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Abstract This paper obtains the solitary wave solutions of two different forms of Boussinesq equations
that model the study of shallow water waves in lakes and ocean beaches. The tanh method is applied
to solve the governing equations. The travelling wave hypothesis is also utilized to solve the generalized
case of coupled Boussinesq equations, and, thus, an exact 1-soliton solution is obtained. The results are
also supported by numerical simulations.
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1. Introduction

The dynamics of shallow water waves, that are seen in vari-
ous places like sea beaches, lakes and rivers, are governed by the
Boussinesq Equation (BE). The Korteweg–deVries (KdV) equa-
tion that models shallow water waves is definitely very well
known. However, the BE gives a much better approximation to
suchwaves. There are two forms of the BE thatwill be addressed
in this paper, and both are with cubic nonlinearity [1]. The soli-
ton solutions will be obtained for these equations. These solu-
tions will be extremely useful in carrying out further analysis in
the context of shallowwater waves that arises in the context of
oceanography.

There are various mathematical techniques to solve these
forms of BE. Some of the commonly used techniques are; the
variational iteration method, the semi-inverse variational prin-
ciple, theG′/G-expansionmethod, the exp-functionmethod, the
Riccati equation approach, Fan’s F-expansion, and many oth-
ers [2–12]. In this paper, the tanh method will be used for
obtaining the closed form solution of some variants of the BE
equation.
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The traveling wave solutions will also be used to integrate
the nonlinearly coupled BE. These analytical solutions are sup-
ported by numerical simulations. The symbolic calculations are
made using the symbolic programming package, Mathematica,
version 8.0 [13].

2. Outline of tanh method

The method is applied to find out exact solutions of
nonlinear differential equations:

P(u, ut , ux, uxx, . . .) = 0 (1)

where P is a polynomial of the variable u and its derivatives.
Considering the transformation variable, ξ = kx − λt , so that
u(x, t) = U(ξ), we obtain the following relations:

∂

∂t
= −λ

d
dξ

,
∂

∂x
= k

d
dξ

,
∂2

∂x2
= k2

d2

dξ 2
,

∂3

∂x3
= k3

d3

dξ 3
.

(2)

Thus, Eq. (1) reduces to the Ordinary Differential Equation
(ODE):

Q (U,U ′,U ′′, . . .) = 0. (3)

With Q being another polynomial. Eq. (3) is then integrated
and the integration constant is chosen to be zero, in view of
the localized solutions. However, the nonzero constants can be
used and handled as well [14]. Now, finding the traveling wave
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solution to Eq. (1) is equivalent to obtaining the solution to the
reduced ODE given by Eq. (3).

We introduce the tanh method in a similar manner to that
undertaken earlier in [15–17]. The tanh method is based on
a priori assumption that the traveling wave solutions can be
expressed in terms of the tanh function. For the tanh method,
the first step is to introduce the new independent variable:

Y (x, t) = tanh(ξ), (4)

that transforms the differential operators as follows:

d
dξ

= (1 − Y 2)
d
dY

,

d2

dξ 2
= −2Y (1 − Y 2)

d
dY

+ (1 − Y 2)2
d2

dY 2
,

d3

dξ 3
= 2(1 − Y 2)(3Y 2

− 1)
d
dY

− 6Y (1 − Y 2)2
d2

dY 2

+ (1 − Y 2)3
d3

dY 3
.

The next step is that the solution is expressed in the form:

u(x, t) = U(ξ) =

m
i=0

aiY i, (5)

where the parameter, m, can be found by balancing the
highest-order linear term with the nonlinear terms in Eq. (2),
and k, λ, a0, a1, . . . , am are to be determined. Substituting Eq.
(5) into Eq. (2) will yield a set of algebraic equations for
k, λ, a0, a1, . . . , am because all coefficients of Y have to vanish.
From these relations, k, λ, a0, a1, . . . , am can be obtained.
Having determined these parameters, knowing that m, n are
positive integers, in most cases, and using Eq. (5), we obtain
analytic solutions, u(x, t), in a closed form. The tanh method
seems to be a powerful tool in dealing with nonlinear physical
models.

It needs to be noted that the tanh method is not a
unique approach to carrying out the integration of these
nonlinear evolution equations. There are several other powerful
mathematical tools of integration that can be very easily and
effectively applied to integrate these NLEEs. Some of these well
studied approaches are; the G′/G-expansion method, the exp-
function approach, the homotopy perturbation method, the
variational iteration method, and the Adomian decomposition
method. One of themost powerfulmethods is the Lie symmetry
approach, which yields a lot of additional information in
addition to retrieving solutions to these NLEEs, such as
obtaining the conservation laws of these equations [18]. This
paper will, however, focus on the tanh approach and the
traveling wave solutions.

3. Examples

In this section, the technique of the tanh method, that was
developed in the previous section, will be applied to various
forms of BE. These studies will be conducted in the following
couple of subsections.

