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Abstract

Consider ann × n matrixA, with integer elements, a column vectorxof n integer indetermi-
nates, and a column vectorQ of n integers greater than unity.AxmoduloQ constitutes another
n-vectorbof nonnegative integers. The elemental feature of interest for such systems is whether
they are regular (i.e., nonsingular): whetherb uniquely determinesx moduloQ. LetPσ denote
the permutation matrix corresponding to a permutationσ of {1, 2, . . . , n}. Then, for the special
case of all pairs of elements ofQ having the same greatest common factor, it is established that
regularity obtains if and only if there exists a permutationσ so thatPσ AP T

σ is a triangular
matrix with each element on the main diagonal coprime to its respective modulus (fromPσ Q).
To resolve systems with generalQ, a set of moduli is first derived from each original modulus by
factoring it into prime-power factors. We introduce a corresponding regularity-preserving trans-
formation ofAandQ into anA′ andQ′: the latter containing, exclusively, prime-power moduli.
Elementary transformations ofA′ preserving regularity moduloQ′—denoted equivalences—
are introduced.A′ is shown to be regular moduloQ′ if and only if there exists a permutationσ
so thatPσ A′P T

σ is equivalent to a triangular matrix, having each element on the main diagonal
coprime to its respective modulus (fromPσ Q′). Whence, regularity is fully resolved for general
systems. An algorithm for solving an arbitrary regular systemAx ≡ b (modQ) is, furthermore,
implicit in these results. © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let Q = (q1, q2, . . . , qn)
T be a vector of natural numbers, each larger than unity

(but otherwise unrestricted), and letV = V(Q) = {v = (v1, . . . , vn)T: 0 6 vi <

qi, i = 1, 2, . . . , n}. For any integer vectorw = (w1, . . . , wn)
T, there is clearly a

uniquev ∈ V of representatives satisfying

wi ≡ vi (modqi), i = 1, 2, . . . , n.

In this case we writew ≡ v (modQ).

Definition 1.1. Let A be inMn(Z), the set ofn × n matrices with integer elements.
ThenA is calledQ-regular(or, simply,regular) if the map

φA;Q : v −→ Av (modQ), v ∈ V(Q),

is a permutation onV, whereAv denotes conventional matrix multiplication and
where(modQ) has the given meaning.

The question addressed herein is: What are the characteristics ofQ-regular
matrices inMn(Z)? From its definition, we see that when all of the entries ofQ
are equal,Q-regularity of A obtains if and only ifA is an invertible matrix over
the ring of residues moduloq, i.e., (det A, q) = 1 (cf. [7, Theorem 2.1, p. 96])—
a central theorem in the classical theory of linear systems over commutative rings
[2].

In greater detail, when all entries ofQ are equal, any matrix inMn(Z) is con-
vertible into a diagonal matrix in Smith normal form by three types of elementary
transformations [5, vol. 5, pp. 471, 472; vol. 6, p. 470]. In fact, these transformations
constitute the basis of the theory of systems of linear equations over commutative
rings. On the other hand, whenQ contains two, or more, distinct integers, these
transformations do not, in general, preserve regularity, signalling the novelty of the
question at hand.

The idiosyncrasy of systems of linear congruences moduloQ is amply illustrated
by the consideration of successive mappings:φA;Q followed by φB;Q. In general,
the composite mapping does not equalφC;Q, with C≡BA (modQ), because matrix
multiplication moduloQ is plainly nonassociative.

In Section 3, regularity is resolved for the special case with greatest common
divisor (qi, qj ) = r, 1 6 i < j 6 n. For this case, aQ-regular matrix is shown
to be, essentially, triangular. In Section 4,Q-regularity-preserving transformations,
denoted equivalences, are described. Also, in this section, a regularity-preserving
transformation of systems into new systems in which the elements of the newQ’s
are powers of primes (which are not necessarily distinct) is described. In Section
5, regular matrices are characterized for suchQ’s: Theorem 5.1 establishes that
a Q-regular matrix is equivalent to a triangular matrix under the transformations
introduced in Section 4.
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These results constitute a primary generalization of linear algebra in the ring of
residues moduloq, suggesting a host of analogous theorems in various ring-theoretic
settings. The triangular system derived from a regular system is easily solved, and
reversing the processes used to generate it will solve the original system.

