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SUMMARY

The TORC1 kinase signaling complex is a key deter-
minant of cell growth that senses nutritional status
and responds by coordinating diverse cellular pro-
cesses including transcription, translation, and auto-
phagy. Here, we demonstrate that TORC1modulates
the composition of plasma membrane (PM) proteins
by regulating ubiquitin-mediated endocytosis. The
mechanism involves the Npr1 kinase, a negative re-
gulator of endocytosis that is itself negatively regu-
lated by TORC1. We show that Npr1 inhibits the
activity of Art1, an arrestin-like adaptor protein that
promotes endocytosis by targeting the Rsp5 ubiqui-
tin ligase to specific PM cargoes. Npr1 antagonizes
Art1-mediated endocytosis via N-terminal phosphor-
ylation, a modification that prevents Art1 association
with the PM. Thus, our study adds ubiquitin ligase
targeting and control of endocytosis to the known
effector mechanisms of TORC1, underscoring how
TORC1 coordinates ubiquitin-mediated endocytosis
with protein synthesis and autophagy in order to re-
gulate cell growth.

INTRODUCTION

Decisions of cell growth and differentiation aremade by complex

signaling networks that integrate various environmental and

nutritional inputs and respond by coordinating diverse cellular

processes toward a specific outcome. One example involves

the target of rapamycin complex 1, or TORC1, a highly con-

served multiprotein kinase complex that senses various cellular

and environmental cues including nutrient availability, energy

status, and growth signals and responds by coordinating activi-

ties associated with cell growth and proliferation. In general,

signals that promote TORC1 kinase activity also promote cell

growth and proliferation, whereas signals that inhibit TORC1

kinase activity tend to induce a starvation response. For

example, TORC1 kinase phosphorylates both ribosomal S6

kinases and inhibitory eIF4E binding proteins, activities that

promote translation initiation (Holz et al., 2005). The TORC1
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kinase also phosphorylates Atg13, preventing its association

with Atg1 and thereby inhibiting the initiation of autophagy

(Kamada et al., 2010), a conserved protein degradation pathway

crucial to the starvation response in eukaryotic cells. Thus,

TORC1 signaling coordinates cell growth by simultaneously pro-

moting protein synthesis and inhibiting autophagy, whereas loss

of TORC1 signaling triggers the onset of the starvation response

by decreasing protein synthesis and inducing autophagy.

Some of the factors that regulate TORC1 signaling have been

studied in detail. One important upstream activator of TORC1

signaling is Rheb, a lysosome-localized small GTPase that is

antagonized by the GAP activity of TSC1-TSC2 heterodimers

(Inoki et al., 2003). TSC2 is a key point of signal integration for

TORC1 signaling: growth factors can stimulate TORC1 signaling

via Akt/PKB-mediated inhibition of TSC2 (Inoki et al., 2002;

Manning et al., 2002), whereas energy starvation can inhibit

TORC1 signaling via AMPK-dependent phosphoactivation of

TSC2 (Inoki et al., 2003). TORC1 signaling also responds to pro-

tein misfolding and quality control by sensing the availability of

molecular chaperones, allowing the cell to regulate growth in

response to protein folding stress (Qian et al., 2010). Via mecha-

nisms that are not completely understood, TORC1 also senses

and responds to amino acid availability. This mode of TORC1

regulation involves the activity of four Rag GTPases that regulate

amino acid-dependent localization of TORC1 to the lysosome,

thus promoting interaction with and activation by Rheb (Sancak

et al., 2010). Despite numerous reports elucidating the nutritional

and environmental cues that influence TORC1 signaling and its

downstream effector responses, a mechanistic understanding

of how TORC1 integrates multiple signals to coordinate a holistic

growth strategy for the cell remains to be elucidated.

Another way that eukaryotic cells regulate growth and prolifer-

ation in response to environmental changes is by regulating the

activity and abundance of specific proteins at the cell surface.

This is largely achieved via endocytic downregulation, which

involves the endocytosis of cell surface proteins followed by

delivery to the lysosome (or vacuole) where degradation occurs.

Such endocytic downregulation is critical to human health and

disease. For example, failure to attenuate growth factor signaling

from ligand-bound EGF receptor by endocytic downregulation

can result in the aberrant proliferation of cells and cause cancer.

To prevent hyperproliferation, the ubiquitin ligase Cbl and the

adaptor protein Grb2 mediate the ubiquitination of stimulated

mailto:sde26@cornell.edu
http://dx.doi.org/10.1016/j.cell.2011.09.054


EGFR molecules at the cell surface, targeting them for endocy-

tosis and subsequent lysosomal degradation (Miranda and

Sorkin, 2007). This example highlights the key role that endocytic

downregulation plays in growth signal attenuation. While endo-

cytic downregulation has been extensively studied as a mecha-

nism for attenuation of signaling processes, less is known about

how cells regulate surface protein abundance in response to

changes in nutrient availability or cellular stress. Understanding

how cells regulate the abundance and activity of cell surface

proteins in response to changes in environment and nutrient

availability is key to deciphering cellular strategies for adaptive

growth.

In this study, we report that TORC1 signaling controls nutrient

uptake by targeting the ubiquitin-mediated endocytosis of

specific amino acid transporters. The mechanism involves a

negative kinase signaling cascade in which TORC1 kinase in-

hibits the nitrogen permease reactivator 1 (Npr1) kinase, which

in turn inhibits a ubiquitin ligase adaptor. This ubiquitin ligase

adaptor, the arrestin-related protein Art1, was previously shown

to recruit Rsp5, the yeast homolog of Nedd4, to specific proteins

at the plasma membrane (PM) in order to target them for endo-

cytosis (Lin et al., 2008). We show that the TORC1-Npr1 negative

kinase signaling cascade regulates Art1 translocation to the PM

by N-terminal phosphorylation. Our results demonstrate that

a key effector pathway of TORC1 signaling coordinates the

targeting of a ubiquitin ligase in order to regulate the endo-

cytosis and vacuolar trafficking of specific nutrient transporters

at the plasma membrane. Furthermore, these findings reveal

that TORC1 controls amino acid uptake by tuning the abundance

of transporters at the cell surface and that coordination of endo-

cytosis with other cellular processes such as transcription, trans-

lation, and autophagy is critical for the ability of cells to adapt to

changes in nutrient availability.

RESULTS

TORC1 Regulates Endocytosis of Amino Acid
Transporters
Previously we demonstrated that treatment of yeast cells with

cycloheximide triggers the endocytosis and vacuolar trafficking

of various plasma membrane proteins (Lin et al., 2008). We

hypothesized that this might be part of a global cellular response

to changes in nutrient availability, especially considering that

cycloheximide has been shown to hyperactivate TORC1 sig-

naling (Binda et al., 2009). We decided to test whether TORC1

signaling regulates the endocytosis, trafficking, or activity of

cell surface proteins. First, we took advantage of the toxic argi-

nine analog canavanine, which enters the cell through the

arginine transporter Can1. Thus, sensitivity to canavanine is

a function of the PM localization and activity of Can1. Previously,

we used canavanine sensitivity to identify mutant strains defec-

tive for Can1 endocytosis (Lin et al., 2008). We observed that

cells deleted for TCO89, a subunit of the yeast TORC1 signaling

complex, exhibited canavanine hypersensitivity (Figure 1A) con-

sistent with a potential defect in endocytosis. In contrast,

mutants defective for TORC2, a related but distinct signaling

complex that controls cell growth, survival and polarization, did

not exhibit canavanine hypersensitivity (Figure 1A). These results
C

suggested that TORC1 signaling may play a role in the endocy-

tosis or the activity of Can1 at the cell surface.

