
FEBS Letters 581 (2007) 3289–3296

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Human SFMBT is a transcriptional repressor protein that
selectively binds the N-terminal tail of histone H3

Shumin Wua, Raymond C. Trievelb, Judd C. Ricea,*

a University of Southern California Keck School of Medicine, Department of Biochemistry and Molecular Biology, 1501 San Pablo Street,
ZNI 225, MC 2821, Los Angeles, CA 90033, United States

b University of Michigan, Department of Biological Chemistry, Ann Arbor, MI 48109-0606, United States

Received 11 April 2007; revised 7 June 2007; accepted 14 June 2007

Available online 21 June 2007

Edited by Frances Shannon
Abstract Human SFMBT (hSFMBT) is postulated to be a
Polycomb (PcG) protein. Similar to other PcG proteins, we
found that hSFMBT displays robust transcriptional repressor
activity. In addition, hSFMBT localized to the nucleus where
it strongly associates with chromatin by directly and selectively
binding the N-terminal tail of histone H3. Importantly, we dis-
covered that the four tandem MBT repeats of hSFMBT were
sufficient for nuclear matrix-association, N-terminal tail H3
binding, and required for transcriptional repression. These find-
ings indicate that the tandem MBT repeats form a functional
structure required for biological activity of hSFMBT and predict
similar properties for other MBT domain-containing proteins.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

The ability to regulate the transcription of specific sets of

genes is critical in determining cell fate. Importantly, these tran-

scription patterns are propagated to progeny by epigenetic

mechanisms that ensure the maintenance of cellular identity.

Gene expression of developmental-associated genes is largely

regulated by multimeric protein complexes that function to

activate or repress transcription, both of which must operate

in concert for proper differentiation. The best studied of these

are regulatory complexes that contain the Polycomb group

(PcG) or Trithorax (TRX) proteins [1]. The PcG proteins,

which were first discovered in Drosophila, function to specify

positional identity by creating a repressive chromatin structure

at homeotic (Hox) genes resulting in their transcriptional

silencing [2,3]. Currently there are three known PcG complexes:

PRC1, PRC2 and the newly characterized PhoRC [4]. The main

component of the PhoRC complex is Pleiohomeotic (Pho), a se-

quence-specific DNA-binding protein that targets Polycomb

response elements (PREs) in the genome [5]. Drosophila Pho
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was recently shown to heterodimerize with a novel PcG protein,

known as SFMBT (Scm-related gene containing four mbt do-

mains); which is required for Hox gene silencing [6].

The mammalian version of SFMBT was first cloned seven

years ago, however, little is currently known about its biolog-

ical function [7]. The translated protein contains four tandem

malignant brain tumor (MBT) domains and a conserved pro-

tein-interacting sterile alpha motif (SAM) domain, which was

first identified in the PcG gene Scm and is also found in both

ph and l(3)mbt [8]. The MBT domain is evolutionarily re-

stricted to metazoan lineages, is invariably found in tandem ar-

rays of two to four repeats and proteins harboring MBT

domains, such as Drosophila Sfmbt (dSfmbt), human sex comb

on midleg-like 2 (SCML2) and lethal (3) malignant brain tu-

mor (L(3)MBT), have been linked to PcG silencing, although

their function in these pathways remains elusive [6,9,10]. Out-

side of these observations, little else is known about the mam-

malian homologs of SFMBT.

To gain further insights into the biological significance of

human SFMBT (hSFMBT), we investigated the structure and

function of this protein. Consistent with its role as a putative

PcG protein, hSFMBT specifically partitions to the nucleus and

is a potent repressor of transcription. We discovered that

hSFMBT strongly interacts with the nuclear matrix and that it

also selectively binds histones H3 and H4, both in vitro and

in vivo. Binding occurs at the N-terminal tail suggesting that

hSFMBT functions to sequester transcriptionally inert chromatin

at the nuclear periphery. Interestingly, we discovered that all four

of the MBT repeats of hSFMBT were sufficient and necessary for

nuclear matrix attachment, transcriptional repression and histone

binding. In addition, all four MBT domains were required for

repressor activity indicating that the higher-order structure

formed by the four MBT repeats is essential for biological func-

tion. This is consistent with the structural characterization of

the MBT repeats in human SCML2 and L(3)MBT, where the

MBT domains fold cooperatively through interdigitation to form

unique higher-order structures [9,11]. Lastly, we found that

hSFMBT is preferentially expressed in certain cell types suggest-

ing that it may be an important regulator of transcriptional pro-

grams during developmental and differentiation processes.
2. Materials and methods