Every new mathematical result engenders applications. Here, for instance, we
may now implement linear rearrangements of the integer points within finite ortho-
topes,qi being the edge length,i = 1, 2, . . . , n. (An orthotope is theRn-analogue of
a rectangle inR2, viz., [3, p. 123].)

2. Preliminary lemmas

We first give, as lemmas, two simple but useful criteria of regularity.

Lemma 2.1. Let A be inMn(Z) and letQ = (q1, q2, . . . , qn)
T. Then A is Q-regular

if and only if there is nov = (v1, . . . , vn)T /= 0 with |vi | < qi such thatAv ≡ 0
(modQ).

Proof. SinceV is finite, φA;Q is bijective if and only if it is injective. Therefore,
A is Q-regular if and only if for anyv, v′ ∈ V with v /= v′, Av 6≡ Av′ (modQ), or
equivalently,A(v − v′) 6≡ 0 = (0, . . . , 0)T (modQ). �

For example, if

A

(
1

−1

)
≡

(
0
0

)
(modQ),

then

A

(
1
0

)
≡ A

(
0
1

)
(modQ),

andφA;Q is not injective.

Lemma 2.2. Let A be inMn(Z), letQ = (q1, q2, . . . , qn)
T, and letrQ = (rq1, rq2,

. . . , rqn)
T, where r is any positive integer. Then A isrQ-regular if and only if A is

Q-regular and(r, det A) = 1.

To construct a proof, consider the following three congruence systems:

Ax ≡ 0 (modrQ), (2.1)

Ay ≡ 0 (modQ), (2.2)

and

Az ≡ 0 (modr), (2.3)

wherex = (x1, x2, . . . , xn)
T, y = (y1, y2, . . . , yn)

T, andz = (z1, z2, . . . , zn)
T.
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Proof of Lemma 2.2. Sufficiency: Suppose thatA is Q-regular and(det A, r) = 1.
In this case, if there is a solution of (2.1)u = (u1, u2, . . . , un)

T, with |ui | < rqi, i =
1, 2, . . . , n, thenu clearly also satisfies (2.3). Solving (2.3), using(det A, r) = 1,
yields thatr | ui, i = 1, 2, . . . , n. Setui = ru′

i . Then|u′
i | < qi andu′ = (u′

1, u
′
2, . . . ,

u′
n)

T is a solution of (2.2). SinceA is Q-regular, Lemma 2.1 requiresu′
i = 0. So

ui = 0, i = 1, 2, . . . , n, and, thus,A is rQ-regular.
Necessity: Now suppose thatA is rQ-regular. In this case, if there is a nonzero

solution of (2.2)u′ = (u′
1, u

′
2, . . . , u

′
n)

T with |u′
i | < qi, i = 1, 2, . . . , n, then we

may obtain a nonzero solution of (2.1),u = ru′ = (ru′
1, ru

′
2, . . . , ru

′
n) with |ui | <

rqi, i = 1, 2, . . . , n, contradicting therQ-regularity of A. Therefore, there is no
suchu′, and Lemma 2.1 yields thatA is Q-regular, the first part of the condition.
If 1 < (det A, r), then there would existb = (b1, b2, . . . , bn)

T; 0 6 bi < r, 1 6
i 6 n such thatAv ≡ b (modr) would have no solutionv ∈ V(r). Then,Av ≡
b (modrQ) could have no solutionv ∈ V(rQ), contradicting therQ-regularity of
A. Therefore,(det A, r) = 1. �

An additional lemma will be used to establish our main theorem.

Lemma 2.3. Let q1, q2, . . . , qn be any positive integers greater than unity, and
let Ri be an arbitrarily selected complete residue system of the modulusqi, i =
1, 2, . . . , n. Then

R1 + q1R2 + · · · + (q1 · · · qn−1)Rn

= {ρ1 + q1ρ2 + · · · + (q1 · · · qn−1)ρn: ρi ∈ Ri}

constitutes a complete residue system of the modulusq1q2 · · · qn.

