, by Theorem 2.11, the possible place where Dn−1 occurs in

Anα
−1 is either 0 or fn−1. Dn−1 occurs at place 0, but for the second place fn−1, since

fn−1 + |Dn − 1| = fn−1 + 1
2 ( fn + fn−2 − 3) > fn − 1 for n ≥ 3 (Proposition 2.9 is applied in

the equality), Anα
−1 is not too long to contain the second Dn−1.

2. There is just one occurrence of Dn−1 in the word α−1 En Dn−1 Enα−1.
By the definition of En , Dn−1 Enα

−1 = Anα
−1, and then α−1 En Dn−1 = α−1 An = Anα−1.

By 1, Dn−1 occurs in Anα
−1 just once (as a prefix). Since Dn is a palindrome, Dn occurs in

Anα−1 just once as a suffix. So there is just one occurrence of Dn−1 in α−1 En Dn−1 Enα
−1.
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3. #Ω1
n = |En| − 1.

As stated in the proof of Theorem 2.14, for w ∈ Ω1
n , Dn−1 occurs in w, and then by 2, Dn−1

occurs in w just once. Therefore the factors of α−1 En Dn−1 Enα
−1 occurring in different places

are distinct, and thus #Ω1
n = |En| − 1.

4. Ω1
n is closed under the operation of taking the mirror.

This is just because α−1 En Dn−1 Enα
−1 is a palindrome.

Ω2
n : 1. Dn−2 occurs in β−1 En+1 Dn−2 En+1β

−1 just twice, at the places |En+1|− |An−2|− 1 and
|En+1| − 1.

By arguing as above, Dn−1 occurs in Dn−2 En+1β
−1 = Anβ

−1 just once as a prefix. Taking
the mirror words, Dn−1 occurs in β−1 En+1 Dn−2 just once as a suffix. Thus there are just two
occurrences of Dn−2 in β−1 En+1 Dn−2 En+1β

−1, at places |En+1| − |An−2| − 1 and |En+1| − 1.
2. #Ω2

n = |En+1| − 1.
In β−1 En+1 Dn−2 En+1β

−1, the factor occurring just before the first Dn−1, i.e. Dn−1 occurring
at place |En+1| − |An−2| − 1 (resp. the second Dn−1, i.e. Dn−1 occurring at place |En+1| − 1),
is En+1β

−1 (resp. Enβ
−1). By Proposition 2.10, the first letters of En+1β

−1 and Enβ
−1 are

different.
Now the class Ω2

n is divided into three subclasses, namely: the words containing only the first
Dn−1 as a factor; the words containing both Dn−1’s; and the words containing only the second
Dn−1. Considering the places where Dn−1 occurs, the words in the same subclass are distinct;
considering the number of occurrences of Dn−1, the second subclass is disjoint with the others;
considering the letter occurring just after Dn−1, the first subclass is disjoint from the third one.

Therefore, the factors of β−1 En+1 Dn−2 En+1β
−1 occurring in different places are distinct,

and thus #Ω2
n = |En+1| − 1.

3. Ω2
n is closed under the operation of taking the mirror.

This is just because β−1 En+1 Dn−2 En+1β
−1 is a palindrome.

Finally, by considering the letter occurring just before or just after Dn−1, we show that the
sets Ω0

n ,Ω1
n and Ω2

n are pairwise disjoint. �
By the above theorem,

#Ω fn = |Ω0
n | + |Ω1

n | + |Ω2
n |

= fn + 1

2
( fn − fn−2 + 3) − 1 + 1

2
( fn+1 − fn−1 + 3) − 1

= 2 fn + 1

and this checks the complexity function of the Tribonacci sequence for the length fn .
Now we come to determining the palindrome factor of length fn . We have that each of Ω0

n ,Ω1
n

and Ω2
n contains at most one palindrome. More precisely:

1. Ω0
n contains one palindrome ⇔ fn is odd ⇔ n ≡ 0, 3(mod 4).