To determine if TORC1 signaling is required for cyclohexi-

mide-triggered endocytosis, we examined Can1-GFP vacuolar

trafficking in wild-type yeast cells treated with either cyclohexi-

mide or cycloheximide and rapamycin, a potent TORC1 inhibitor.

Interestingly, rapamycin inhibited the endocytosis and vac-

uolar trafficking of Can1-GFP in cycloheximide-treated cells

(Figure 1B), suggesting a role for TORC1 in the endocytosis of

Can1. Consistent with these results, we found that treatment of

yeast cells with cycloheximide dramatically reduced arginine

uptake, while simultaneous treatment with rapamycin abrogated

this affect (Figure 1C). These results demonstrate that TORC1

signaling promotes the endocytic downregulation of the arginine

transporter Can1.

Since many PM proteins undergo endocytosis and vacuolar

trafficking in response to cycloheximide treatment, we tested

additional cargo proteins and found that the cycloheximide-

triggered endocytosis of the uracil transporter Fur4 and the

methionine transporter Mup1 was abrogated in the presence

of rapamycin (Figure 1D and Figure S1 (available online), respec-

tively). Interestingly, rapamycin treatment did not affect the

uracil-induced endocytosis of Fur4 (Figure 1D) or the methio-

nine-induced endocytosis of Mup1 (Figure S1), indicating that

TORC1 signaling is not required for substrate-triggered endocy-

tosis. Instead, these results suggest that TORC1 signaling pro-

motes the endocytosis of multiple cell surface proteins as a

general mechanism to limit protein abundance at the PM. Given

our previous findings that cycloheximide-induced endocytosis

of Can1 depends on the arrestin-like adaptor protein Art1 (Lin

et al., 2008), which targets the Rsp5 ubiquitin ligase to specific

cargoes at the PM, we hypothesized that TORC1 control of

ubiquitin-mediated endocytosis may occur via regulation of

Art1 function (Figure 1E). We set out to elucidate the molecular

mechanisms that govern TORC1-mediated endocytosis.

The TORC1 Effector Kinase Npr1 Negatively Regulates
Endocytosis
To determine how TORC1 regulates endocytosis, we scored the

canavanine growth phenotypes of yeast deletion strains lacking

different candidate effector kinases downstream of TORC1. We

hypothesized that yeast cells deleted for TORC1-activated

effector pathways that mediate Can1 endocytosis would exhibit

hypersensitivity to canavanine. Although we did not observe any

significant canavanine hypersensitive phenotypes among these

deletion strains (Figure 2A, middle panel), we did observe a

striking canavanine resistance phenotype in Dnpr1 cells (Fig-

ure 2A, right panel). Npr1 is a protein kinase known to be phos-

phorylated and inhibited in a TORC1-dependent manner by

a mechanism that likely involves both direct phosphorylation

(Breitkreutz et al., 2010) and indirect control by regulation of

a phosphatase that dephosphorylates and activates Npr1 (Fig-

ure S2A) (Bonenfant et al., 2003). We found that complementa-

tion of the canavanine resistance phenotype of Dnpr1 cells

required the Npr1 kinase activity (Figure 2B), suggesting that

the Npr1 kinase negatively regulates Can1 endocytosis. We

also observed that the canavanine resistance phenotype in

Dnpr1 cells required intact endocytic machinery (Figure S2B),
ell 147, 1104–1117, November 23, 2011 ª2011 Elsevier Inc. 1105



Figure 1. TORC1 Regulates the Endocytosis of Amino Acid Trans-

porters

(A) Wild-type (background BY4741), TORC1-, and TORC2-deficient yeast cells

from the yeast deletion strain collection were scored for growth in the presence

of canavanine.

(B) Fluorescence distribution of Can1-GFP (green) was analyzed in wild-type

yeast cells expressing the vacuolar marker Vph1-mCherry (red). Cells were

either mock-treated (unstimulated) or treated with cycloheximide (CHX) or

cycloheximide and rapamycin (CHX+RAP) for 4 hr. Plasma membrane (PM)

and vacuole (vac) localization are indicated.

(C) The uptake of [3H]arginine was measured in cells that were mock treated

(blue), cycloheximide treated (red), or treated with cycloheximide and rapa-
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suggesting that this phenotype is linked to endocytosis and not

a Golgi-to-endosome shunt. To explore this further, we exam-

ined the steady state localization of Can1-GFP in wild-type and

Dnpr1 cells and found that deletion of the Npr1 kinase resulted

in constitutive endocytosis and vacuolar trafficking of Can1-

GFP (Figure 2C). Additional analysis revealed a similar role for

Npr1 in the negative regulation of Fur4 and Lyp1 endocytosis

(Figures S2C–S2E), whereas Mup1-GFP was unaffected in

Dnpr1 cells (Figure S2F). Npr1-related kinases such as Hrk1

(26.4% identical) and Prr2 (34.5% identical) do not exhibit

growth phenotypes in the presence of canavanine (Figure S2G),

highlighting the specialized role of Npr1 as a negative regulator

of endocytosis.

To confirm the relationship betweenNpr1 and TORC1 kinases,

we analyzed the canavanine growth phenotype of Dtco89Dnpr1

double-mutant cells and determined that they exhibited a

canavanine resistance similar to Dnpr1 cells (Figure 2D). The

observation that canavanine hypersensitivity of Dtco89 cells is

dependent on the presence of Npr1 indicates that TORC1 con-

trols endocytosis via negative regulation of the Npr1 kinase. To

confirm that Npr1 activity negatively regulates endocytosis, we

analyzed the affect of titrating Npr1 expression in wild-type yeast

cells. We found that increased expression of the Npr1 kinase

translated to a corresponding increase in canavanine sensitivity

(Figure 2E), demonstrating that increased levels of Npr1 protein

result in hyper-stabilization of Can1 at the plasma membrane.

Npr1 Regulates Art1 Activity via Phosphoinhibition
To decipher the mechanism by which Npr1 negatively regulates

endocytosis, we used stable isotope labeling of amino acids in

culture (SILAC) followed by phosphopeptide enrichment and

quantitative mass spectrometry analysis to identify candidate

substrates of the Npr1 kinase in an unbiased fashion. Since rapa-

mycin is known to stimulate Npr1 kinase activity via inhibition of

TORC1 (Gander et al., 2008), we compared the phosphopro-

teome of wild-type yeast cells treated with rapamycin to that of

Dnpr1 cells treated with rapamycin in order to identify modifica-

tions that are dependent on Npr1 kinase activity (Table 1). Using

this approach, we identified several candidate Npr1 substrates

including several proteins with established roles in membrane

traffic and nutrient transport. One of the candidates identified

by this approach was Art1, which is required for cyclohexi-

mide-induced ubiquitination and endocytosis of Can1 (Figure 1E)

(Lin et al., 2008). The identification of Art1 as a candidate

substrate of Npr1 suggested that Npr1 may negatively regulate

endocytosis via phosphoregulation of Art1. Genetic interaction

analysis revealed that the canavanine resistance phenotype of
mycin (green). Error bars indicate standard deviation calculated from three

replicate experiments.

