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Abstract

Consider am x n matrixA, with integer elements, a column veck®f ninteger indetermi-
nates, and a column vectQrof nintegers greater than unitfxmoduloQ constitutes another
n-vectorb of nonnegative integers. The elemental feature of interest for such systems is whether
they are regular (i.e., nonsingular): whetbemiquely determinesmodulo Q. Let P, denote
the permutation matrix corresponding to a permutatiafi {1, 2, ..., n}. Then, for the special
case of all pairs of elements Qfhaving the same greatest common factor, it is established that
regularity obtains if and only if there exists a permutatioso thatP, AP is a triangular
matrix with each element on the main diagonal coprime to its respective modulusK§rom
Toresolve systems with gene@] a set of moduliis first derived from each original modulus by
factoring itinto prime-power factors. We introduce a corresponding regularity-preserving trans-
formation ofAandQinto anA’ andQ’: the latter containing, exclusively, prime-power moduli.
Elementary transformations df preserving regularity modul@’—denoted equivalences—
are introducedA’ is shown to be regular modul@’ if and only if there exists a permutation
so thatP, A/PJ is equivalent to a triangular matrix, having each element on the main diagonal
coprime to its respective modulus (fraPp Q’). Whence, regularity is fully resolved for general
systems. An algorithm for solving an arbitrary regular system= b (mod Q) is, furthermore,
implicit in these results. © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let QO = (1,92, ..., qn)" be a vector of natural numbers, each larger than unity
(but otherwise unrestricted), and lét = ¥ (Q) = {v = (v1,...,v,)": 0< v; <
gi, i =1,2,...,n}. For any integer vectow = (w1, ..., w,)', there is clearly a

uniquev € 7~ of representatives satisfying
w; =v; (modg;), i=12,...,n.

In this case we writev = v (mod Q).

Definition 1.1. LetAbeinM,(Z), the set ol x n matrices with integer elements.
ThenAis calledQ-regular(or, simply,regular) if the map

$a.0 v — Av(modQ), ve ¥ (Q),

is a permutation orv”, where Av denotes conventional matrix multiplication and
where(mod Q) has the given meaning.

The question addressed herein is: What are the characteristiQsredular
matrices inM,,(Z)? From its definition, we see that when all of the entriegQof
are equal@Q-regularity of A obtains if and only ifA is an invertible matrix over
the ring of residues modulg, i.e., (det A, ¢g) = 1 (cf. [7, Theorem 2.1, p. 96])—

a central theorem in the classical theory of linear systems over commutative rings
[2].

In greater detail, when all entries §f are equal, any matrix i, (Z) is con-
vertible into a diagonal matrix in Smith normal form by three types of elementary
transformations [5, vol. 5, pp. 471, 472; vol. 6, p. 470]. In fact, these transformations
constitute the basis of the theory of systems of linear equations over commutative
rings. On the other hand, whep contains two, or more, distinct integers, these
transformations do not, in general, preserve regularity, signalling the novelty of the
question at hand.

The idiosyncrasy of systems of linear congruences mo@ugamply illustrated
by the consideration of successive mappin@isy followed by ¢z.¢. In general,
the composite mapping does not eggial o, with C=B A (mod Q), because matrix
multiplication moduloQ is plainly nonassociative.

In Section 3, regularity is resolved for the special case with greatest common
divisor (g;,q;) =r, 1<i < j <n. For this case, @-regular matrix is shown
to be, essentially, triangular. In Section@regularity-preserving transformations,
denoted equivalences, are described. Also, in this section, a regularity-preserving
transformation of systems into new systems in which the elements of th&isew
are powers of primes (which are not necessarily distinct) is described. In Section
5, regular matrices are characterized for s@@s: Theorem 5.1 establishes that
a Q-regular matrix is equivalent to a triangular matrix under the transformations
introduced in Section 4.
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These results constitute a primary generalization of linear algebra in the ring of
residues modulg, suggesting a host of analogous theorems in various ring-theoretic
settings. The triangular system derived from a regular system is easily solved, and
reversing the processes used to generate it will solve the original system.

Every new mathematical result engenders applications. Here, for instance, we
may now implement linear rearrangements of the integer points within finite ortho-
topesy; being the edge length,= 1, 2, ..., n. (An orthotope is th&”-analogue of
arectangle ifi?, viz., [3, p. 123].)