In fact, if fn is even and w = uu ∈ Ω0
n , then P(w) = 2P(u) which contradicts the facts that

P(w) = P(An) = ( fn−1, fn−2, fn−3) and gcd( fn−1, fn−2, fn−3) = 1. On the other hand, if fn

is odd, since Ω0
n is closed under taking the mirror, Ω0

n contains one palindrome.
We will denote the palindrome factor, if any, by P0

n .
2. Ω1

n contains one palindrome ⇔ |En| is even ⇔ n ≡ 0, 1, 3(mod 4).
Recall that the factors of α−1 En Dn−1 Enα

−1 occurring in different places are distinct, and
#Ω1

n = |En| − 1.
Since α−1 En Dn−1 Enα−1 is a palindrome, the factor of length fn occurring at place m is the

mirror word of the one occurring at place |En|−2−m. Thus Ω1
n contains at most one palindrome,



B. Tan, Z.-Y. Wen / European Journal of Combinatorics 28 (2007) 1703–1719 1713

and it contains a palindrome only if the total number |En|−1 of words in Ω1
n is odd; on the other

hand, when |En | is even, denoting by Ln the prefix of length 1
2 |En| of En , then P1

n = Ln Dn−1 Ln

is a palindrome in Ω1
n .

We will denote the palindrome factor, if any, by P1
n .

3. Ω2
n contains one palindrome ⇔ |En+1| is even ⇔ n ≡ 0, 2, 3(mod 4).

We will denote the palindrome factor, if any, by P2
n .

In fact, this checks the palindrome complexity for the length fn .

3. Some factorizations of the Tribonacci sequence

In this section, we will give some factorizations of the Tribonacci sequence.

Theorem 3.1.

ξ =
∞∏
0

Ai = A0 A1 A2 · · · .

Proof. By Proposition 2.2 and the definition of Dn , Dn = A0 A1 A2 · · · An−1. By Theorem 2.5,
for any n, Dn is a prefix of An+1, and An+1 is a prefix of ξ , and thus Dn is also a prefix of ξ , and
the theorem follows. �

If n ≡ 2(mod 4), there is a palindrome singular factor P1
n of the first kind. We will give a

factorization of ξ according to P1
n .

By Theorem 2.14, P1
n is positively separated, then we can rewrite the Tribonacci sequence:

ξ = Z0 P1
n Z1 P1

n Z2 P1
n Z3 P1

n Z4 P1
n Z5 P1

n Z6 · · ·
where P1

n is not a factor of any Zk .
Since |En| is even, we can write En = Ln Rn with |Ln| = |Rn | = 1

2 |En|. Then P1
n =

Ln Dn−1 Ln . Put

Ξ = An Bn An−1 Dn−1 Rn;
Δ = Rn Bn An An Bn An−1 Dn−1 Rn = Rn Bn AnΞ ;
Θ = Rn Bn An Bn An−1 Dn−1 Rn = Rn BnΞ ;
Λ = Rn Bn An−1 Dn−1 Rn = RnΞ .

Theorem 3.2. With the notation above, we have
1. Δ,Θ and Λ are palindromes;
2. Z0 = Ξ ; for any n ≥ 1, Zi ∈ {Δ,Θ ,Λ}; moreover the sequence Z = Z1 Z2 Z3 · · · is the

Tribonacci sequence over the alphabet {Δ,Θ ,Λ}.
Proof. 1. Using the definitions of words En and Fn , and results 2.6, 2.7 and 2.8 we have

Δ = Rn Bn An An Bn An−1 Dn−1 Rn

= Rn An−1 An−2 An An−1 An−2 An−3 An−1 An−2 An−1 Dn−1 Rn

= Rn Dn−1 En−1 Dn−2 En+1 Dn−2 En−1 Dn−4 En−1 Dn−2 En+1 Dn−2 En−1 Dn−1 Rn;
Θ = Rn Bn An Bn An−1 Dn−1 Rn

= Rn An−1 An−2 An An−1 An−2 An−1 Dn−1 Rn
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= Rn Dn−1 En−1 Dn−1 En−1 Dn−3 En Dn−1 En−1 Dn−1 Rn;
Λ = Rn Bn An−1 Dn−1 Rn

= Rn An−1 An−2 An−1 Dn−1 Rn

= Rn Dn−1 En−1 Dn−2 En−1 Dn−1 Rn .

2. Put w = P1
n in the proof of Theorem 2.14. We have shown that there is a one-to-one

correspondence between the places where P1
n occurs in ξ and the places where there is a formal

occurrence of the word Cn in the following factorization:

ξ = σ n(ξ) = An Bn AnCn An Bn An · · · . (�)

Then Zi ∈ {Δ,Θ ,Λ} for n ≥ 1. On the other hand, since

An+3 = Ξ P1
n Δ Ξ −1;

Bn+3 = Ξ P1
n Θ Ξ −1;

Cn+3 = Ξ P1
n Λ Ξ −1,

(♦)

Z = Z1 Z2 Z3 · · · is the Tribonacci sequence over the alphabet {Δ,Θ ,Λ}. �

The following example illustrates the factorization of ξ according to P1
1 = aa:

abacab(aa)bacababacab(aa)abcabacab(aa)bacababacab(aa)bacab(aa)

bacababacab(aa)bacababacab(aa)abcabacab(aa)bacababacab · · ·.
If n ≡ 1(mod 4), there is a palindrome singular factor P2

n of the second kind. We can also get
a factorization of ξ according to P2

n . Moreover if we consider the factor of length |Bn| of ξ , we
can define the singular words in the same way and get similar factorizations.