This lemma follows, for example, fromn − 1 applications of the division algo-
rithm [7, p. 23], but we omit the proof.

3. Regularity in a special case

The special case hasQ = (rq1, rq2, . . . , rqn)
T, with r any positive integer and

(qi, qj ) = 1 for 1 6 i < j 6 n. We introduce notation and derive elementary results
before stating a theorem onQ-regularity for this case.

We employ a permutation matrix representation of the symmetric group of degree
n,Sn, which we assume acts upon the set{1, 2, . . . , n}. Forσ ∈ Sn, letσ(i) denote
the element whichi maps to underσ, i = 1, 2, . . . , n. Consider also the correspond-
ing (0–1)-permutation matrixof ordern, with 1’s only at the positions(i, σ (i)), i =
1, 2, . . . , n [1, p. 447].
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Definition 3.1. For any vectorw = (w1, w2, . . . , wn)
T, and for anyσ in Sn, let

Pσ denote the permutation matrix of ordern, with the (conventional) matrix product

Pσ w = wσ
def= (wσ(1), wσ(2), . . . , wσ(n))

T.

Note that the only matrix multiplications in our paper that are not performed mod-
ulo Q are the permutations induced by standard matrix multiplication with a permu-
tation matrix. Thus, from the action ofPσ on vectors,Pσ AP T

σ equals[aσ(i) σ (j)]; 1 6
i, j 6 n; viz., Example 3.4. It is easily seen thatPσ AP T

σ is a regularity-preserving
transformation.

Remark 3.2. For anyσ in Sn and A inMn(Z), and for any vector Q of positive
integers greater than unity, A is Q-regular if and only ifPσ AP T

σ is Qσ -regular.

Proof. Clearly, Pσ (Av (modQ)) = Pσ AP T
σ vσ (modQσ ). Therefore, both sides

yield the same number of distinct vectors asv andvσ range overV(Q) andV(Qσ ),
respectively. �

Definition 3.3. Let A be inMn(Z), and letQ = (q1, q2, . . . , qn)
T. ThenA is called

lower (upper) Q-triangular if, for each i and j in {1, 2, . . . , n}, qi | aij whenever
j > i (j < i).

Example 3.4.

σ = (1 3)(2 4), Pσ =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 , A =




1 1 0 0
0 2 0 0
1 1 3 1
1 2 0 1


 .

Pσ AP T
σ =




3 1 1 1
0 1 1 2
0 0 1 1
0 0 0 2


 (an upper triangular matrix).

We now state a theorem on regularity for the special case.

Theorem 3.5. Let Q = (q1, q2, . . . , qn)
T be a vector of pairwise coprime integers

greater than unity, and let A be inMn(Z). Then A isrQ-regular if and only if both
(det A, r) = 1 and there exists aσ in Sn such thatPσ AP T

σ is lowerQσ -triangular
and has each main diagonal element coprime to its respective modulus.

Proof. Recall thatrQ = (rq1, rq2, . . . , rqn)
T. From Lemma 2.2,A is rQ-regular

if and only if (det A, r) = 1 andA is Q-regular. Therefore, it suffices to prove the
theorem by demonstrating thatA is Q-regular if and only if there is aσ ∈ Sn such
thatPσ AP T

σ is lowerQσ -triangular and(qi, aii ) = 1, i = 1, 2, . . . , n.



200 D.C. Torney, J. Wang / Linear Algebra and its Applications 318 (2000) 195–208

The sufficiency of the latter condition follows directly from Lemma 2.1 and Re-
mark 3.2. We now prove its necessity by induction onn. Suppose thatA is Q-regular.
For n = 1, this condition must hold [4, Theorem 57]. Assume thatn > 1 and that
the condition holds forn − 1.