(D) Fluorescence distribution of Fur4-GFP (green) was analyzed in wild-

type yeast cells expressing the vacuolar marker Vph1-mCherry (red). The

affect of the following treatments were analyzed: mock-treated (unstim-

ulated), cycloheximide-treated (CHX), cycloheximide- and rapamycin-treated

(CHX+RAP), uracil-treated (URA), uracil- and rapamycin-treated (URA+RAP).

All cells were imaged after 60 min of treatment.

(E) TORC1-regulated endocytosis may be mediated via the regulation of

ART-Rsp5 ubiquitin ligase complexes.

See also Figure S1.



Figure 2. The TORC1 Effector Npr1 Negatively Regulates Endocytosis

(A) Wild-type (background BY4741) yeast cells and yeast cells defective for effector pathways downstream of TORC1 were scored for growth in the presence of

canavanine.

(B) Complementation of the canavanine resistance phenotype exhibited byDnpr1 yeast cells was tested using vectors expressingNPR1 alleles under the control

of its native promoter. Tested alleles included wild-type (WT) NPR1, a kinase activation loop mutant (npr1-G581W), a catalytic site mutant (npr1-D561A), and an

ATP-binding pocket mutant (npr1-K467R).

(C) Fluorescence microscopy analysis of Can1-GFP (green) in unstimulated wild-type and Dnpr1 yeast cells. Vph1-mCherry (red) was used to label vacuoles.

Plasma membrane (PM) and vacuole (Vac) are indicated.

(D) Growth of wild-type (BY4741), Dnpr1, Dtco89, and Dnpr1Dtco89 yeast cells in the presence of canavanine was compared.

(E) Expression of wild-type Npr1 was titrated using the following series of promoters: pNpr1 (endogenous), pCPY, pADH, and pTDH3. The affects of Npr1 titration

on Can1 trafficking were determined by assaying growth in the presence of canavanine.

See also Figure S2.
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Table 1. The Npr1 Phosphoproteome Reveals Art1 as

a Downstream Effector

Category Protein Description Xpress Ratios

Control Npr1 Protein Kinase 107

Trafficking Art1 Rsp5 ubiquitin

ligase adaptor

27, 11

SEC7 Arf GEF 27, 24

TRS120 TRAPP complex

component

121, 60

LSP1 Eisosome

component

79

Integral membrane

proteins and

transporters

VCX1 ion antiporter 117, 46, 17

AGP1 amino acid

transporter

98

ITR1 inositol transporter 10

GNP1 amino acid

transporter

21, 10

Actin and

polarization

RHO1 GTPase 215

BEM3 RhoGAP 12

Lipid synthesis

and binding

NUS1 prenyltransferase 10

PIB2 PI3P binding

protein

36

ORM1 lipid homeostasis 39, 28, 12

Metabolic enzymes IPP1 pyrophosphatase 88

Mito. import TOM22 mitochondrial

protein import

27

Function unknown YLR257W function unknown 62, 46, 32, 12

Wild-type cells (labeled with heavy isotopes) and Dnpr1 cells (labeled

with light isotopes) were treated with rapamycin for 15 min and the phos-

phoproteome of each was quantitatively assessed using SILAC. A total

of 3,652 phosphopeptides were identified in this experiment. Xpress ratio

indicates the fold enrichment in wild-type cells compared to Dnpr1 cells.

This table shows proteins containing phosphopeptides that exhibited at

least a 10-fold increase in wild-type cells relative to Dnpr1 cells.
Dnpr1 cells is dependent upon the presence of Art1 (Figure 3A),

suggesting that Npr1 negatively regulates endocytosis via in-

hibition of Art1. Furthermore, the constitutive endocytosis and

vacuolar trafficking of Can1-GFP observed in Dnpr1 cells was

suppressed in Dnpr1Dart1 double-mutant cells (Figures 3B

and 3C), indicating that the aberrant endocytosis of Can1-GFP

observed in Dnpr1 cells is mediated by Art1.

Based on these results, we hypothesized that the TORC1-

Npr1 negative kinase signaling cascade regulates Art1 activation

by phosphoinhibition (Figure 3D). A key prediction of this hypoth-

esis is that loss of Npr1 kinase activity would alter the phosphos-

tatus of the Art1 protein. Consistent with this hypothesis, we

found that Art1 recovered from Dnpr1 cells exhibited a >50%

decrease in the amount of phosphate incorporation relative to

wild-type cells (Figure 3E). Furthermore, we found that the Art1

protein recovered from wild-type cells exists in two distinct

forms, resolved as a doublet by SDS-PAGE (Figure 3F, lane 1).

Following phosphatase treatment, the Art1 doublet collapses

to a single band (Figure 3F, lane 2), indicating that the lower

mobility form of Art1 is phosphorylated. Interestingly, Art1
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protein recovered from Dnpr1 cells did not exhibit the phos-

phoshift observed in wild-type cells (Figure 3F, lanes 3 and 4).

Art1 phosphorylation was complemented by expression of

wild-type Npr1 but not kinase-dead mutant alleles (Fig-

ure 3G). Furthermore, increasing Npr1 expression led to corre-

sponding increases in Art1 phosphorylation (Figure 3H and

Figure S3). Finally, we were able to demonstrate that Art1 is

a substrate for active Npr1 kinase but not a kinase dead mu-

tant in vitro (Figure 3I), providing evidence for direct phosphory-

lation. In summary, these results suggest that Npr1 negatively

regulates endocytosis by phosphorylating Art1, a ubiquitin ligase

adaptor.

TORC1 Signaling Tunes Art1 Activity by Modulating
Phosphoinhibition
To test whether TORC1 activity mediates Art1 dephosphoryla-

tion, we examined radioactive phosphate incorporation into

Art1 under conditions of TORC1 hyperactivation. We found

that hyperactivation of TORC1 signaling by treatment of yeast

cells with cycloheximide resulted in a >60% decrease in Art1

phosphorylation (Figure 4A). Based on our data, we propose

a TORC1-Npr1 negative kinase signaling cascade that activates

Art1 via sequential repression (Figure 4B). In this model, inhibi-

tion of TORC1 signaling (by starvation conditions or treatment

of cells with rapamycin) triggers Npr1 activation by dephosphor-

ylation. The increased Npr1 kinase activity leads to inhibition of

Art1, which decreases endocytosis and stabilizes Can1 at the

PM (Figure 4C lane 1, Figure 4D, and Figure S4A). When

TORC1 activity is high (in nutrient-replete conditions or by treat-

ment of cells with cycloheximide), Npr1 is hyperphosphorylated

and its kinase activity is inhibited. This state favors Art1 dephos-

phorylation, which leads to increased Can1 endocytosis and

vacuolar degradation (Figure 4C, lane 3, Figure 4D, and Fig-

ure S4A). During normal log phase growth conditions, TORC1

signals at an intermediate level, maintaining both Art1 and

Npr1 in ametaphosphorylated state (Figure 4C, lane 2, Figure 4D,

and Figure S4A). This system endows TORC1 with fine control

over the endocytic equilibrium of Can1, effectively tuning nutrient

transport over a wide range of conditions. This signaling pathway

responds to perturbations in TORC1 signaling within minutes

(Figures S4B and S4C, and unpublished data), and the response

to both cycloheximide and rapamycin is dependent on TORC1

but not TORC2 (data not shown). Consistent with these results,

the ability of cycloheximide to activate Art1 by inhibiting Npr1

is blockedby simultaneous treatmentwith rapamycin (Figure 4E).