Remark 3.3. From (♦), |P1
n | + |Δ| = |An+3| = fn+3, |P1

n | + |Θ | = fn+2 + fn+1 and
|P1

n | + |Λ| = fn+2, and thus the distances between two adjacent occurrences of P1
n are in the set

{ fn+3, fn+2 + fn+1, fn+2}. This checks again Remark 2.15.1 for P1
n . The situation for the word

P2
n is similar.

Now we give the Lyndon factorization of ξ . We totally order S by a < b < c and extend this
order to the set S∗ of all words lexicographically. Lyndon words are defined as primitive words,
which are minimal in the class of all their conjugates. The reader is referred to [10] for more
information and the proof of the following theorem.

Theorem 3.4 (Lyndon). Any non-empty word is a unique product of non-increasing Lyndon
words.

In [17] the authors defined Lyndon sequences as those sequences which have infinitely many
prefixes being Lyndon words. And they proved the following generalization of the Lyndon
theorem.

Theorem 3.5. Any sequence s can be uniquely factorized in one of the following forms:
(1) s = l0l1l2 · · ·, with l0 ≥ l1 ≥ l2 ≥ · · ·, are Lyndon words;
(2) s = l0l1l2 · · · lklk+1, with l0 ≥ l1 ≥ l2 ≥ · · · ≥ lk , are Lyndon words, and lk+1 < lk is a

Lyndon sequence.

The following theorem gives the Lyndon factorization of ξ .



B. Tan, Z.-Y. Wen / European Journal of Combinatorics 28 (2007) 1703–1719 1715

Theorem 3.6. Define the substitution ϕ = (aabacab, abacab, acab);

ξ =
∞∏

i=0

([ϕi(abac)] [ϕi (ab)])

is the Lyndon factorization of the Tribonacci sequence. That is
1. For any n, both ϕn(abac) and ϕn(ab) are Lyndon words and

abac > ab > ϕ(abac) > ϕ(ab) > ϕ2(abac) > ϕ2(ab) > · · · .
2. ξ = [abac][ab][ϕ(abac)][ϕ(ab)][ϕ2(abac)][ϕ2(ab)] · · ·.

Proof. 1. It is easy to check.
2. Define η = (abac)(ab)(ϕ(abac))(ϕ(ab))(ϕ2(abac))(ϕ2(ab)) · · ·; we need show η = ξ .
Notice that η = (abacab)ϕ(η) and σ 3 = ıabacab ϕ; we have

σ 3(η) = ıabacab ϕ(η) = ıabacab((abacab)−1η) = η,

and thus η is a fixed point of σ and η = ξ . �

The reader is referred to [7,9,12,14–16] for similar results on the Thue–Morse sequence,
Sturmian sequences, and generalizations of those sequences.

4. Applications

In this section, we discuss the combinatorial properties of the factors of the Tribonacci
sequence, such as the power of the factor, and the overlap property. As we will see, the positively
separated property of the singular words plays an important role in these studies.

4.1. Power property of the factors

Theorem 4.1. For n ≥ 3, the maximal common factor of both the Tribonacci sequence and the
sequence A∞

n := An An An · · · is An An An Dn−3.

Proof. In fact, we need to find the longest factor of ξ which has no singular factor of length fn .
We will denote this word as M .

Recall (from the proof of Theorem 2.14) that, for a singular word w of the second kind, there
is a one-to-one correspondence between the places where w occurs in ξ and the places where
there is a formal occurrence of the word Bn in the following factorization:

ξ = σ n(ξ) = An Bn AnCn An Bn An · · · . (�)

Since M has no singular factor of the second kind, we know that M is a factor of one of the
following words:

1. An−2 Bn−2 An−2Cn−2 An−2 Bn−2 An−2 Bn−2 An−2Cn−2 An−2 Bn−2 An−2 Dn−2;
2. An−2 Bn−2 An−2Cn−2 An−2 Bn−2 An−2Cn−2 An−2 Bn−2 An−2 Dn−2;
3. An−2 Bn−2 An−2Cn−2 An−2 Bn−2 An−2 Dn−2.