2.1. Cell culture
HeLa, HEK-293 and K562 cells (ATCC) were cultured as previously

described [12].
blished by Elsevier B.V. All rights reserved.

https://core.ac.uk/display/82134674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


3290 S. Wu et al. / FEBS Letters 581 (2007) 3289–3296
2.2. Plasmids
The human full length SFMBT cDNA clone (MGC:3342 IM-

AGE:3029598), 4· MBT (aa 20–453), DMBT3,4 (aa 20–235),
DMBT1,4 (aa 125–351), DMBT1,2 (aa 239–453), DMBT4 (aa 20–
351) and DMBT1 (aa 125–453) were produced by PCR amplification
and inserted in-frame in the pCMX-Gal4–DBD plasmid [13], the
pGEX-4T-1 plasmid (GE Healthcare) or pEGFP-C1 plasmid (Clon-
tech).

2.3. Microscopy
Microscopy of HeLa cells was performed as previously described

[12].

2.4. Antibodies
A synthetic peptide corresponding to amino acids 767–780 of human

SFMBT (NP_057413) was used to immunize rabbits under the Stan-
dard Protocol (Zymed Laboratories). A 1:1000 dilution of sera was
used for Western analysis and peptide competition experiments, as pre-
viously described [12]. The GFP antibody (ABCAM) was used
1:10000, HP1b (Chemicon) was used 1:5000, RNAP II (Covance)
was used 1:100000, Gal4–DBD (Santa Cruz) was used 1:5000, H3
(ABCAM) and H4 (Upstate) were used 1:5000, Ubc9 (Santa Cruz)
was used 1:5000, monoclonal FLAG (SIGMA) was used 1:10000
and the GST antibody (Upstate) was used 1:500 for Western analysis.
For immunoprecipitations, 20 ll of the Gal4–DBD antibody or 20 ll
M2 FLAG beads (SIGMA) were used.

2.5. Transfections and reporter assays
HEK-293 cells were plated in 6-well plates (4 · 105 cells/ml) and

co-transfected 24 h later using Lipofectamine with Plus reagent
(Invitrogen) and 100 ng of each Gal4–DBD fusion plasmid, 1 lg
of reporter vector (pGK1-luc [14] or pSV40-luc [15]), 5 ng of pRL
(Promega) and the pUC19 plasmid to bring the total DNA amount
to 2 lg, according to the manufacturer’s instructions. Cell lysates
were collected 48 h post-transfection and luciferase activity was mea-
sured using Luciferase Assay Substrate (Promega) and a TopCount
NXT microplate reader (Packard Bioscience). Quantitative measure-
ments were obtained by normalizing to renilla luciferase activity.
Standard error bars were generated by performing all experiments
in triplicate.
2.6. Chromatin fractionation
Isolation of the S1, S2 and P fractions were performed as previously

described with minor modifications [16]. Nuclei from 2 · 106 cells were
isolated and resuspended in 300 ll nuclear buffer (20 mM Tris–HCl,
pH 7.5, 70 mM NaCl, 20 mM KCl, 5 mM MgCl2, 3 mM CaCl2, and
protease inhibitors), split equally into 4 aliquots and incubated with
6 U of micrococcal nuclease (Fermentas) at 37 �C for 1 min, 4 min
and 16 min; digestion was terminated by adding EDTA and EGTA
to a final concentration of 5 mM. Samples were centrifuged at
18000 · g for 30 s. The supernatant (S1) was collected and placed on
ice while the nuclear pellet was lysed in 2 mM EDTA for 15 min at
4 �C. The supernatant (S2) was collected following centrifugation
and the pellet (P) was resuspended in lysis buffer (50 mM Tris–HCl,
pH 7.5, 100 mM NaCl, 5 mM EDTA, 0.5 mM SDS). Western analysis
of the fractions was performed with the indicated antibodies.
2.7. GST pull-downs
pGEX-4T-1, pGEX-4T-1-SFMBT and pGEX-4T-1-4· MBT were