We also found that regulation of Can1 endocytosis by TORC1

translates to corresponding affects on arginine uptake: TORC1

signaling increased Can1 endocytosis and thus blocked arginine

uptake, while TORC1 inhibition stabilized Can1 at the PM and

thus increased the rate of arginine uptake (Figure S4D). These

data support a model whereby TORC1 regulates endocytosis

via a negative kinase cascade that tunes Art1 activity by

phosphoinhibition.

To further explore the basis for TORC1 regulation of endocy-

tosis, we examined Art1 phosphorylation across a variety of

media conditions and cellular stresses. Similar to our results

with rapamycin treatment, we found that shifting from minimal

media to PBS, a physiological starvation condition, triggered



Figure 3. Npr1 Regulates Art1 Activity via Phosphoinhibition

(A) Canavanine sensitivity/resistance phenotypes were determined for wild-type (WT), Dart1, Dnpr1, Dart1Dnpr1 cells.

(B) Fluorescence microscopy analysis of Can1-GFP (green) in unstimulated Dart1Dnpr1 yeast cells. Vph1-mCherry (red) was used to label vacuoles.

(C) Quantitative analysis of Can1-GFP distribution in cells from (B) and Figure 2C. Fluorescence intensity of PM and vacuole was averaged over a population of

cells (n > 50) for each genotype.

(D) Based on genetic interaction data, we devised amodel pathway for the TORC1-Npr1 negative signaling cascade that results in phosphoregulation of Art1. This

pathway controls the cycling of Art1 between a phosphorylated inactive state and a dephosphorylated active state.

(E) Art1 was affinity purified from unstimulated wild-type and Dnpr1 yeast cells labeled with 32P. Top panel depicts western blot of total Art1 protein recovered,

while bottom panel shows 32P incorporation into Art1. Quantitation was performed by scanning Phosphorimager (bottom labels).

(F) Art1was affinity purified fromwild-type orDnpr1 yeast cells and subject to phosphatase treatment ormock treatment. Affinity-purified Art1 fromwild-type cells

can be resolved as two distinct bands, indicated by red arrows on the right.

(G) Western blot analysis of Npr1 expression levels (top panel) and Art1 phosphorylation patterns (bottom panel) for complementation vectors in Figure 2B. Red

asterisk indicates a nonspecific band.

(H) Expression of wild-type Npr1 was titrated using same parameters as in Figure 2E. Npr1 expression (top panel) and Art1 phosphorylation patterns (bottom

panel) were analyzed by western blot. See also Figure S3.

(I) Phosphorylation of recombinant Art1 was reconstituted using wild-type (WT) but not kinase dead (kd) Npr1 purified from yeast.
Art1 hyperphosphorylation (Figure 4F, lane 3). In contrast, shift-

ing yeast cells fromminimal media to nutrient rich YPD triggered

Art1 dephosphorylation (Figure 4F, lane 2). Interestingly, Art1
C

phosphostatus was not sensitive to other cellular stresses tested

(Figure 4G). In summary, our results indicate that TORC1 senses

nutrient availability and responds by regulating endocytosis in
ell 147, 1104–1117, November 23, 2011 ª2011 Elsevier Inc. 1109



Figure 4. TORC1 Tunes Art1 Activity by Modulating Phosphorylation

(A) Art1 recovered fromwild-type yeast cells labeled with 32P and subject to cycloheximide stimulation or mock treatment. Top panel depicts western blot of total

Art1 protein recovered, while bottom panel shows 32P incorporation into Art1. Quantitation was performed by scanning Phosphorimager (bottom labels).

(B) Model for TORC1 activation of Art1-mediated endocytosis of Can1 by a sequential repression mechanism.

(C) Wild-type yeast cells were treated with rapamycin (200 ng/ml), cycloheximide (50 mg/ml), or mock-treated (DMSO) for 15 min and analyzed for Npr1 phos-

phoshift (top panel), Art1 phosphoshift (middle panel), and Can1 abundance (lower panel). Values indicate Npr1 Pratio (below top panel), Art1 Pratio (belowmiddle

panel), and Can1 relative abundance (below bottom panel) all normalized to the mock condition. Indicators of TORC1 signaling activity (-, +, +++) are based on

previous reports that RAP inhibits TORC1 signaling and CHX activates TORC1 signaling, both relative to mock treatment.

1110 Cell 147, 1104–1117, November 23, 2011 ª2011 Elsevier Inc.



order to tune the activity of amino acid transporters at the cell

surface.

Inhibition of Art1 Is Mediated by N-Terminal
Phosphorylation
To better understand the mechanism of Art1 phosphoinhibition,

we employed quantitative mass spectrometry methodologies

to map specific phosphosites in Art1 that are dependent on

the TORC1-Npr1 negative kinase signaling cascade. First, we

trypsin-digested affinity-purified Art1 from wild-type cells, en-

riched forphosphopeptidesusing immobilizedmetal affinity chro-

matography (IMAC), and analyzed samples using LC-MS/MS.

This analysis revealed many phosphorylated residues in Art1,

including an N-terminal phosphocluster (between amino acids

79 and 124), a series of mostly proline-directed phosphosites at

the C terminus of Art1 (from amino acids 599 to 722), and a few

phosphosites in the arrestin fold domain (Figure 5A). Next, we

used SILAC to determine which sites were dependent on Npr1

activity (Figure 5B). We found that both the N-terminal phos-

phocluster and the proline-directed phosphocluster were depen-

dent on the presence of Npr1 (Figure 5C). Similarly, both clusters

increased significantly during rapamycin-induced Art1 hyper-

phosphorylation (Figure 5D). Interestingly, when we compared

Art1 phosphopeptides from rapamycin-treated wild-type cells

(hyperphosphorylated) and rapamycin-treatedDnpr1cells (hypo-

phosphorylated), we observed a dramatic 30- to 60-fold differ-

ence in phosphorylation at the N-terminal phosphocluster and

only modest (4- to 10-fold) increases for the proline-directed

phosphocluster (Figure 5E). Furthermore, we found that overex-

pressionofwild-typeNpr1 resulted in similarly dramatic increases

in phosphorylation at the N-terminal sites compared to overex-

pression of a kinase-dead variant (Figure 5F). Our quantitative

mass spectrometry data strongly suggests that Npr1 promotes

phosphorylation at the N terminus of Art1 (especially Ser79,

Ser82, Ser96, andSer99). Our results suggest that Npr1 indirectly

affects phosphorylation at C-terminal proline-directed sites in

Art1 as previous studies have shown that a +1 proline is strongly

disfavored by the Npr1 kinase (Gander et al., 2009), making these

sites unlikely targets for direct regulation by Npr1. Indeed, using

the in vitro kinase assay, Npr1 was capable of phosphorylating

an N-terminal fragment of Art1, but not a C-terminal fragment

that contains the proline-directed phosphorylation sites (Figures

S5A and S5B). Importantly, we found that the Art1 band-

shift observed by SDS-PAGE is dependent on the C-terminal

proline-directed phosphorylation events, indicating it is the re-

sult of both Npr1 and yet another kinase (Figure S5C). Although

in vitro phosphorylation of Art1 by Npr1 did not reconstitute the

bandshift observed in vivo (Figure3I),mass spectrometryanalysis

of Art1 phosphorylated by Npr1 in vitro identified the same

N-terminal phosphorylation pattern (particularly at S79, data not
(D) Quantitation of data in (C) using fluorescence scanning as demonstrated in F