Setm = q1q2 · · · qn andmi = m/qi , i = 1, 2, . . . , n. By assumption,(mi, qi) =
1. There is, therefore, a uniqueri ∈ Zqi

def= {0, 1, . . . , qi − 1} such thatmiri ≡ 1
(modqi). Putαi = miri . Then

αi ≡
{

1 (modqi),

0 (modqj ), i /= j.
(3.1)

From the Chinese remainder theorem (cf. [6, Theorem 1, p. 34] and [4, Theorem
121]), for any twon-sequences of integersa1, a2, . . . , an andb1, b2, . . . , bn,

α1a1 + α2a2 + · · · + αnan ≡ α1b1 + α2b2 + · · · + αnbn (modm)

holds if and only ifai ≡ bi (modqi), i = 1, 2, . . . , n. Therefore,α1a1 + α2a2 +
· · · + αnan (modm) ranges overZm whenever all theai ’s range over the respective
Zqi ’s.

Let the indeterminates be denotedv1, v2, . . . , vn, and set

α1(a11v1 + a12v2 + · · · + a1nvn) + α2(a21v1 + a22v2 + · · · + a2nvn)

+ · · · + αn(an1v1 + an2v2 + · · · + annvn)

= v1(a11α1 + a21α2 + · · · + an1αn)

+v2(a12α1 + a22α2 + · · · + an2αn)

+ · · · + vn(a1nα1 + a2nα2 + · · · + annαn)

= v1A1 + v2A2 + · · · + vnAn,

where

Aj
def= α1a1j + α2a2j + · · · + αnanj , j = 1, 2, . . . , n.

We have the following corollary of the Chinese remainder theorem and Definition
1.1, which is central to the proof of the theorem.

Corollary 3.6. When(qi, qj ) = 1 for 1 6 i < j 6 n, A is Q-regular if and only if

v1A1 + v2A2 + · · · + vnAn (modm)

ranges overZm when thevi ’s range over the respectiveZqi ’s.

To complete the proof, define a characterλ(v) onZm as follows:

λ : v −→ e2pv
√−1/m.

Clearly,

λ(v + w) = λ(v)λ(w). (3.2)
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Then, ifA is regular,∑
vi∈Zqi

(16i6n)

λ(v1A1 + v2A2 + · · · + vnAn) = 0.

Because of (3.2), regularity ofA implies that there is an indexk with 1 6 k 6 n such
that ∑

vk∈Zqk

λ(vkAk) = 0.

Setζ = λ(Ak). Then, the foregoing equation gives

ζ qk − 1 = (ζ − 1)
(
1 + ζ + · · · + ζ qk−1) = 0,

from which it follows thatζ qk = 1. (ζ /= 1 becauseakk 6≡ 0 (modqk).) This implies
thatmk (= m/qk = ∏

i /=k qi) dividesAk = α1a1k + α2a2k + · · · + αnank. From (3.1)
it follows that, for i /= k, qi | aik, 1 6 i 6 n. Furthermore, theQ-regularity of A
necessitates(qk, akk) = 1 becauseAk ≡ akk (modqk). Thus, otherwise, ifvk were
to range overZqk , then the resultingvkAk (modqk) would generate an incomplete
residue system [4, Theorem 57].

Let τ denote the permutation(k n), interchangingk ∈ {1, 2, . . . , n} with n and fix-
ing the remaining elements of{1, 2, . . . , n}, and considerPτ AP T

τ . (If k = n, thenτ is
the identity.) Clearly,qτ(i)|aτ(i) τ (k) for all i in {1, 2, . . . , n}\k, and(qτ(k), aτ(k)τ (k))

= 1. Recall, from Remark 3.2, thatA is Q-regular if and only ifPτAP T
τ is Qτ -regu-

lar. From the form ofPτ AP T
τ , it is readily seen that this may hold if and only if the

latter’s leading submatrix of ordern − 1, denotedB, is (qτ(1), qτ(2), . . . , qτ(n−1))-
regular. By the induction hypothesis, there exists a permutationω ∈ Sn−1 of (τ (1),

τ (2), . . . , τ (n − 1)), acting on the indices ofτ, such thatPωBP T
ω is lower Qω-

triangular and(qτ(i), bii) = 1, i = 1, 2, . . . , n − 1. Letσ ∈ Sn denote the permuta-
tion of {1, 2, . . . , n} with σ(i) = ω(τ(i)), i = 1, 2, . . . , n − 1, andσ(n) = τ (n) =
k. Then,Pσ AP T

σ is clearly lowerQσ -triangular and(qi, aii ) = 1, i = 1, 2, . . . , n.