But the word 1 equals An−1 Dn−1 En Dn−1 En An−1 An−2 Dn−2 and it contains a singular factor
of the first kind. Then the word 2 which equals An An An Dn−3 is the desired word. �
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The next theorem considers the power property of the factor of length fn . Recall that
if An = u0u1 · · · u fn−1 with ui ∈ {a, b, c}, then for k = 0, 1, . . . fn − 1, Ck(An) =
uk · · · u fn−1u0 · · · uk−1.

Theorem 4.2. Let w be a factor of length fn of the Tribonacci sequence.
1. If w ∈ Ω0

n , that is, w is conjugate to An, then w2 ≺ ξ .
For n = 0, 1, 2, w3 ≺ ξ .
For n ≥ 3, if 0 ≤ k ≤ |Dn−3|, then [Ck(An)]3 ≺ ξ ; if |Dn−3| + 1 ≤ k ≤ fn − 1, then

[Ck(An)]3 ≺ ξ .
2. If w ∈ Ω1

n ∪ Ω2
n , that is, w is a singular word, then w2 ≺ ξ .

Proof. 1. Let us consider the case when n ≥ 3 and |Dn−3| + 1 ≤ k ≤ fn − 1. Since

An = An−2 Bn−2 An−2 An−3 = Dn−3 En−2 Bn−2 Dn−2 En−2,

and |Dn−3 En−2| = fn−2, Ck(An) has a factor w from the set Ω1
n−2.

Assume that [Ck(An)]3 ≺ ξ ; then w occurs in [Ck(An)]3 three times, and both of the distances
between two adjacent occurrences of w are fn and this contradicts Remark 2.15.

The other cases are either trivial or a corollary of Theorem 4.1.
2. This is by the positively separated property of the singular word (Theorem 2.14). �

Now we consider the factors of other lengths, and we need the following Fine and Wilf
theorem (See [10] for example):

Theorem 4.3. Let x, y ∈ S∗, n = |x |, m = |y|, d = gcd(n, m). If two powers x p and yq of x
and y have a common prefix of length at least equal to n + m − d, then x and y are powers of
the same word.

Theorem 4.4. Let w be a factor of ξ , fn < |w| < fn+1; then w3 ≺ ξ .

Proof. If w has a singular factor of length fn , then from Remark 2.15 and the fact |w| < fn+1,
w2 ≺ ξ .

Otherwise any factor of length fn of w is conjugate to An; then from |w| < fn+1 < 2 fn , w is
a factor of A3

n .
Assume that w3 ≺ ξ ; then w3 has no singular factor of length fn . In fact, if w3 has a factor

u ∈ Ω1
n ∪ Ω2

n , then u is also a factor of w2 since |w| > |u| and the distance between two
occurrences of u in w3 is |w| < fn+1, which contradicts Remark 2.15.

Thus any factor of length fn of w3 is conjugate to An , and w3 is a factor of A9
n . Then there

is a conjugate word v of An such that w3 is the prefix of v9. Apply Theorem 4.3 with x = w

and y = v; we know that w and v are powers of the same word. But as a conjugate word of the
primitive word An , v is primitive, and hence w is a power of v. This is a contradiction to the fact
|v| = fn < |w| < fn+1 < 2 fn = 2|v|. �

Now we study the highest order of the repetitions in the Tribonacci sequence.
Let r > 1 be a rational; we say the sequence s ∈ Sω contains a repetition of order r if there

exist two factors z, x ≺ s such that

z � x [r]+1 and
|z|
|x | = r,

and in this case we write that z = xr .
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Define the free index FI(s) of the sequence s as follows:

FI(s) = sup{r ∈ Q : s contains a repetition of order r}.
Theorem 4.5. We have

FI(ξ) = 3 + 1

2
(θ2 + θ4) ≈ 3.19148,

where θ ≈ 0.54368 is the unique real root of the equation θ3 + θ2 + θ = 1.

Proof. For any factor w ≺ ξ , we define the index of w in ξ by ind (w) = sup{r ∈ Q : wr ≺ ξ},
and the definition yields FI(ξ) = sup{ind (w) : w ≺ ξ}.