(E) The signaling response from (C) was analyzed in response to either cotreatm

(F) The phosphostatus of Art1 was analyzed in response to changes nutrient avail

a shift from minimal media to PBS for 12 hr (starvation).

(G) Quantitation of the Art1 phosphorylation ratio (Pratio) for the results in (F) along

heat shock at 37� for 30 min (HS), 0.4M NaCl for 30 min (salt), or 4 mg/ml tunicam

See also Figure S4.

C

shown) observed in vivo. Since Art1 C-terminal proline-directed

phosphorylation events are in fact regulated by Npr1 in vivo (Fig-

ures 5C–5E), our results suggest a possible interaction between

N-terminal and C-terminal phosphorylation events, and further

investigation will be required to determine the function of

proline-directed phosphorylation at the C terminus of Art1.

TORC1-dependent phosphoregulation of other ART family

proteins was not evident by SDS-PAGE (Figure S5D), however

quantitative mass spectrometry analysis revealed that other

ART family proteins, most notably Art2 and Art3, may also be

regulated by Npr1 (Figure S5E). These results suggest that

TORC1 signaling does not regulate all ART family proteins, but

rather appears to specifically regulate Art1 as well as perhaps

Art2 and Art3. We also performed similar quantitative mass

spectrometry analysis of Npr1 phosphorylation in response to

changes in TORC1 signaling. We identified numerous Npr1

phosphosites primarily clustered at the N terminus of the protein

(Figure S6A). Consistent with our observations in Figure 4, this

N-terminal phosphorylation of Npr1 is significantly reduced

when TORC1 is inhibited (Figure S6B) and significantly increased

when TORC1 is hyperactivated (Figure S6C). These results are

consistent with previously reported mass spectrometry analysis

of Npr1 phosphorylation (Gander et al., 2008). Given the large

number of N-terminal phosphorylation events that respond in

this manner, we deleted the N-terminal phosphocluster of Npr1

(D40-360) and found that the truncated protein does not com-

plement canavanine resistance or Art1 phosphorylation (Fig-

ures S6D and S6E). These results indicate that Npr1 undergoes

N-terminal phosphoinhibition similar to Art1 but that this

N-terminal region is essential for Npr1-mediated regulation of

endocytosis.

To address the function of the Art1 N-terminal phosphocluster,

we analyzed the effect of alanine (phosphodead) or aspartic acid

(phosphomimetic) substitutions at these residues. Interestingly,

we found that no single site substitution had a significant effect

on Art1 function. However, we observed dramatic changes in

Art1 function when multiple phosphosites were mutated. For

example, multiple alanine substitutions at N-terminal phospho-

sites of Art1 led to a striking canavanine resistance phenotype

(Figure 5G), similar to that observed with Dnpr1 cells. Addition-

ally, multiple aspartic acid substitutions at N-terminal phos-

phosites resulted in canavanine hypersensitivity (Figure 5H), indi-

cating Art1 is stuck in an inhibited, phosphomimetic state. These

results indicate that (1) Npr1 mediates the phosphorylation of

a distinct cluster of residues at the N terminus of Art1, (2) phos-

phorylation of these N-terminal residues inhibits Art1-mediated

Can1 endocytosis, and (3) dephosphorylation of these residues

results in activation of Art1-mediated Can1 endocytosis. Thus,

the N-terminal phosphocluster of Art1 is a critical feature of the

regulated endocytosis of Can1.
igure S4A.

ent with or different orders of addition of cycloheximide and rapamycin.

ability, including a shift from minimal media to YPD for 2 hr (nutrient surplus) or

with additional treatments including 200 mg/ml Hygromycin B for 15min (HmB),

ycin for 15 min (TM).
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Figure 5. Inhibition of Art1 Is Mediated by N-Terminal Phosphorylation

(A) Schematic dividing the Art1 protein into three regions: an N-terminal domain (red), the arrestin fold domain (blue), and a C-terminal domain (brown). Phos-

phorylation sites identified by mass spectrometry analysis are indicated. (B) Schematic demonstrating how SILAC followed by quantitative mass spectrometry

analysis is used tomeasure changes at specific Art1 phosphosites. SILAC combinedwith quantitativemass spectrometry analysis was used tomeasure changes

in phosphorylation at specific Art1 residues for pair wise comparisons of wild-type (WT) cells versus Dnpr1 cells (C), rapamycin-treated WT cells versus mock-

treated WT cells (D), rapamycin-treated WT cells versus rapamycin-treated Dnpr1 cells (E), and Dnpr1 cells overexpressing WT Npr1 versus Dnpr1 cells

overexpressing the kinase dead npr1-K467R allele (F). For each of C-F, bars are color-coded to reflect the position of the phosphosites in the Art1 protein (as

indicated in [B]). The y axis values represent the Log2 of the Xpress (H:L) ratio, a quantitative measure of isotopic representation. Western blots showing

1112 Cell 147, 1104–1117, November 23, 2011 ª2011 Elsevier Inc.



N-Terminal Phosphorylation Antagonizes Art1 PM
Recruitment
We next investigated how N-terminal phosphorylation of Art1

inhibits Can1 endocytosis. First, we considered the possibility

that N-terminal phosphorylation could lower the affinity of Art1

for Rsp5, however our quantitative mass spectrometry results

indicated that changes in Art1 phosphostatus do not affect its

interaction with Rsp5 (Figure S7A).

Previously, we showed that GFP-tagged Art1 in unstimulated

wild-type cells localizes to the cytosol, Golgi, and plasma mem-

brane (Figure S7B, top panels) and cycloheximide-induced

activation of endocytosis results in translocation of Art1 to the

PM (Figure 6A, top panels) (Lin et al., 2008). Interestingly, we

found that cycloheximide-induced PM recruitment of Art1 was

blocked by addition of rapamycin (Figure 6A, bottom panels),

and that wild-type cells treated with rapamycin exhibited less

Art1-GFP at the plasma membrane compared to untreated cells

(Figure S7B, bottom panels). Since these treatments ‘‘toggle’’

Art1 between phosphorylated and dephosphorylated states,

the effect of rapamycin and cycloheximide on Art1 localization

suggested that N-terminal phosphorylation may regulate Art1

recruitment to the plasma membrane.