2. Preliminary lemmas

We first give, as lemmas, two simple but useful criteria of regularity.
Lemma 2.1. Let Abe inM,(Z) andletQ = (¢1, q2, ..., q.)". Then Alis Q-regular
if and only if there is now = (v1, ..., v,)" # 0 with |v;| < g; such thatAv =0
(mod Q).
Proof. Since7" is finite, ¢4. o is bijective if and only if it is injective. Therefore,
Ais Q-regular if and only if for any, v € ¥~ with v # v/, Av AV’ (mod Q), or
equivalentlyA(v —v') 2£0=(0,...,0T (mod Q). O

For example, if

1 0
A <_1> = (O) (mod Q),

then

1 0
A <o) =A (1> (mod Q),

andey. o is not injective.

Lemma 2.2. LetAbeinM,(Z), letQ = (q1, g2, ..., qx)", andletr Q = (rq1, rqo,
...,rgy)", where r is any positive integer. Then Ari@-regular if and only if A is
Q-regular and(r, det A) = 1.

To construct a proof, consider the following three congruence systems:

Ax =0 (modrQ), (2.1)

Ay =0(mod Q), (2.2)
and

Az =0 (modr), (2.3)

wherex = (x1,x2, ..., %), ¥y = (1, Y2, ---» ¥n) |, @andz = (21,22, ..., 2n) "
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Proof of Lemma 2.2. SufficiencySuppose thah is Q-regular anddet A, r) = 1.
In this case, if there is a solution of (24)= (u1, uo, ..., u,)", with |u;| < rqi,i =
1,2,...,n, thenu clearly also satisfies (2.3). Solving (2.3), usifgt A, r) =1,
yieldsthat |u;, i =1,2,...,n.Setu; = ru;. Then|u!| < g; andu’ = (u’, uj, ...,
u!)T is a solution of (2.2). Sincé is Q-regular, Lemma 2.1 requireg = 0. So
u;=0,i=1,2,...,n,and, thusAisrQ-regular.

NecessityNow suppose thad is r Q-regular. In this case, if there is a nonzero

solution of (2.2)u’ = (uy, ub, ..., u,)" with |u}| < g;, i =1,2,...,n, then we
may obtain a nonzero solution of (2.1) = ru’ = (ruy, ru,, ..., ru,) with |u;| <
rqi, i =1,2,...,n, contradicting ther O-regularity of A. Therefore, there is no

suchu’, and Lemma 2.1 yields tha is Q-regular, the first part of the condition.
If 1 < (det A, r), then there would exisb = (b1, b2, ...,by)"; 0< b <r, 1<

i < n such thatAv = b (modr) would have no solution € ¥(r). Then, Av =

b (modr Q) could have no solution € 7" (r Q), contradicting the Q-regularity of
A. Therefore(det A, r)=1. O

An additional lemma will be used to establish our main theorem.

Lemma 2.3. Letg1,qo2,...,q, be any positive integers greater than unignd
let R; be an arbitrarily selected complete residue system of the moduljus=
1,2,...,n.Then

Ri+qiR2+---+(q1--gn-1D Ry
={p+qio2+---+(@q1 - gn-1pn’ pi € Ri}

constitutes a complete residue system of the modulys - - g,.

This lemma follows, for example, fromn — 1 applications of the division algo-
rithm [7, p. 23], but we omit the proof.

3. Regularity in a special case

The special case hag = (rq1,rqo, ..., rg,)", with r any positive integer and
(gi,q;) =1for1<i < j < n. Weintroduce notation and derive elementary results
before stating a theorem @prregularity for this case.

We employ a permutation matrix representation of the symmetric group of degree
n, %,, which we assume acts uponthefet?, ..., n}. Foro € &, leto (i) denote
the element whichmapsto undes, i = 1, 2, ..., n. Consider also the correspond-
ing (0—1)permutation matri>of ordern, with 1's only at the position§, o (i)), i =
1,2,...,n[1,p. 447].
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Definition 3.1. For any vectonw = (w1, wp, ..., w,)", and for anyo in %, let
P, denote the permutation matrix of ordgrwith the (conventional) matrix product

def
Pow =wy = (wo(l)’ Wo(2) + -+ wa(n))T-

Note that the only matrix multiplications in our paper that are not performed mod-
ulo Q are the permutations induced by standard matrix multiplication with a permu-
tation matrix. Thus, from the action &, on vectors,P(,APJ equaldas ol 1 <
i, j < n; viz., Example 3.4. It is easily seen thBt AP is a regularity-preserving
transformation.