�

Note that though our theorems are stated in terms of lower triangular matrices,
lower and upperQ-triangular matrices are plainly interconvertible.

Remark 3.7. An upper(lower) Q-triangular matrix A fromMn(Z) is convertible
into a lower (upper) Qϕ-triangular matrix PϕAP T

ϕ , wherePϕ(= P T
ϕ ) denotes the

permutation matrix with its1’s on its off diagonal andϕ = (1 n)(2 n − 1)(3 n −
2) · · · .

Proof. For instance, ifA is lowerQ-triangular, thenPϕAP T
ϕ = [aϕ(i) ϕ(j)] is upper

Qϕ-triangular because, withϕ : i −→ n + 1 − i, i = 1, 2, . . . , n, j > i if and only
if ϕ(j) < ϕ(i), yieldingqϕ(i) | aϕ(i) ϕ(j) wheneverϕ(j) < ϕ(i). �



202 D.C. Torney, J. Wang / Linear Algebra and its Applications 318 (2000) 195–208

Theorem 3.5 yields a complete description ofQ-regular matrices of order 2. Let
Q = (q1, q2)

T, with q1 = rr1 andq2 = rr2, wherer = (q1, q2). Let

A =
(

a11 a12
a21 a22

)
∈ M2(Z).

Corollary 3.8. A 2 × 2 matrix A is Q-regular if and only if(r, det A) = 1, (a11, r1)

= (a22, r2) = 1, and eitherr1 | a12 or r2 | a21 (or both).

4. Regularity-preserving transformations

In Section 3, we described some transformations preserving the regularity of lin-
ear systems of congruences (viz., Remark 3.2). For the foregoing transformations,
Qσ replacesQ. This section describesQ-regularity-preserving transformations in
whichQ is fixed. It also contains regularity-preserving transformations for particular
transformations ofQ which increase the number of its elements. Both classes of
transformations are used to obtain fully general results on regularity, in Section 5.

In this section, we suppose thatQ = (q1, q2, . . . , qn)
T is an arbitrary vector of in-

tegers greater than unity. Letqn = qn1qn2 with (qn1, qn2) = 1. Setξ(Q)
def= (q1, . . . ,

qn−1, qn1, qn2)
T. FromA in Mn(Z), we obtainN(A) in Mn+1(Z):

N(A)
def=

(
A Acqn1
Ar annqn1

)
,

whereAc andAr are thenth column andnth row ofA, respectively.
Let vn be an integer with 06 vn < qn. By the division algorithm [7, p. 23],

there are uniquev(1)
n andv

(2)
n , with 0 6 v

(1)
n < qn1 and 06 v

(2)
n < qn2, such that

v = v(1) + qn1v
(2). Thus, we obtain a bijectionµ fromV(Q) toV(ξ(Q)) given by

µ : (v1, . . . , vn−1, vn)T −→ (
v1, . . . , vn−1, v

(1)
n , v(2)

n

)T
.

Proposition 4.1. A is Q-regular if and only ifN(A) is ξ(Q)-regular.

Proof. Givenv = (v1, v2, . . . , vn)
T with |vi | < qi, i = 1, 2, . . . , n, we transformv

according toν:

ν(v) =




(
v1, . . . , vn−1, v

(1)
n , v

(2)
n

)
if 0 6 vn,(

v1, . . . , vn−1,−|vn|(1),−|vn|(2)
)

if vn < 0,

using the foregoing division algorithm to obtain eitherv
(1)
n andv

(2)
n , if 0 6 vn or

|vn|(1) and|vn|(2), otherwise. Then it is easy to see thatv is the zero vector inV(Q)

if and only if ν(v) is the zero vector inV(ξ(Q)).
Now, we claim thatAv ≡ 0 (modQ) if and only if N(A)ν(v) ≡ 0 (modξ(Q)).