transformed into BL21 E. coli (Novagen). Expression of recombinant
GST fusion proteins was induced using 0.5 mM IPTG (Calbiochem)
for 3 h at 37 �C. Proteins were purified using glutathione-sepharose
4B beads (GE Healthcare) and eluted in 10 mM reduced glutathione,
50 mM Tris pH 8.0, according to the manufacturer’s protocol, dialyzed
in PBS, quantitated and stored in 1 mM DTT and 1 mM PMSF at
4 �C. Equal molar (100 pmol) amounts of each GST fusion protein
was incubated with acid-extracted histones [17], myelin basic protein
or bovine serum albumin (EMD) in 400 ll PBS with 1% Triton X-
100 (PBS-T) for 1 h at 4 �C prior to the addition of a 25 ll of pre-equil-
ibrated glutathione-sepharose 4B beads. Following a 30 min incuba-
tion at 4 �C, beads were washed thoroughly with PBS-T and bound
proteins were eluted in 40 ll elution buffer. One-eighth of the eluted
material was used for Western analysis.
2.8. Immunoprecipitations
HEK-293 cells were collected 24 h post-transfection, washed in PBS,

resuspended in 300 ll lysis buffer (50 mM Tris pH 7.0, 150 mM NaCl,
0.5 mM DTT, 1% Triton X-100, protease inhibitors) and rotated for
30 min at 4 �C. Lysates were clarified by centrifugation at 18000 · g
for 1 min. The supernatant was dialyzed in PBS for 1 h at 4 �C and
incubated with either 20 ll Gal4–DBD antibody or 20 ll M2 FLAG-
conjugated beads overnight at 4 �C. Beads were washed with PBS,
the bound material was eluted by boiling in SDS loading buffer and
fractionated by SDS–PAGE prior to Western analysis.
3. Results

3.1. SFMBT is a conserved Polycomb-like protein

In order to gain insights into the possible biological func-

tions of hSFMBT, we compared its amino acid composition

and structure to other metazoan MBT-containing proteins.

The human, mouse and rat SFMBT proteins are structurally

similar, where each contains four N-terminal tandem MBT re-

peats and a SAM domain near the C-terminus. While Drosoph-

ila SFMBT (dSfmbt) retains the C-terminal SAM domain, its

four tandem MBT repeats are located towards the C-terminal

and dSfmbt contains a zinc finger motif which is lacking in

mammals (not shown). Despite these structural differences, a

sequence alignment of the MBT domains of dSfmbt,

hSFMBT, and hL(3)MBT reveals a substantial degree of

homology within their respective repeats (Fig. 1). A pairwise

alignment of the individual repeats from the fly and human

SFMBT proteins revealed that there is 48% sequence homol-

ogy and 34% sequence identity between the two. This high de-

gree of conservation strongly suggests that hSFMBT functions

as a Polycomb-group protein, similar to dSfmbt [6].
3.2. hSFMBT is a cell type-specific nuclear protein

Since hSFMBT is a putative PcG protein, we hypothesized

that it would function as a nuclear protein. To determine this,

a GFP plasmid fused in-frame to full length wild type

hSFMBT was created and transiently transfected into HeLa

cells. Fluorescence microscopy of the cells revealed that

GFP–SFMBT was enriched within nuclei as demonstrated

by its co-localization with nuclear DAPI staining (Fig. 2A).

In contrast, cells transfected with a GFP construct lacking

an insert was evenly dispersed throughout the HeLa cells.