By Theorem 4.4, if fn < |w| < fn+1, ind (w) < 3.
By Theorem 4.2, if w is a singular word, ind (w) < 2.
By Theorem 4.1, ind (An) = 3 + |Dn−3|

|An | and ind (Ck(An)) ≤ ind (An).
Hence we have

FI(ξ) = sup

{
3 + |Dn−3|

|An|
}

= 3 + sup

{
fn−2 + fn−4 + 3

2 fn

}
,

and the theorem follows. �
One can also obtain the result using Theorem 5.2 of [8].

4.2. Overlap property of factors

Suppose u ≺ s ∈ Sω . If there exist non-empty words x, y and z such that u = xy = yz and
u∗(y) := uz = xyz ≺ s, then we say that the word u has overlap, with the overlap factor y (or
overlap length |y|); the word u∗(y) is called the overlap of u with the overlap factor y.

Recall that the set of places where the word Dn−1 occurs in ξ is On−1, and since An =
Dn−1 En , the set of the occurrences of An is a subset of On−1.

Theorem 4.6. Let w be a factor of length fn of the Tribonacci sequence.
1. If w ∈ Ω0

n :
For n = 0, 1, 2, w has no overlap.
For n ≥ 3, if 0 ≤ k ≤ |Dn−3|, Ck(An) has overlap with overlap length fn−3 and fn−3+ fn−2;

if |Dn−3| + 1 ≤ k ≤ fn − 1, Ck(An) has no overlap.
2. If w ∈ Ω1

n ∪ Ω2
n , w has no overlap.

Proof. 1. The results for n = 0, 1, 2 can be easily checked.
By Theorem 2.5, Dn−1 is a prefix of An . Hence by Theorem 2.11, the set of places where

An occurs in ξ is a subset of On−1, and thus the possible overlaps of An occur in the following
words:

1. An−2 Bn−2 An−2 An−2 Bn−2 An−2Cn−2 An−2;
2. An−2 Bn−2 An−2Cn−2 An−2 Bn−2 An−2.

For the word (1), we have

An−2 Bn−2 An−2 An−2 Bn−2 An−2Cn−2 An−2

= An Dn−3α · · ·
= (An−1 An−2)An Dn−3β · · ·

where α and β are two distinct letters and · · · denotes the rest of the representations.
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For the word (2), we have that

An−2 Bn−2 An−2Cn−2 An−2 Bn−2 An−2 = An Dn−3α · · · = (An−1)An Dn−3β · · · .
Then we know that for 0 ≤ k ≤ |Dn−3|, Ck(An) has overlap with overlap length fn−3 and

fn−3 + fn−2.
If |Dn−3| + 1 ≤ k ≤ fn − 1, as shown in the proof of Theorem 4.2.1, Ck(An) has a factor w

which is in Ω1
n−2. If Ck(An) has an overlap y, then the word w will occur in Ck(An)

∗(y) twice
and the distance between the two occurrences is less than |Ck(An)| = fn ; this is a contradiction
to Remark 2.15.

2. By the positively separated property of the singular word. �

Theorem 4.7. Let w be a factor of ξ , fn < |w| < fn+1; then w has overlap if and only if w is
a factor of A2

n Dn−3.

Proof. If w ≺ A2
n Dn−3, then by Theorem 4.1 and |w| > fn , w has overlap.

Suppose that w ≺ A2
n Dn−3 and w has overlap.

If w has a singular factor of length fn , then from Remark 2.15 and the fact |w| < fn+1, w has
no overlap. Thus any factor of length fn of w is conjugate to An , and from |w| < fn+1 < 2 fn ,
w is a factor of A3

n .
Since w ≺ A2

n Dn−3 and w ≺ A3
n , then

w = w1 An Dn−3w2 = w1 Dnw2,

where w1, w2 are non-empty words and w1 � An, w2 � En−2 Bn−2 Bn−1 (note that An =
Dn−3 En−2 Bn−2 Bn−1).

By Theorem 2.11, the set of places where Dn occurs is just the set of places where there is a
formal occurrence of An−1 in

ξ = An−1 An−2 An−3 An−1 An−2 An−1 An−2 An−3 An−1 · · · . (♥)

Moreover, since the factor Dn occurs just after w1 in the word w, and since (by Proposition 2.10)
only An−3 amongst the words An−1, An−2 and An−3 has the same last letter as w1, the occurrence
of w will give a formal occurrence of the word An−3 An−1 in (♥). Likewise, from the fact that,
in the word w, the factor occurring just after Dn is w2, we know that the occurrence of w will
correspond to the occurrence of the word An−3 An−1 An−2 An−3. Then the distance of the two
adjacent occurrences of w’s in ξ is larger than the length of w, and it is impossible that w has
overlap. �
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