Remark 3.2. For anyo in &, and A inM,(Z), and for any vector Q of positive
integers greater than unipA is Q-regular if and only ifP, AP is O, -regular.

Proof. Clearly, P, (Av (modQ)) = PJAP(,TUU (mod Q). Therefore, both sides
yield the same number of distinct vectorsieandv,, range over/ (Q) and? (Qy),
respectively. O

Definition 3.3. LetAbe inM,(Z), and letQ = (¢1, ¢2, ..., q.)". ThenAis called
lower (upped) Q-triangular if, for eachi andj in {1,2,...,n}, ¢; | a;; whenever
j>i(j<i).

Example 3.4.
0 0 1 1 1 0
0 0 0 1 0 2 0 O
o=01A32H. PF=11 o o o' A=|1 1 3 1|
0 1 0 O 1 2 0 1
31 1 1
T_|10 1 1 2 . .
P AP, = 00 1 1 (an upper triangular matrjx
0O 0 0 2
We now state a theorem on regularity for the special case.
Theorem 3.5. Let Q = (g1, g2, ..., qn)" be a vector of pairwise coprime integers

greater than unityand let A be inM,,(Z). Then A isr Q-regular if and only if both
(det A, r) = 1 and there exists & in .¥,, such thatP(,AP(,T is lower Q,, -triangular
and has each main diagonal element coprime to its respective modulus.

Proof. Recall that-Q = (rq1,rq2, ..., rqn)T. From Lemma 2.2A is r Q-regular

if and only if (det A, r) = 1 andA is Q-regular. Therefore, it suffices to prove the
theorem by demonstrating thatis Q-regular if and only if there is a € &, such
thatPaAPGT is lower Q. -triangular andg;, a;;) =1,i = 1,2, ..., n.
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The sufficiency of the latter condition follows directly from Lemma 2.1 and Re-
mark 3.2. We now prove its necessity by inductiomoSuppose thak is Q-regular.
Forn = 1, this condition must hold [4, Theorem 57]. Assume that 1 and that
the condition holds fon — 1.

Setm = q1g2-- g, andm; =m/q;,i =1, 2,...,n. By assumption(m;, ¢;) =
1. There is, therefore, a uniquee Z,, d=Ef{0, 1,...,q; — 1} such thatm;r; =1
(modg;). Pute; = m;r;. Then

o = {1(m0d6]i),
"7 |0(modg;), i+ .

From the Chinese remainder theorem (cf. [6, Theorem 1, p. 34] and [4, Theorem
121]), for any twon-sequences of integeds, a, . . ., a, andbi, ba, ..., b,

(3.1)

ara1 + a2az + - - + aya, = arb1 + asby + - - - + a, b, (MOdm)
holds if and only ifa; = b; (modg;), i = 1,2, ...,n. Therefore,w1a + azaz +
-+ aya, (Modm) ranges oveZ,, whenever all they;’s range over the respective
Zy's.
Let the indeterminates be denoted v, ..., v,, and set
ai(ai1vy + aiz2vz + - - - + a1, vy) + @2(azv1 + azovz + - - - + a2, vy)
+ -+ an(anivy + an2v2 + - - - + annvn)
= vi(a1101 + az102 + - - - + ap1dy)
+v2(arpen + a2 + - - - + ay20t,)
+ v + a2 + - 4 apnon)
=v1A1+v2A2+ - -+ U Ay,
where
def .
Aj =oa1ayj +agazj + - Fopay;, j=12,...,n.
We have the following corollary of the Chinese remainder theorem and Definition
1.1, which is central to the proof of the theorem.
Corollary 3.6. When(g;, g;) = 1for1<i < j <n, Ais Q-regularif and only if
v1A1 + v2A2+ -+ v, Ay (MOdm)
ranges ovelZ,, when they;’s range over the respectivg,,’s.