The transfected HeLa cells were also fractionated into nuclear

and cytoplasmic components and Western analysis of the frac-

tions using a GFP antibody confirmed that the GFP–SFMBT

fusion protein was specifically enriched within the nuclear

compartment (Fig. 2B).

To verify that endogenous hSFMBT partitioned to the nu-

cleus, a novel polyclonal SFMBT-specific antibody was cre-

ated (Supplemental Fig. 1) and used in Western analysis of

whole cell lysates from several commonly used human cell

lines. Interestingly, hSFMBT was only detected in specific cell

types, mainly those of hematological origin (Fig. 2C). While

the highest levels of hSFMBT were detected in the erythroblas-

tic K562 and myeloblastic HL-60 cells, hSFMBT was also de-

tected in the B-cell lymphoblastic Daudi cells. In contrast,

hSFMBT was barely detected in epithelial cell lines derived

from uterine (HeLa), breast (MCF7) and kidney (HEK-293)

tissues. Since the K562 cells expressed the highest levels of

hSFMBT, they were fractionated into nuclear and cytoplasmic

components for Western analysis with the SFMBT antibody.



Fig. 2. Human SFMBT is a cell type-specific nuclear protein. (A) Fluorescent microscopy of HeLa cells expressing GFP–SFMBT (top) or GFP-null
(bottom) fusion proteins. GFP–SFMBT (green) specifically co-localizes with nuclear DAPI staining (blue) whereas GFP-null is dispersed evenly
through the cell. (B) Western analysis of the nuclear (N) and cytoplasmic (C) fractions of HeLa cells expressing GFP-null or GFP–SFMBT fusion
proteins. GFP–SFMBT selectively partitions to the nuclear compartment compared to GFP-null. (C) Western analysis of whole cell lysates from
several common cell lines using a novel hSFMBT-specific antibody indicates that hSFMBT is expressed in a cell type-specific manner. (D) Western
analysis of the nuclear (N) and cytoplasmic (C) fractions of K562 cells using the hSFMBT antibody confirms that the endogenous protein partitions
to the nucleus.

Fig. 1. The MBT domains of dSfmbt, hSFMBT and hL(3)MBT are conserved. Sequences comprising the MBT repeats of each protein were
obtained from the SMART Domain Database [40]. Sequences were aligned using ClustalX [41] and rendered using CHROMA [42]. Residues sharing
sequence identity within the MBT repeats are denoted with a gray background, while conserved hydrophobic and hydrophilic residues are illustrated
with yellow and cyan backgrounds, respectively. Conserved acid residues are red. The MBT repeats of fly and human SFMBT are 34% identical and
48% homologous.
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Similar to the GFP–SFMBT fusion protein, we found that

endogenous hSFMBT was also specifically enriched within

the nuclear compartment (Fig. 2D). Collectively, these findings

demonstrate that hSFMBT is a cell type-specific nuclear pro-

tein.

3.3. hSFMBT strongly associates with the nuclear matrix

To further dissect the sub-nuclear localization of hSFMBT,

nuclei were isolated from K562 cells, as depicted in Fig. 3A,

and were partially digested with micrococcal nuclease (MNase)

for 1, 4 or 16 min before isolating the various chromatin com-

ponents by centrifugation [16,18]. DNA analysis demonstrates
that the MNase-sensitive soluble S1 fraction is mainly com-