In fact, for givenv andA, and with 06 vn,
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N(A)ν(v)=




a11v1 + · · · + a1n−1vn−1 + a1nv
(1)
n + a1nqn1v

(2)
n

a21v1 + · · · + a2n−1vn−1 + a2nv
(1)
n + a2nqn1v

(2)
n

...

an1v1 + · · · + ann−1vn−1 + annv
(1)
n + annqn1v

(2)
n

an1v1 + · · · + ann−1vn−1 + annv
(1)
n + annqn1v

(2)
n




=




a11v1 + · · · + a1n−1vn−1 + a1nvn

a21v1 + · · · + a2n−1vn−1 + a2nvn

...

an1v1 + · · · + ann−1vn−1 + annvn

an1v1 + · · · + ann−1vn−1 + annvn




.

Our claim is immediately verified because, with(qn1, qn2) = 1, an1v1 + · · · +
ann−1vn−1 + annvn ≡ 0 (modqni), i = 1, 2, hold if and only if an1v1 + · · · +
ann−1vn−1 + annvn ≡ 0 (modqn). Analogous results clearly obtain whenvn < 0.
Thus, the proposition follows immediately from Lemma 2.1.�

The following corollary may be used in the solution of regular systems.

Corollary 4.2. Givenb ∈ V(Q), with qn = qn1qn2 and (qn1, qn2) = 1, and A ∈
Mn(Z), we may obtain a solutionx ∈ V(Q) for the system of congruencesAx ≡ b

(modQ) from that ofN(A)x ′ ≡ b′ (modξ(Q)), with b′(i) = b(i), i = 1, 2, . . . ,

n − 1, b′(n) ≡ b(n) (modqn1), and b′(n + 1)≡b(n) (modqn2) as follows: x =
µ−1(x ′), with µ denoting the foregoing bijection.

As a consequence of Proposition 4.1, we need to resolve regularity only for the
case withQ = (p

e1
1 , p

e2
2 , . . . , p

en
n )T, where thepi ’s are primes (not necessarily dis-

tinct) and theei ’s are positive integers. WhenQ contains different moduli, stan-
dard transformations of matrices [5, vol. 6, p. 470] are not guaranteed to preserve
Q-regularity. We have the following proposition.

Proposition 4.3. Let Q = (q1, q2, . . . , qn)
T be a vector of integers greater than

unity, and let A inMn(Z) be Q-regular. Then, the following transformations of A
preserve its Q-regularity, with α ∈ N:

(I) The addition of anα-multiple of the ith row to the jth row if qj |αqi, 1 6 i, j 6
n; i /= j .

(II) The replacement of the ith row by itsα-multiple if (α, qi) = 1, 1 6 i 6 n.

(III) The interchange of the ith and jth rows(or columns) if qi = qj , 1 6 i, j 6 n.
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(IV) Replacement of the elements of the ith row by their respective residues modulo
qi, 1 6 i 6 n.

Note that (I), (II), and (III) generalize the conventional transformations of rows—
(1), (2), and (3) of [5, vol. 5, p. 472], respectively. Note also that, of the three conven-
tional column transformations, only (III) is retained. The proofs that transformations
(II), (III), and (IV) preserve theQ-regularity of A follow immediately from their
definitions.

Proof (of transformation(I)). Let Tij (α) denote such a transformation matrix. In
order to prove the assertion, by Lemma 2.1, it suffices to show that the congruence
systems

Av ≡ 0 (modQ) (4.1)

and

Tij (α)Av ≡ 0 (modQ) (4.2)

have the same solutions of the formv = (v1, v2, . . . , vn)
T, with |vl | < ql, l =

1, 2, . . . , n.
It is seen that the two systems consist of the same congruences except for thejth,

which are, respectively,

Aj ·v ≡ 0 (modqj ) (4.3)

and

(Aj · + αAi·)v ≡ 0 (modqj ), (4.4)

whereAi· andAj · denote theith andjth rows ofA, respectively. From this and the
conditionqj | αqi , the assertion is immediately verified.�

Definition 4.4. LetQ = (q1, q2, . . . , qn)
T be a vector of integers greater than unity,

and letA andB be inMn(Z). If B is obtainable fromA by a series of the elementary
transformations listed in Proposition 4.3, then we sayA andB areQ-equivalent.