To further explore this possibility, we mixed wild-type cells

(marked with Sec7-Mars) and Dnpr1 cells both expressing

Art1-GFP. We treated this mixed culture with rapamycin, so

that Art1 in wild-type cells would be hyperphosphorylated and

Art1 in Dnpr1 cells would be hypophosphorylated (Figure 6B,

inset). Interestingly, when we analyzed Art1-GFP distribution in

the mixed culture, we found that hyperphosphorylated Art1 in

the wild-type cells was localized primarily to the cytosol and

Golgi, while hypophosphorylated Art1 in the Dnpr1 cells accu-

mulated extensively at the plasma membrane (Figures 6B

and 6D). Furthermore, we found that alanine substitution at

the N-terminal phosphosites resulted in increased PM recruit-

ment even after treatment of cells with rapamycin (Figures 6C

and 6D).

To determine where in the cell Npr1 might phosphorylate Art1,

we analyzed the subcellular localization of GFP-Npr1 and found

that in unstimulated or cycloheximide-treated cells Npr1 was

exclusively cytosolic (Figure 6E, left and middle panels). In con-

trast, treatment of cells with rapamycin resulted in the PM

recruitment of GFP-Npr1 (Figure 6E, right panels, Figure 6F,

and Figure S7D). To test the possibility that Art1 and Npr1

interact on the plasma membrane, we performed fluorescence

colocalization microscopy using Art1-mCherry and GFP-Npr1.

Interestingly, when cells were treated with rapamycin to trigger

Npr1 PM recruitment, we observed colocalization of GFP-Npr1

punctae with Art1-mCherry punctae at the plasma membrane

(Figure 6G). Although the colocalization we observed was

limited, this result is consistent with a transient association of

Npr1 with Art1 at the plasma membrane, whereby phosphoryla-

tion of Art1 limits its PM association.
phosphoshifts as resolved by SDS-PAGE are shown in the upper right of each pro

leading to variation in what can be scored for each condition. Alanine substitutio

analyzed for growth in the presence of canavanine. Labels correspond to the follo

S79, 82-85, 92, 93, 96, 99, 100A. 5xD: S79, 82-85D. 8xD: S79, 82-85, 92, 93, 96

C

DISCUSSION

We have uncovered an effector pathway downstream of TORC1

that regulates the composition of proteins at the PM by control-

ling endocytosis. Specifically, we show that (1) TORC1 signaling

regulates ubiquitin ligase targeting and endocytosis of nutrient

transporters at the PM, (2) the effector mechanism that regulates

endocytosis involves a TORC1-Npr1 negative kinase signaling

cascade that tunes the phosphoinhibition of the ubiquitin ligase

adaptor Art1, and (3) the inhibition of Art1 requires phosphoryla-

tion at an N-terminal cluster of residues that control Art1 translo-

cation to the PM (Figure 7). These findings establish a unique

effector branch of the TORC1 signaling pathway that allows

the cell to coordinate the activity of nutrient transporters at the

PM as part of a global cellular strategy to regulate cell growth

(Figure 7).

A Global Strategy for Regulating Endocytosis
The role of TORC1 as a regulator of ubiquitin-mediated endocy-

tosis is intriguing, because it demonstrates how diverse environ-

mental and nutritional cues such as amino acid availability,

energy status, and protein folding stress can affect changes in

the abundance of proteins at the cell surface. In contrast to

this global mode of TORC1-mediated endocytosis, many well-

studied systems of endocytic downregulation involve specific

targeting mechanisms, exemplified by the endocytosis-medi-

ated attenuation of activated cell surface receptors such as

EGFR and GPCRs in mammalian cells. The results presented

in this study demonstrate that nutrient transporters in yeast are

subject to both global signals mediated by TORC1 and specific

signals that are substrate-dependent. Although these global and

specific pathways operate independently in response to distinct

cues (Figure 1D and Figure S1), they converge on the same

molecular mechanism of control by regulating the function of

ubiquitin ligase adaptors (Figure 1E). This sort of signal integra-

tion allows TORC1 to bypass specific mechanisms of endocytic

downregulation, adding a substrate-independent layer of endo-

cytic control that is sensitive to the growth conditions of the cell.

Proteome-wide analysis of phosphorylation in yeast has

demonstrated that ART family proteins are extensively phos-

phorylated (Albuquerque et al., 2008), and one recent study

demonstrated that Npr1 can phosphorylate Art3 in vitro,

although the functional significance of this modification remains

unclear (O’Donnell et al., 2010). Interestingly, Art3 was recently

shown to regulate the ubiquitination and endocytosis of the

aspartic acid transporter Dip5 (Hatakeyama et al., 2010). We

speculate that Npr1 could negatively regulate the endocytosis

of Dip5 via phosphoinhibition of Art3, similar to its role as a nega-

tive regulator of Art1. Our phosphoprofiling experiments (Fig-

ure S5C) reveal that, while most ART phosphopeptides detected

appeared to be Npr1-independent, Npr1-dependent phosphor-

ylation events were detected in Art2 and Art3. Whether or not
filing experiment. Not all phosphopeptides were detected in every experiment,

n mutant alleles (G) and phosphomimetic substitution alleles (H) of Art1 were

wing substitution mutations. 5xA: S79, 82-85A. 7xA: S79, 82-85, 92, 93A. 10xA:

D. 9xD: S79, 82-85, 92, 93, 96, 113D. See also Figure S5 and Figure S6.
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Figure 6. Art1 Phosphorylation Inhibits PM Recruitment

(A) Subcellular localization of Art1-GFP (green) was determined using fluorescence microscopy imaging of wild-type yeast cells. Cells were either treated with

cycloheximide (‘‘CHX’’) or cotreated with cycloheximide and rapamycin (‘‘CHX+RAP’’).

(B)Wild-type yeast cells (labeledwith Sec7-Mars (red)) orDnpr1 cells expressing Art1-GFPweremixed and treatedwith rapamycin (200 ng/ml for 15min) and Art1

subcellular localization was analyzed using fluorescence microscopy. The inset is a western blot demonstrating the phosphostatus of Art1 in each condition.

(C) Wild-type yeast cells expressing wild-type Art1-GFP (labeled with Vph1-mCherry [red]) or the N-terminal alanine substitution mutant (art1-8xA) were analyzed

by fluorescence microscopy following mock (top panel) or rapamycin (bottom panel) treatment.

(D) Art1-GFP PM localization was quantified as illustrated in Figure S7C (n = 40 cells). Results are normalized to the percent PM localized Art1 fromwild-type cells

treated with rapamycin, a condition where we do not see Art1 PM recruitment.

(E) GFP-Npr1 (green) subcellular localization was analyzed by fluorescence microscopy following mock, cycloheximide, or rapamycin treatments in wild-type

yeast cells expressing Mup1-Mars (red) to label the PM.

(F) Npr1 PM localization was quantified as illustrated in Figure S7C (n = 40 cells). Results are normalized to the percent PM localized Npr1 from wild-type cells

treated with cycloheximide, a condition where we do not see Npr1 PM recruitment.