posed of mono- and dinucleosomal sized DNA fragments, typ-

ically associated with euchromatin (Fig. 3B). In contrast, the

insoluble S2 fraction is composed of MNase-resistant oligo-

nucleosomes, typically associated with heterochromatin, as

observed by the higher molecular weight laddering. The P frac-

tion represents the nuclear material that remains bound to the

nuclear matrix. With increased MNase digestion time, more of

the S2 and P fractions become soluble and shift into the S1 and

S2 fractions, respectively. Western analysis of these fractions

using the hSFMBT antibody revealed that endogenous

hSFMBT selectively and strongly associates with the nuclear



Fig. 3. The four tandem MBT repeats mediate the strong association of hSFMBT with the nuclear matrix. (A) Flowchart of nuclear fractionation
assay. Nuclei from the indicated cells were subjected to partial micrococcal nuclease (MNase) digestion for 1, 4 or 16 min. Following digestion, the
soluble euchromatic fraction (S1), insoluble heterochromatic fraction (S2) and matrix-associated fraction (P) were collected for analysis. (B) DNA
from each fraction and a 100 bp ladder (L) were electrophoresed on a 2% agarose gel. Bands corresponded to the expected sizes of mono-, di-, tri- and
oligonucleosomes are indicated. (C) Equal volumes of each fraction were separated by SDS–PAGE followed by Western analysis for hSFMBT, RNA
polymerase II (RNAP II) or heterochromatin protein 1 (HP1b). hSFMBT is found exclusively in the P fraction and remains bound to the nuclear
matrix even after extensive digestion with MNase, similar to RNAP II. (D) Nuclear fractionation assay performed with HEK-293 cells transfected
with either a Gal4–DBD-4· MBT (top) or Gal4–DBD-null (bottom) plasmid. Western analysis using a Gal4–DBD antibody indicates that the four
MBT repeats are sufficient for nuclear matrix attachment.
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matrix as it failed to shift from the P fraction even at extended

MNase digestion times (Fig. 3C). Similarly, RNAP II was

found to preferentially associate with the nuclear matrix, as

previously reported [19]. In contrast, the beta isoform of het-

erochromatin protein 1 (HP1b) was enriched in the S2 fraction

but was liberated to the S1 fraction upon extended digestion

with MNase [20]. These findings demonstrate that hSFMBT

strongly interacts with the nuclear matrix.

Due to the evolutionary conservation of the four tandem

MBT domains (Fig. 1), we hypothesized that the MBT repeats

were sufficient for nuclear matrix attachment. To test this, a

Gal4–DBD fusion construct with an hSFMBT truncation mu-

tant containing only the four MBT repeats (4· MBT) was

transfected into HEK-293 cells for analysis (Fig. 3A). Similar

to the findings for endogenous hSFMBT, the Gal4–DBD-4·
MBT fusion protein was preferentially bound to the nuclear

matrix while the Gal4–DBD-null plasmid was ubiquitously

distributed amongst the fractions (Fig. 3D). Therefore, these

findings indicate that the four MBT repeats of hSFMBT are

sufficient for nuclear matrix attachment.

3.4. The four MBT repeats of hSFMBT are sufficient for potent

transcriptional repression

Since SFMBT associates with the nuclear matrix, similar to

RNAP II, we hypothesized that SFMBT could function as a

co-activator of transcription. To test this hypothesis, the
pGK1-luc reporter construct containing five tandem repeats

of the Gal4 upstream activating sequence (5· UAS) followed

by a TATA box and luciferase reporter gene was employed

as previously described (Fig. 4A) [21]. HEK-293 cells were

co-transfected with pGK1-luc and Gal4–DBD fusion con-

structs containing either the CARM1 co-activator as the posi-

tive control [22], full length hSFMBT or 4· MBT; a Gal4–

DBD-null vector served as the negative control. In addition,

cells were co-transfected with the pRL reporter vector to nor-

malize for transfection efficiency [23]. As predicted, the

CARM1 co-activator increased luciferase gene expression by

sevenfold compared to control (Fig. 4A). In contrast, both

Gal4–DBD-SFMBT and Gal4–DBD-4· MBT failed to acti-

vate transcription but, instead, greatly reduced even basal lev-

els of luciferase expression when compared to the Gal4–DBD-

null negative control. These findings demonstrate that

hSFMBT does not act as a co-activator of transcription and,

rather, suggests that hSFMBT may function as a transcrip-

tional repressor protein.