To complete the proof, define a charactér) on Z,, as follows:
Ay — g@VEm

Clearly,
A+ w) = A()A(w). (3.2)
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Then, ifAis regular,

> AuiAr+v2A2+ - +v,A,) =0

vi€Zy; (1<i<n)

Because of (3.2), regularity éfimplies that there is an indéxwith 1 < k < n such
that

> aMwA =0.

vkEqu
Set¢ = A(Ag). Then, the foregoing equation gives
(1= —DA+c+--+ %) =0,

from which it follows thatz %« = 1. (¢ # 1 becausey; #= 0 (modgy).) This implies
thatmy = m/q; = Hi#k gi) dividesAy = arax + azazr + - - - + apang. From (3.1)

it follows that, fori # k, ¢; | aix, 1 <i < n. Furthermore, the&)-regularity of A
necessitate&gy, axx) = 1 becaused; = axx (modgy). Thus, otherwise, i, were
to range ovelZ,, , then the resulting; Ax (modg;) would generate an incomplete
residue system [4, Theorem 57].

Letr denote the permutatidh n), interchanging < {1, 2, ..., n} with nand fix-
ing the remaining elements {f, 2, . . ., n}, and consideP,; AP . (If k = n, thent is
the identity.) Clearlyq,(i)|a,(i) (k) foralliin{1,2,...,n}\k, and(qf(k), Ar(k)yz(k))
= 1. Recall, from Remark 3.2, thatis Q-regular if and only ifPTAPrT is Q.-regu-
lar. From the form ofPrAP,T, it is readily seen that this may hold if and only if the
latter’s leading submatrix of order— 1, denoted, is (¢:(1), g:(2), - - - » Gr(n—1))-
regular. By the induction hypothesis, there exists a permutatiany’,,_1 of (z(1),
7(2),...,t(n — 1)), acting on the indices of, such thatPa,BPLI is lower Q-
triangular andg ). bi;) =1,i =1,2,...,n — 1. Leto € ¥, denote the permuta-
tionof {1,2,...,n}witho(i) =w(t()),i=1,2,...,n—1,ando(n) = t(n) =
k. Then,P(,APGT is clearly lowerQ,-triangular and(g;, a;;) =1,i =1,2,...,n.

U

Note that though our theorems are stated in terms of lower triangular matrices,

lower and uppe@-triangular matrices are plainly interconvertible.

Remark 3.7. An upper(lower) Q-triangular matrix A fromM,,(Z) is convertible
into a lower (upped Q,-triangular matrix Pq,APJ, where Py, (= PJ) denotes the
permutation matrix with itsl’s on its off diagonal angp = (1 n)(2n —1)(3n —
2.

Proof. For instance, ifA is lower Q-triangular, thenPwAPJ = [ay@i)¢(j)] IS upper
Q,-triangular because, with: i — n+1—i,i=1,2,...,n, j > i ifandonly
if o(j) < @(i), yieldingqyi) | api) o(j) Whenever(j) < ¢@i). O
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Theorem 3.5 yields a complete description®fegular matrices of order 2. Let
0 = (q1, q2)", with g1 = rr1 andqz = rra, wherer = (g1, ¢2). Let

ail aiz
A= € Mo (7).
(azl a22> 2(2)

Corollary 3.8. A2 x 2matrix Ais Q-regularifand only ifr, det A) = 1, (a11, r1)
= (az2, r2) = 1, and eitherry | a1z or r2 | az1 (or both).

4. Regularity-preserving transformations

In Section 3, we described some transformations preserving the regularity of lin-
ear systems of congruences (viz., Remark 3.2). For the foregoing transformations,
Q. replacesQ. This section describe®-regularity-preserving transformations in
whichQis fixed. It also contains regularity-preserving transformations for particular
transformations of) which increase the number of its elements. Both classes of
transformations are used to obtain fully general results on regularity, in Section 5.