(G) Wild-type yeast cells expressing Npr1-GFP and Art1-mCherry were grown to midlog phase in the presence of methionine and treated with rapamycin

(200 ng/ml for 5 min). Both Npr1 and Art1 subcellular localization was determined using fluorescence microscopy imaging. ** indicated p < 0.005.

See also Figure S7.
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Figure 7. A Mechanism for TORC1 Regulation of Endocytosis

When TORC1 signaling is ‘‘on’’ (left panel), Npr1 is phosphoinhibited which promotes endocytosis of specific transporters by promoting Art1-Rsp5 translocation

to the PM.When TORC1 signaling is ‘‘off’’ (right panel), as occurs during rapamycin treatment or starvation conditions, Npr1 is active and can phosphorylate Art1,

an inhibited state that favors Golgi and cytosol localization. This novel effector mechanism allows TORC1 to modulate ubiquitin-mediated endocytosis and

provides new insights into TORC1-mediated coordination of diverse cellular processes to achieve growth control (top diagrams). Gray arrows and bars indicate

the release of a regulatory interaction due to upstream regulatory effects in the pathway. See also Figure S8.
these phosphorylation events regulate endocytosis remains to

be elucidated, but it seems likely given that both Art2 and Art3

have been shown to function in the endocytosis of specific

cargoes (Hatakeyama et al., 2010; Lin et al., 2008). Furthermore,

it is conceivable that other signaling pathways may similarly

affect PM protein composition by regulating the activity of other

ART family proteins.

A parallel strategy in mammalian cells might involve the family

of uncharacterized arrestin-domain-containing (ARRDC) pro-

teins, which exhibit a domain structure similar to ART family

proteins with N-terminal arrestin domains and C-terminal PY

motifs. One mammalian ARRD family protein, ARRDC3, was

recently shown to associate with the Nedd4 ubiquitin ligase

and mediate the endocytic downregulation of b2-adrenergic

receptor (Nabhan et al., 2010). It is tempting to speculate that

mammalian ARRD family proteins may be subject to regulation

by mTORC1 signaling, thus providing an mTORC1 effector

branch analogous to the one presented in this study. Interest-

ingly, mammalian b-arrestins are subject to a regulatory cycle

that involves phosphoinhibition and activation by dephosphory-

lation (Lin et al., 2002), however further study will be required to
C

determine the extent to which TORC1 signaling regulates the

function of arrestin-related proteins in mammalian cells.

The Npr1 Kinase Links Nutrient Sensing to Endocytosis
Previous studies have suggested a role for Npr1 in the trafficking

of amino acid transporters, however a consensus role for Npr1

has been elusive. For example, one study presents evidence

that the Npr1 kinase promotes endocytosis of the tryptophan

transporter TAT2 (Schmidt et al., 1998). In contrast, other studies

have provided evidence that the Npr1 kinase functions to stabi-

lize transporters at the plasma membrane (De Craene et al.,

2001). Our analysis demonstrates that Npr1 stabilizes the argi-

nine transporter Can1 at the plasma membrane by antagonizing

the function of Art1. Interestingly, the phosphoproteomic data

presented in this paper (Table 1) may actually reconcile the

seemingly contradictory reports regarding the role of Npr1 with

respect to endocytosis. For example, although our results dem-

onstrate that Npr1 negatively regulates endocytosis via phos-

phoinhibition of Art1, we also found several candidate Npr1

substrates that were plasma membrane-localized nutrient

transporters. This result, combined with our observation that
ell 147, 1104–1117, November 23, 2011 ª2011 Elsevier Inc. 1115



active Npr1 is recruited to the PM, suggests that Npr1may phos-

phorylate both Art1 and transporters at the PM. The conse-

quence of cargo phosphorylation is unclear but we speculate

that this may either regulate transporter activity or promote

endocytosis. Thus, a better understanding of Npr1-mediated

phosphorylation of nutrient transporters at the PM may help to

resolve some of the contradictory reports regarding the role of

Npr1 as a regulator of endocytosis.

The Npr1 kinase represents an important mediator of TORC1

control of endocytosis in yeast, but the existence of an analo-

gous pathway in mammalian cells is unclear. Although Npr1

has no obvious homolog in human cells, it is part of a large family

of kinases that includes the glucose-sensing kinase Snf1, the

yeast homolog of the mammalian AMP-activated kinase. We

speculate that the family of AMPK/Snf1-related kinases in both

yeast and mammals may have evolved as sensors of nutrient

availability that regulate growth responses including endocytosis

and membrane traffic. Consistent with our observation that part

of this responsemay involve regulation of endocytosis, Snf1 was

shown to phosphorylate the arrestin-related protein Art4 (Shi-

noda and Kikuchi, 2007) and related kinases Hal4 and Hal5

have been implicated in stabilizing potassium transporters at

the plasma membrane by an unknown mechanism (Pérez-Valle

et al., 2007). Although it remains to be seen if mTORC1 regulates

endocytosis in mammalian cells, we speculate that such regula-

tion could involve effectors which include AMPK/Snf1-related

kinases.

Endocytosis as an Effector of TORC1-Mediated Growth
Control
In the current study, we elucidate amechanism by which TORC1

controls the abundance of the Can1 arginine transporter at the

PM. Importantly, by regulating the abundance of amino acid

transporters at the plasma membrane, TORC1 can finely tune

amino acid influx in response to various cellular signals and envi-

ronmental conditions. For example, the prototype mechanism

described in this study affords the cell very fine control over intra-

cellular arginine concentration: Can1 is stabilized at the PM

during starvation conditions but Can1 endocytosis is activated

when the cell is nutrient replete. Additional studies will be

required to determine how signals upstream of TORC1 are inte-

grated to control endocytosis, but canavanine and thialysine

hypersensitivity phenotypes reported for Drheb1 yeast strains

indicate that the signals are integrated upstream of Rheb (Urano

et al., 2000). Furthermore, proteomic analysis of Npr1 indicates

that it can interact not only with TORC1 but also with Snf1

(Breitkreutz et al., 2010), suggesting that Npr1 function may inte-

grate several modes of regulation. Thus, although our results

demonstrate that regulation of endocytosis is an important

branch of the TORC1 response, future studies will be required

to determine how signals upstream of TORC1 as well as orthog-

onal signals are integrated to mediate this endocytic downregu-

lation response.

It is intriguing to consider how the regulation of endocytosis

contributes to the adaptive growth strategies mediated by

TORC1 signaling. Interestingly, recent work in mammalian cells

has demonstrated that nutrient transporters at the cell surface

that facilitate the influx of leucine are required for TORC1 activity
1116 Cell 147, 1104–1117, November 23, 2011 ª2011 Elsevier Inc.
(Nicklin et al., 2009). Thus, it is possible that TORC1-mediated

endocytosis of amino acid transporters provides an autoinhibi-

tory feedback loop that limits TORC1 activation (Figure S8A),

consistent with our analysis of TORC1 signaling during a YPD

shift timecourse (Figures S8B and S8C). Furthermore, the ability

of TORC1 to sense misfolded proteins and respond by acti-

vating endocytosis could promote the turnover of misfolded or

damaged proteins at the PM. Additionally, the role of TORC1

signaling as both a positive regulator of endocytosis and a nega-

tive regulator of autophagy is intriguing. In such an inversely-

coordinated system, dampened TORC1 signaling during starva-

tion conditions simultaneously activates autophagy and inhibits

endocytosis of the arginine transporter at the PM, both of which

contribute to the availability of amino acids. TORC1 coordination

of two distinct membrane trafficking pathways toward a cooper-

ative outcome is an elegant example of how signaling networks

can harness complex cellular processes to regulate cell growth.