To test this hypothesis, the pSV40-luc reporter construct

containing five tandem repeats of the Gal4 UAS (5· UAS) fol-

lowed by an SV40 promoter that constitutively activates ro-

bust transcription of a luciferase reporter gene was employed

as previously described (Fig. 4B) [24]. HEK-293 cells were

co-transfected with the pSV40-luc reporter and the Gal4–

DBD fusion constructs generated above. The Gal4–DBD-



Fig. 4. All four MBT repeats of hSFMBT are required for potent transcriptional repression. (A) In co-transfected HEK-293 cells the Gal4–DBD
fusion protein binds the Gal4 upstream activating sequence (UAS) of the pGK1-luc reporter construct and will promote luciferase transcription if it
functions as a co-activator, such as CARM1. Comparative quantitative measurements were made by normalizing to renilla activity and plotting the
fold change in luciferase activation relative to the Gal4–DBD-null negative control. Both hSFMBT and 4· MBT squelch basal luciferase expression
when compared to control. (B) In the repression assay, the Gal4–DBD fusion protein binds the Gal4 UAS of the pSV40-luc reporter construct, which
constitutively drives expression of luciferase, and will decrease luciferase transcription if it functions as a repressor, such as SMRT. Comparative
quantitative measurements were made as described above and the fold decrease in luciferase activity was plotted relative to the Gal4–DBD-null
negative control. Both hSFMBT and 4· MBT directly repressed luciferase transcription since a non-targeted FLAG-SFMBT construct failed to
induce repression. (C) Deletion of a single MBT repeat restores luciferase transcription indicating that all four MBT repeats of hSFMBT are required
to induce repression.
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SMRT repressor protein served as the positive control for

repression [25] and the pRL reporter vector was also used to

normalize for transfection efficiency. Consistent with previous

reports, the SMRT repressor protein produced a fivefold

decrease in transcription of the luciferase gene compared to

the negative control (Fig. 4B). Interestingly, both Gal4–

DBD-SFMBT and Gal4–DBD-4· MBT produced a more

than sevenfold and ninefold decrease in luciferase gene expres-

sion, respectively. The failure of a FLAG-tagged full length

SFMBT construct to reduce luciferase activity in these assays

confirmed that the observed repressive effects of Gal4–DBD-

SFMBT were not indirectly due to ectopically expressed

hSFMBT. These data indicate that hSFMBT is a potent

repressor of transcription and that the four MBT repeats of

SFMBT are sufficient to induce repression.

3.5. All four MBT repeats of hSFMBT are required for

repressor function

To further define which of the MBT repeats were required

for the observed repressive effects of hSFMBT, truncation

mutants of the Gal4–DBD-4· MBT fusion construct were cre-

ated, as depicted in Fig. 4C, and used in the repression assays.

Initial studies of constructs lacking the two MBT repeats clos-

est to the N-terminal (DMBT1,2) or C-terminal (DMBT3,4)

both resulted in a complete loss of repression. Therefore, we
speculated that the two central MBT repeats were required

for repression, however, these two repeats (DMBT1,4) alone

were not sufficient to restore repression suggesting that an

additional MBT repeat flanking either the N-terminal

(DMBT4) or C-terminal (DMBT1) was also required. Interest-

ingly, the lack of a single N- or C-terminal MBT domain also

resulted in a complete loss of repression. The lack of repression

could not be attributed to differences in expression of the fu-

sion proteins (Supplemental Fig. 2). Collectively, these findings

indicate that all four MBT repeats of hSFMBT are required to

induce potent transcriptional repression.