In this section, we suppose th@t= (g1, ¢, . .., ¢») ' is an arbitrary vector of in-

tegers greater than unity. L&t = g,1¢.2 With (¢,1, gn2) = 1. Sett(Q) def (g1, .-,

Gn—-1, qn1, gn2)". FromAin M, (Z), we obtainz(A) in M, 41(Z):

— . def (A Acgm
F(A) = ,
(A4) <Ar Ann in)

whereA: andA; are thenth column anchth row of A, respectively.
Let v, be an integer with & v, < ¢,. By the division algorithm [7, p. 23],
there are unique,(ll) and v,(,z), with 0 < v,(,l) < gn1 and 0< v,(,z) < gn2, Such that

v=v® + ¢,1v?@. Thus, we obtain a bijection from 7" (Q) to ¥ (£(Q)) given by

T D @)\
lu’:(v17"'5vn—l7vﬂ) —>(U17--‘,Un—l7v,(1)7v,(1)) .

Proposition 4.1. Ais Q-regular if and only i£(A) is £(Q)-regular.

Proof. Givenv = (v1, vy, ..., vs)' With [v;| < ¢i,i = 1,2, ..., n, we transformy
according tov:

(vl, e Un—1, v,(ll), v,(lz)) if0 < vy,
v(v) =
(vl,...,vn_l, | D, —|vn|(2)) if v, <O,
using the foregoing division algorithm to obtain eithé?’) and v,(f), if 0 <wv, or
[v,|D and|v,|@, otherwise. Then it is easy to see thas the zero vector i’ (Q)
if and only if v(v) is the zero vector i (£(Q)).
Now, we claim thatAv = 0 (mod Q) if and only if £(A)v(v) = 0 (mod&(Q)).
In fact, for givenv andA, and with 0< v,
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1 2
aijvy + -+ ay-1vp-1+ alnvr(l ) + aln‘]nlvr(z )

1 2
azvy + - - +azp—-1vp—1+ a2nvr(l ) + a2ninvr(z )
E(A)v(v)= :

1 2
ap1v1 + -+ app—-1Vp—-1 + annvr(z ) + annCInlvr(t )

1 2
ap1vl + -+ App—1Vp—1 + annvr(t ) + annCInlvr(z )

aivl + -+ ap—-1vp—1 + a1y

azvy + - - - +az—1vp—1 + az, vy

ap1Vl + -+ + Appn—1Vn—1 + AppVy

ap1V1 + -+ - + App—1Vp—1 + Aupp

Our claim is immediately verified because, with,1, g.2) = 1, apivys +--- +
Ann—-1Vp—1 + anpvy, =0 (Modgy;), i = 1,2, hold if and only if a,qv1 +--- +
Ann—1Vn—1 + annv, = 0 (MoOdg,). Analogous results clearly obtain whep < 0.
Thus, the proposition follows immediately from Lemma 2.1

The following corollary may be used in the solution of regular systems.

Corollary 4.2. Givenb € 7(Q), with ¢, = gn1gn2 and (gu1, gn2) = 1, and A €
M, (Z), we may obtain a solutiom € 7 (Q) for the system of congruencas = b
(mod Q) from that of Z(A)x’ = b’ (mod&(Q)), with b'(i) =b(i), i =1,2,...,
n—1,0'(n) =b(m) (Modg,1), and b'(n + 1)=b(n) (Mmodg,2) as follows x =
w~1(x"), with . denoting the foregoing bijection.

As a consequence of Proposition 4.1, we need to resolve regularity only for the
case withQ = (p1H P - o pZ”_)T, where thep;’s are primes (not necessarily dis-
tinct) and thee;’s are positive integers. Whe@ contains different moduli, stan-
dard transformations of matrices [5, vol. 6, p. 470] are not guaranteed to preserve

Q-regularity. We have the following proposition.

Proposition 4.3. Let O = (g1, 42, ..., qs)' be a vector of integers greater than
unity, and let A inM, (Z) be Q-regular. Thenthe following transformations of A
preserve its Q-regularitywith @ € N:
(I) The addition of ame-multiple of the ih row to the throw if ¢ jeg;, 1 < i, j <
nyi# j.
(I) The replacement of théhirow by itse-multiple if (o, ¢;) =1, 1 <i < n.
(IlI) The interchange of theti and jth rows (or columngif ¢; = ¢;, 1 < i, j < n.
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(IV) Replacement of the elements of ttherdow by their respective residues modulo
qi, 1<i<n.