Example 4.5. Consider the system(
1 2
5 3

)
mod

(
24
26

)
.

Corollary 3.8 establishes the non-regularity of this system. However, this example
also illustrates the applicability of the results of this section and introduces the results
of Section 5.

First, factor the modulus 26 into its prime factors, applying Proposition 4.1, yield-
ing the equivalent system
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1 0 1

3 6 5
2 4 1


 mod


 2

13
24


 .

Here we used transformation (IV) andP(1 2 3) and its transpose to permute the re-
sulting system. Another application of Proposition 4.1, to factor the modulus 24 into
prime-power factors, yields the equivalent system


1 1 1 0
2 1 0 1
2 1 3 4
3 5 2 6


 mod




2
3
8
13


 .

The final system is evidently not convertible into lower triangular form by the trans-
formations of Proposition 4.3. For instance, though adding row 3 to row 1 yields
(1, 0, 0, 0) for the latter(mod 2), ultimately, insufficiently many zeroes may be gen-
erated. As will be seen in the subsequent section, Theorem 5.1 establishes that this
convertibility is necessary for all regular systems, when the moduli are prime powers.

5. General resolution of regularity

From Proposition 4.1, an arbitraryA ∈ Mn(Z) and a vector of moduliQ yield
a correspondingA′ ∈ Mn′(Z), with n 6 n′ and a vector of moduliQ′, with the
elements ofQ′ being (not necessarily distinct) prime powers. In this section, we
determine the necessary and sufficient conditions for the derived system to be regu-
lar. (Henceforth, we omit the superscript ‘′ ’.)

Theorem 5.1. Let Q = (q1, q2, . . . , qn)
T be a vector of positive integral powers

of primes, and let A be inMn(Z). Then A is Q-regular if and only if there exists a
σ ∈ Sn with Pσ AP T

σ Qσ -equivalent to a lower triangular matrix, having each main
diagonal element coprime to its respective modulus fromQσ .

Proof. Sufficiency: Given a lower triangular matrixT ∈ Mn(Z) whose main diago-
nal elements are coprime to their respective modulus, fromQσ , and, also, given any
b = (b1, b2, . . . , bn)

T ∈ V(Qσ ), we may invert the system

T x ≡ b (modQσ )

for a uniquex = (x1, x2, . . . , xn)
T ∈ V(Qσ ). This is established by noting that be-

cause the diagonal elements ofT, tii , satisfy(qσ(i), tii ) = 1, one may sequentially
solve each congruence for a uniquexi , starting withx1 (cf. [4, Theorem 57]). It fol-
lows thatT is Qσ -regular because, for instance, werex the solution for two different
b’s, saybα andbβ , thenbα ≡ bβ (modQσ ). Therefore, because a series of regular-
ity-preserving transformations yields a regular, triangular system,A is established to
beQ-regular.
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Necessity: From Proposition 4.3 (IV), it may be assumed that 06 aij < qi, i, j =
1, 2, . . . , n. Using (III), it may also be assumed thatq1, q2, . . . , qr1 are powers of the
primep1; qr1+1, qr1+2, . . . , qr1+r2 are powers of the primep2;. . . ; andqr1+···+r`−1+1,

qr1+···+r`−1+2, . . . , qr1+···+r`−1+r` are powers of the primep`. Thus,r1 + · · · + r` =
n. Let r0 = 0. Then, let

Pi = qr0+···+ri−1+1qr0+···+ri−1+2 · · · qr0+···+ri−1+ri , i = 1, 2, . . . , `,

and letM = ∏n
i=1 qi = ∏`

j=1 Pj . Then, from the Chinese remainder theorem, there
are positive integersβ1, β2, . . . , β` such that

βi ≡
{

1 (modPi),

0 (modPj ), j /= i.
(5.1)

Also, for 16 i 6 `, defineP
(1)
i = 1 and

P
(j)

i =
j−1∏
h=1

qr0+r1+···+ri−1+h, j = 2, 3, . . . , ri , i = 1, 2, . . . , `.