EXPERIMENTAL PROCEDURES

Plasmids, Strains, and Yeast Plating Assays

All plasmids and yeast strains used in this study are listed in Table S1 and

Table S2, respectively. Canavanine plating assays were performed as previ-

ously described (Lin et al., 2008). Briefly, yeast cultures grown overnight in

YPD were normalized to 1 OD/ml, serially diluted and plated onto SCD plates

using a pin-frogger. The following concentrations of canavanine were tested in

each experiment: 0 mg/ml, 1.0 mg/ml, 2.0 mg/ml, and 4.0 mg/ml.

Microscopy

All microscopy was performed using an Olympus IX71 microscopy equipped

with FITC and rhodamine filters. Deconvolution and image analysis was per-

formed using Softworx software (Applied Precision). For cargo trafficking

assays, strains expressing chromosomally-tagged Vph1-mCherry were used

to label the vacuolar membrane. In most experiments, cells were either

mock-treated or treatedwith cycloheximide (CHX) (50mg/ml) and/or rapamycin

(RAP) (200 ng/ml) for 1.5 hr prior to imaging cells. Vacuolar trafficking of cargo

was quantified bymeasuring fluorescence intensity of cargo signal (GFP) in the

vacuole normalized to signal at the PM. For Art1-GFP and Npr1-GFP localiza-

tion experiments, cells were stimulated with CHX, RAP, or both for 10min prior

to imaging. Art1 PM translocation was quantified as illustrated in Figure S7C.

Amino Acid Uptake Assays

To measure amino acid (arginine) uptake, yeast cells were grown to midlog

phase in SCD media and then labeled by addition of 5 mCi [3H] arginine (Perkin

Elmer). Samples were collected at indicated time points by addition of ice-cold

stopping solution (20 mM NaN3, 20 mM NaF). Cells were pelleted, and the

amount of [3H] arginine remaining in the supernatant was measured using

a Beckman Coutner LS 6500 scintillation counter.

Npr1 In Vitro Kinase Assay

Recombinant Art1-6xHis-FLAG was incubated with yeast purified wild-type

or kinase dead GST-Npr1 for 30 min at 30�C in kinase buffer (50 mM Tris

[pH 7.5], 20 mM MgCl2, 1 mM DTT, 25 mM [g-32P]-ATP [Perkin Elmer]). (See

Supplemental Information for detailed protein purification protocols.) Subse-

quently, Art1-6xHis-FLAG was purified by incubating with M2 Flag beads for

1 hr at 4�C. Beads were washed in TBS (50 mM Tris [pH 7.5] and 150 mM

NaCl) and eluted in elution buffer (TBS with 5 mg/ml 3X FLAG Peptide

[Sigma-Aldrich]). Protein samples were resolved by SDS-PAGE. Gels were

both subjected to western blot and dried for autoradiographing with Kodak

BioMax MS film [Sigma-Aldrich]).

SILAC and Quantitative Mass Spectrometry

All quantitative mass spectrometry analysis was performed using SILAC

labeling of yeast strains auxotrophic for lysine and arginine. Cells were grown



to midlog phase in the presence of either heavy or light isotopes (lysine and

arginine) and affinity purification was performed as described in Supplemental

Methods. Heavy and light purified samples were mixed and digested with 1 mg

of trypsin for 2 hr at 37�C. For phosphoprofiling experiments, phosphopepti-

des were purified using IMAC chromatography as previously described

(Albuquerque et al., 2008). Purified peptides were dried, reconstituted in

0.1% trifluoroacetic acid, and analyzed by LC-MS/MS using an Orbitrap XL

mass spectrometer. Database search and SILAC quantitation was performed

using Sorcerer software.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, two

tables, and eight figures and can be found with this article online at doi:10.

1016/j.cell.2011.09.054.
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Pérez-Valle, J., Jenkins, H., Merchan, S., Montiel, V., Ramos, J., Sharma, S.,

Serrano, R., and Yenush, L. (2007). Key role for intracellular K+ and protein

kinases Sat4/Hal4 and Hal5 in the plasma membrane stabilization of yeast

nutrient transporters. Mol. Cell. Biol. 27, 5725–5736.

Qian, S.B., Zhang, X., Sun, J., Bennink, J.R., Yewdell, J.W., and Patterson, C.

(2010). mTORC1 links protein quality and quantity control by sensing chap-

erone availability. J. Biol. Chem. 285, 27385–27395.

Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A.L., Nada, S., and Sabatini,

D.M. (2010). Ragulator-Rag complex targets mTORC1 to the lysosomal

surface and is necessary for its activation by amino acids. Cell 141, 290–303.

Schmidt, A., Beck, T., Koller, A., Kunz, J., and Hall, M.N. (1998). The TOR

nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the

tryptophan permease. EMBO J. 17, 6924–6931.

Shinoda, J., and Kikuchi, Y. (2007). Rod1, an arrestin-related protein, is phos-

phorylated by Snf1-kinase in Saccharomyces cerevisiae. Biochem. Biophys.

Res. Commun. 364, 258–263.

Urano, J., Tabancay, A.P., Yang, W., and Tamanoi, F. (2000). The Saccharo-

myces cerevisiae Rheb G-protein is involved in regulating canavanine resis-

tance and arginine uptake. J. Biol. Chem. 275, 11198–11206.
ell 147, 1104–1117, November 23, 2011 ª2011 Elsevier Inc. 1117

http://dx.doi.org/doi:10.1016/j.cell.2011.09.054
http://dx.doi.org/doi:10.1016/j.cell.2011.09.054

	TORC1 Regulates Endocytosis via Npr1-Mediated Phosphoinhibition of a Ubiquitin Ligase Adaptor
	Introduction
	Results
	TORC1 Regulates Endocytosis of Amino Acid Transporters
	The TORC1 Effector Kinase Npr1 Negatively Regulates Endocytosis
	Npr1 Regulates Art1 Activity via Phosphoinhibition
	TORC1 Signaling Tunes Art1 Activity by Modulating Phosphoinhibition
	Inhibition of Art1 Is Mediated by N-Terminal Phosphorylation
	N-Terminal Phosphorylation Antagonizes Art1 PM Recruitment

	Discussion
	A Global Strategy for Regulating Endocytosis
	The Npr1 Kinase Links Nutrient Sensing to Endocytosis
	Endocytosis as an Effector of TORC1-Mediated Growth Control

	Experimental Procedures
	Plasmids, Strains, and Yeast Plating Assays
	Microscopy
	Amino Acid Uptake Assays
	Npr1 In Vitro Kinase Assay
	SILAC and Quantitative Mass Spectrometry

	Supplemental Information
	Acknowledgments
	References