Note that (1), (I1), and (lll) generalize the conventional transformations of rows—
(1), (2), and (3) of [5, vol. 5, p. 472], respectively. Note also that, of the three conven-
tional column transformations, only (1) is retained. The proofs that transformations
(I, (1, and (1) preserve theQ-regularity of A follow immediately from their
definitions.

Proof (of transformation(l)). Let 7;;(«) denote such a transformation matrix. In
order to prove the assertion, by Lemma 2.1, it suffices to show that the congruence
systems

Av =0 (mod Q) (4.1)
and

T;j(a)Av = 0 (mod Q) (4.2)
have the same solutions of the form= (v1, v2, ..., v,)", With |y| < ¢, [ =
1,2,...,n.

It is seen that the two systems consist of the same congruences exceptjtioy the
which are, respectively,

Ajv=0(modg)) (4.3)

and
(Aj. +aA;i)v=0 (modqj), (4.4)

whereA;. andA ;. denote theth andjth rows ofA, respectively. From this and the
conditiong; | ag;, the assertion is immediately verified]

Definition 4.4. Let Q = (g1. 92, ..., qn)" be avector of integers greater than unity,
and letA andB be inM,, (7). If B is obtainable fromA by a series of the elementary
transformations listed in Proposition 4.3, then we 8andB areQ-equivalent

Example 4.5. Consider the system

(5 3) moolaa)-

Corollary 3.8 establishes the non-regularity of this system. However, this example
also illustrates the applicability of the results of this section and introduces the results
of Section 5.

First, factor the modulus 26 into its prime factors, applying Proposition 4.1, yield-
ing the equivalent system
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1 0 1 2
3 6 5| mod|13
2 4 1 24

Here we used transformation (IV) aril; 2 3 and its transpose to permute the re-
sulting system. Another application of Proposition 4.1, to factor the modulus 24 into
prime-power factors, yields the equivalent system

1 1 1 2
2 1 0 1 mod 3
2 1 3 4 8
3 5 2 6 13

The final system is evidently not convertible into lower triangular form by the trans-
formations of Proposition 4.3. For instance, though adding row 3 to row 1 yields
(1, 0,0, 0) for the latter(mod 2, ultimately, insufficiently many zeroes may be gen-
erated. As will be seen in the subsequent section, Theorem 5.1 establishes that this
convertibility is necessary for all regular systems, when the moduli are prime powers.

5. General resolution of regularity

From Proposition 4.1, an arbitraty € M,,(Z) and a vector of modul) yield
a correspondingd’ € M,/ (Z), with n < n’ and a vector of modulQ’, with the
elements ofQ’ being (not necessarily distinct) prime powers. In this section, we
determine the necessary and sufficient conditions for the derived system to be regu-
lar. (Henceforth, we omit the superscript.)

Theorem 5.1. Let Q = (g1, 92, ....q,)" be a vector of positive integral powers
of primes and let A be inM,(Z). Then A is Q-regular if and only if there exists a
o € &, with P, AP] Q,-equivalent to a lower triangular matrjphaving each main
diagonal element coprime to its respective modulus f@m

Proof. SufficiencyGiven a lower triangular matriX € M, (Z) whose main diago-
nal elements are coprime to their respective modulus, ffgmand, also, given any
b= (b1, by, ...,by)" € 7 (Qy), Wwe may invert the system

Tx =b(modQ,)

for a uniquex = (x1, x2, ..., x,)' € 7°(Qy). This is established by noting that be-
cause the diagonal elementsToft;, satisfy (¢.(;), ;i) = 1, one may sequentially
solve each congruence for a unigyestarting withxs (cf. [4, Theorem 57]). It fol-
lows thatT is Q,-regular because, for instance, wethe solution for two different
b’s, sayb, andbg, thenb, = bg (mod Q,,). Therefore, because a series of regular-
ity-preserving transformations yields a regular, triangular systeisiestablished to
be Q-regular.
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NecessityFrom Proposition 4.3 (IV), it may be assumed that @;; < ¢;, i, j =

1,2,...,n.Using (Ill), it may also be assumed that ¢», . . ., ¢,, are powers of the
primep1; gri+1. qri+2, - - - » 4ri+r, @re powers of the primey;. . .; andg,; +...4r,_;+1,
rieetre_142s - - - » Qrittre_1+r, @re powers of the primg,. Thus,ri + -+ - +r¢ =

n. Letrg = 0. Then, let
Pi = Grotetri 14 0Grg bt 142 Qrobetridrs L =1,2,..., ¢,

andletM =[]_, ¢ = ]_[ﬁ.:l P;. Then, from the Chinese remainder theorem, there

are positive integergs, B2, ..., B¢ such that
1 (modP;),
g (5.1)
0(modP)), j+#i.