3.6. hSFMBT binding to histones H3 and H4 is mediated by the

four MBT repeats

Recent structure studies suggest that the MBT domain clo-

sely resembles the chromodomain of HP1 and Pc [11,26],

which selectively bind methylated histone H3 lysine 9 and

27, respectively [27–29]. Consistent with this, it was recently

demonstrated that Drosophila SFMBT binds the mono- and

dimethylated forms of histones H3 lysine 9 and H4 lysine 20

in vitro (5). To explore the possibility that human SFMBT

could bind histones in vivo, the Gal4–DBD-4· MBT or

Gal4–DBD-null constructs were transfected into HEK-293

cells and immunoprecipitated with a Gal4–DBD antibody

(Fig. 5A). Western analysis of the bound material indicates



Fig. 5. hSFMBT preferentially binds histones H3 and H4. (A)
Western analysis was performed with a general histone H3, H4 or
UBC9 antibody on 2% of the input, 5% and 10% of the Gal4–DBD
immunoprecipitated material from HEK-293 cells transfected with a
Gal4–DBD-null or Gal4–DBD-4· MBT plasmid. The data demon-
strate that the four tandem MBT repeats of hSFMBT (4· MBT)
specifically immunoprecipitated histones H3 > H4. (B) GST pull-down
experiments with equal molar amounts of recombinant GST, GST-
SFMBT or GST-4· MBT incubated with 50 lg of HEK-293 acid-
extracted histones. Coomassie staining following SDS–PAGE demon-
strates that the four MBT repeats of hSFMBT are sufficient for direct
binding to histones H3 and H4. (C) GST pull-down experiments with
recombinant GST-4· MBT and either myelin basic protein (MBP) or
bovine serum albumin (BSA). GST-4· MBT failed to pull-down both
MBP and BSA indicating a specific interaction between 4· MBT and
histones H3 and H4.
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that the four MBT repeats of SFMBT could specifically bind

endogenous histones H3 and H4 with a higher preference for

H3. This was a specific interaction as Gal4–DBD-4· MBT

failed to immunoprecipitate several ubiquitously expressed

proteins, including UBC9 [30].

To determine if hSFMBT directly binds histones, GST pull-

down assays were performed using either purified recombinant
Fig. 6. The four MBT repeats of hSFMBT bind the N-terminal tail of histon
trypsinized nucleosomes were used as substrates for GST-null and GST-4·
using a general histone H3 antibody demonstrates that 4· MBT binding req
with FLAG-SFMBT and either GST or GST–H3 1–41 and immunoprecipitat
H3 or UBC9 antibodies on 4% of the input, 5% and 10% of the FLAG immu
the H3 N-terminal tail. (C) Immunoprecipitations for GST were performed o
antibodies on 4% of the input, 5% and 10% of the GST immunoprecipitated
GST, GST-SFMBT or GST-4· MBT and acid-extracted his-

tones from the HEK-293 cells. While the negative control

GST recombinant protein failed to pull-down histones, both

GST-SFMBT and GST-4· MBT bound core histones with

higher selectivity for H3 compared to H4, consistent with the

in vivo findings (Fig. 5B). Both constructs also bound histones

H2A and H2B, but to varying degrees and with far less affinity

compared to H3 and H4. Histone H1 was not detected in any

of the pull-down experiments. To confirm that the observed

in vitro interaction was specific to histones, the experiments

were repeated using GST-4· MBT with either myelin basic

protein (MBP) or bovine serum albumin (BSA) – two highly

positively charged proteins that mimic histones [31,32]. In both

cases, GST-4· MBT failed to pull-down MBP or BSA

(Fig. 5C). Collectively, these findings indicate that the four

MBT repeats of hSFMBT directly and selectively bind histones

H3 and H4 in vivo.

3.7. hSFMBT binds the N-terminal tail of histone H3

To determine the region of histone H3 responsible for inter-

acting with the MBT repeats of hSFMBT, GST pull-down

experiments were performed with purified recombinant GST

or GST-4· MBT and either acid-extracted histones or ‘‘tail-

less’’ histones isolated from trypsinized HEK-293 oligonucleo-

somes [33]. Western analysis of the bound fractions using a gen-

eral H3 antibody revealed that the four MBT repeats of

hSFMBT failed to bind the H3 histone-fold region suggesting

that the N-terminal tail is required for the interaction (Fig. 6A).