Let Ai· = (ai1, ai2, . . . , ain), and takev = (v1, v2, . . . , vn)T ∈ V(Q). Then, after
making transformations of type (II), using Lemma 2.3, it follows from the Chinese
remainder theorem and Corollary 3.6 that(

P
(1)
1 A1·v + P

(2)
1 A2·v + · · · + P

(r1)
1 Ar1·v

)
β1

+
(
P

(1)
2 Ar1+1·v + P

(2)
2 Ar1+2·v + · · · + P

(r2)
2 Ar1+r2·v

)
β2

+ · · · +
(
P

(1)
` Ar1+···+r`−1+1·v + P

(2)
` Ar1+···+r`−1+2·v

+ · · · + P
(r`)
` Ar1+···+r`·v

)
β`

= B1v1 + B2v2 + · · · + Bnvn

must range over a complete residue system moduloM whenv ranges overV(Q),
where

Bj
def=

(
P

(1)
1 a1j + P

(2)
1 a2j + · · · + P

(r1)
1 ar1j

)
β1

+
(
P

(1)
2 a(r1+1)j + P

(2)
2 a(r1+2) j + · · · + P

(r2)
2 a(r1+r2)j

)
β2

+ · · · +
(
P

(1)
` a(r1+···+r`−1+1)j + P

(2)
` a(r1+···+r`−1+2)j

+ · · · + P
(r`)
` a(r1+···+r`)j

)
β`, j = 1, 2, . . . , n. (5.2)
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As in the proof of Theorem 3.5, the characterλ on ZM establishes the existence of
an indexk, 1 6 k 6 n, for which M/qk dividesBk. Without loss of generality, we
assume that 16 k 6 r1. It follows from (5.1), (5.2), and Lemma 2.3 thataik = 0 for
i > r1. Therefore,

P
(1)
1 a1k + P

(2)
1 a2k + · · · + P

(r1)
1 ar1k

= a1k + q1a2k + · · · + (q1q2 · · · qr1−1)ar1k

≡ 0 (modP1/qk).

Recall thatq1 = p
e1
1 , q2 = p

e2
1 , . . . , qr1 = p

er1
1 and takee1 > e2 > · · · > er1. From

this and the preceding congruence it follows that ifi < k, thenqi|aik, yieldingaik =
0. If k = r1, then each entry of thekth column vanishes except forakk. Regularity
implies that(qk, akk) = 1. If, on the other hand,k < r1, then we may construct a vec-
tor ṽ = (ṽ1, ṽ2, . . . , ṽn)

T ∈ V(Q), with ṽk = p
ek−1
1 andṽj = 0 for j /= k. Because

p1 | akk, we may write

Aṽ ≡ (0, . . . , 0, a(k+1)kp
ek−1
1 , . . . , ar1kp

ek−1
1 , 0, . . . , 0)T (modQ).

Sinceṽ is not a zero vector andA is regular, Lemma 2.1 ensures that there is aj, with
k < j 6 r1, for which

ajkp
ek−1
1 6≡ 0

(
modp

ej

1

)
,

implying thatej = ek and(ajk, p1) = 1. Interchanging thekth andjth rows and per-
forming a series of elementary transformations of type (I), of Proposition 4.3, trans-
forms A into a matrix with(qk, akk) = 1 and all other elements of thekth column
equal zero (cf. [4, Theorem 57]). Now that we have established a column of zeroes,
except for its diagonal element, we may employ the inductive part of the proof of
Theorem 3.5 to establish the necessity of the asserted properties for alln. �

Definition 5.2. Let Q be a vector of integers greater than unity and letD∗
n(Q) de-

note the lower triangular matrices fromMn(Z) whose diagonal elements are nonzero
and coprime to their respective modulus and whose elementsdij satisfy 06 dij <

qi, j = 1, 2, . . . , i, i = 1, 2, . . . , n.

As a corollary of the proof of sufficiency for Theorem 5.1, we have:

Corollary 5.3. Given A andB ∈ D∗
n(Q), the matrix congruenceAX ≡ B (modQ)

has a unique solutionX ∈ D∗
n(Q).

On the other hand, evidently,YA ≡ B (modQ) may have no solution
Y ∈ D∗

n(Q)—nor need solutions be unique.
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