Also, for1<i < ¢, definePi(l) =1land

j—1
Pi(]) = l_[ qro+ri+-+ri_1+hs ] = 2, 3, BT i = 1, 2, ey L.
h=1

Let A;. = (ai1, a2, . . ., ain), and takev = (v1, vo, ..., v,)" € 7 (Q). Then, after
making transformations of type (Il), using Lemma 2.3, it follows from the Chinese
remainder theorem and Corollary 3.6 that

(PO AL+ PP Azt 4 PV A 0)
1 2
+<P2( )Ar1+1.v + Pz( )Ar1+2-v +ee Tt PZ(rZ)Arl_HZ'U)'BZ
1 2
4+ 4+ (Pé( )Arl+...+r571+1.v + P(( )Ar1+---+r571+2-v

S Pl(r‘)Ar1+...+re.v),34
= Biv1 + Bovo + -+ -+ B,v,

must range over a complete residue system molillghenv ranges over/ (Q),
where

def 1 2
Bj= (Pl( Jagj + PYazj + - + Pl(rl)ar1j>,31

1 2
+(PPaursn; + PRagrsz j + -+ P02
1

2
ot (P Dt 4+ P A 142))

+ -+ Pér’i)a(rﬁ...“eﬁ)ﬁg, j=12...,n (5.2)
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As in the proof of Theorem 3.5, the characteon Z;, establishes the existence of
an indexk, 1 < k < n, for which M/g;. divides Bx. Without loss of generality, we
assume that ¥ k£ < r1. It follows from (5.1), (5.2), and Lemma 2.3 thaf, = O for

i > r1. Therefore,

Pay + PPag + -+ PV apy
=ay +qiaz + -+ (q192- - - gr—1ark
=0 (mod P1/qx).

Recall thatyy = pi*, g2 = pP?. ... qn = pi“ and takee; > ep > - -+ > e,,. From
this and the preceding congruence it follows that# &, theng;|a;x, yieldinga;; =

0. If k = r1, then each entry of thith column vanishes except fag;. Regularity
implies that(gx, axr) = 1. If, on the other hand, < r1, then we may construct a vec-
torv = (91, Do, ..., 0n) ! € ¥°(Q), with 7 = pik_l andv; = Ofor j + k. Because
p1| axk, we may write

1o,...,07 (mod0).

~ -1 _
Av=(0,...,0, ag+1ipy s .- -sari Py
Sincev is not a zero vector andlis regular, Lemma 2.1 ensures that therejissdth
k < j < r1, for which

ajkpik_l 0 (mod pij),

implying thate; = e, and(a i, p1) = 1. Interchanging thkth andjth rows and per-
forming a series of elementary transformations of type (1), of Proposition 4.3, trans-
forms A into a matrix with(gx, axx) = 1 and all other elements of theéh column
equal zero (cf. [4, Theorem 57]). Now that we have established a column of zeroes,
except for its diagonal element, we may employ the inductive part of the proof of
Theorem 3.5 to establish the necessity of the asserted propertiesior

Definition 5.2. Let Q be a vector of integers greater than unity and4gtQ) de-
note the lower triangular matrices frobfi, (7) whose diagonal elements are nonzero
and coprime to their respective modulus and whose elenagnsatisfy 0< d;; <

qgi, j=12,...,i,i=12,...,n.

As a corollary of the proof of sufficiency for Theorem 5.1, we have:

Corollary 5.3. Given AandB € 4% (Q), the matrix congruenca X = B (mod Q)
has a unique solutioX € 47 (Q).

On the other hand, evidentlyyA =B (modQ) may have no solution
Y e 4%(Q)—nor need solutions be unique.
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