To confirm this hypothesis, co-immunoprecipitations were

performed in HEK-293 cells using the full length FLAG-

SFMBT construct and an N-terminal GST fusion construct

containing the first 41 amino acids of human H3 (H3 1–41)

[34]. While Western analysis of the FLAG-SFMBT immuno-

precipitated material demonstrated that GST alone did not

interact with hSFMBT, the GST–H3 1–41 fusion protein did

bind hSFMBT (Fig. 6B). Importantly, a FLAG-null immuno-

precipitation failed to bind GST–H3 1–41 and the GST–H3 1–

41 fusion protein did not bind the FLAG beads indicating a

specific interaction (Supplemental Fig. 3). To confirm these

observations, the experiment was repeated using the same ly-

sates but immunoprecipitated with glutathione-sepharose

beads instead of FLAG beads. Western analysis of the GST–

H3 1–41 immunoprecipitated material verified binding to

FLAG-SFMBT (Fig. 6C). This was a specific interaction as

the GST–H3 1–41 failed to immunoprecipitate UBC9. Collec-

tively, these finding demonstrate that four MBT repeats of

hSFMBT specifically bind the N-terminal tail of histone H3.
e H3. (A) Acid-extracted histones or ‘‘tail-less’’ histones prepared from
MBT pull-down experiments. Western analysis of the bound material
uires the N-terminal tail of H3. (B) HEK-293 cells were co-transfected
ed with FLAG-conjugated beads. Western analysis using FLAG, GST,

noprecipitated material indicates that FLAG-SFMBT specifically binds
n the cell lysates in (B). Western analysis using GST, FLAG or UBC9
material confirms that the first 41 amino acids of H3 bind hSFMBT.
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4. Discussion

Although Drosophila SFMBT was recently found to be a

PcG protein required for Hox gene repression, the biological

function of human SFMBT remained unknown [6]. In this

study we demonstrate for the first time that hSFMBT is a nu-

clear matrix-associated protein that acts as a potent repressor

of transcription. Our novel findings indicate that hSFMBT

binds the N-terminal tail of histone H3 suggesting that this

interaction is required for targeting hSFMBT to specific chro-

matin regions destined for repression. The tissue-restricted

expression of hSFMBT to certain cell lineages further suggests

that it functions to repress sets of genes required for specific

developmental and differentiation programs, similar to other

PcG proteins. Due to its functional similarity to dSfmbt, it is

likely that hSFMBT also plays a role in PcG-mediated gene

repression.

The amino acid sequence comparison between human and

fly SFMBT revealed a high degree of conservation in the four

tandem MBT repeats, suggesting that this region plays a crit-

ical role in protein function. Consistent with this hypothesis,

we found that the four tandem MBT repeats of hSFMBT were

necessary and sufficient for nuclear matrix-association, histone

binding and transcriptional repression. Importantly, the lack

of any one of the four MBT domains resulted in the abolish-

ment of repressor activity indicating that all four repeats are

required to form a functional structural unit that is necessary

for biological activity. These findings are consistent with the

crystal structure of hL(3)MBT where each of its three MBT re-

peats formed tight globular modules that interdigitate to create

a novel three-leaved propeller-like structure [26]. Based on

these findings, it is likely that the four tandem MBT repeats

of hSFMBT also create a novel propeller-like structure that

is required for functional activity.

One possible role of this structure is to interact with other

members of a putative multi-protein complex. This is likely

since most PcG family members are part of larger multimeric

chromatin-associated complexes that are required for long

term silencing of developmental and oncogenic genes [35,36].

Another possibility is that the MBT domains bind to specific

histone modifications. Based on its homology to the histone

methyllysine-binding Chromo and Tudor domains, it was pre-

viously proposed that the MBT domain could, likewise, bind

modified histone tails [37]. The ligand binding pockets of the

Chromo and Tudor domains bind the methylated lysine via

a hydrophobic cage created by conserved aromatic residues

within the motif [28,38]. Homologous aromatic residues are

found within the MBT domain suggesting its ability to bind

methylated histones. Indeed, it was recently reported that the

MBT repeats of hL(3)MBT bound dimethylated H4 lysine

20 and, importantly, that the four tandem MBT repeats of

dSfmbt preferentially bound the mono- and dimethylated

forms of H3 lysine 9 and H4 lysine 20 in vitro [6,39]. Therefore,

it is possible that hSFMBT will also bind methylated histone

tails; this will be determined in future experiments.
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