3.1. Cubic Boussinesq equation

A well-known model of nonlinear dispersive waves, which
was proposed by Boussinesq, is formulated as [1]:

utt − uxx − uxxxx + 2(u3)xx = 0. (6)
TheBoussinesq equation (6) thatwas considered byWazwaz [1]
describesmotions of longwaves in shallowwater under gravity
and in a one dimensional nonlinear lattice.

Note that a similar equation is considered in [19], but with
uxxxt instead of the term uxxxx. In order to implement the Tanh
method, the starting point is the traveling wave hypothesis as
given by:
u(x, t) = U(ξ), (7)
where:
ξ = kx − λt. (8)
Using Eqs. (7) and (8), the nonlinear Partial Differential Equation
(PDE) Eq. (6) is transformed to the ODE:

(λ2
− k2)U ′′

− k4U ′′′′
+ 6k2(U2U ′)′ = 0. (9)

Integrating the previous equation twice and setting the
integration constants to zero yields:

(λ2
− k2)U − k4U ′′

+ 2k2U3
= 0. (10)

Based on the tanh method, we assume that solution U(ξ) is
given by:

U(ξ) =

m
i=0

aiΥ i, Υ (x, t) = tanh(ξ).

Hence, Eq. (10) reduces to:

(λ2
− k2)U − k4


−2Y (1 − Y 2)

dU
dY

+ (1 − Y 2)2
d2U
dY 2


+ 2k2U3

= 0. (11)
To determine the index, m, we balance the linear term of the
highest orderwith thehighest order nonlinear terms. Therefore,
in Eq. (11) we balance U3 with U ′′, so that 3m = 4 + m − 2,
and this gives us m = 1. Hence, the expression for U(ξ) now
simplifies to:
U(Υ ) = a0 + a1Υ , a1 ≠ 0. (12)
Substituting Eq. (12) into Eq. (11) and equating the coefficients
of Y i; i = 0; 1; 2; 3 to zero, leads to the following nonlinear
system of algebraic equations:
(λ2

− k2)a0 + 2k2a30 = 0,

(λ2
− k2)a1 + 2k4a1 + 6k2a20a1 = 0,

6k2a21a0 = 0,

−2k4a1 + 2k2a31 = 0. (13)
Solving system (13) gives:

a0 = 0, a1 = ∓k, λ = ∓k

1 − 2k2.

Hence, the 1-soliton solution of the starting Eq. (6) is given by:

u(x, t) = ∓k tanh

k{x ±

√
1 − 2k2t}


, (14)

where:

|k| ≤
1

√
2
.

However, for k = 1/2

u(x, t) = ∓
1
2
tanh


1
2


x ±

t
√
2


. (15)

The solitary wave and behavior of the solution u(x, t) =

∓
1
2 tanh


1
2 {x ±

t
√
2
}


are shown in Figure 1 for 0 ≤ t ≤ 1

and −10 ≤ x ≤ 10.
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Figure 1: The solution u(x, t) =
1
2 tanh


1
2


x +

τ
√
2


for 0 ≤ t ≤ 1 and

−10 ≤ x ≤ 10.

3.2. Coupled Boussinesq equations

Consider the following (1 + 1)-dimensional nonlinear
Boussinesq equations:

ut + vx + uux = 0, (16)
vt + (vu)x + uxxx = 0. (17)

This coupled BE also arises in shallow water waves for two-
layered fluid flow. This situation occurs when there is an
accidental oil spill from a ship which results in a layer of oil
floating above the layer of water. In this case, also, we assume
that:

u(x, t) = U(ξ) =

m
i=0

aiY i, (18)

u(x, t) = U(ξ) =

m
i=0

aiY i, (19)

where:

ξ = kx − λt. (20)

The nonlinear system of PDEs (16)–(17) leads to the system of
ODEs:

−λ
dU
dξ

+ k
dV
dξ

+ kU
dU
dξ

= 0,

−λ
dV
dξ

+ kV
dU
dξ

+ kU
dV
dξ

+ k3
d3U
dξ 3

= 0. (21)

Now, introducing the same change of variable Y = tanh(ξ), the
first equation in Eq. (21) implies:

−λ(1 − Y 2)
dU
dY

+ k(1 − Y 2)
dV
dY

+ kU(1 − Y 2)
dU
dY

= 0, (22)

while the second equation leads to:

−λ(1 − Y 2)
dV
dY

+ kV (1 − Y 2)
dU
dY

+ kU(1 − Y 2)
dV
dY

+ k3

2(1 − Y 2)(3Y 2
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d
dY

− 6Y (1 − Y 2)2
d2

dY 2

+ (1 − Y 2)3
d3

dY 3


= 0. (23)
To determine the parameters, m and n, we balance the linear
term of the highest-order with the highest order nonlinear
terms. Hence, in Eq. (22) we balance V ′ with UU ′ (derivatives
are with respect to Y ), to obtain 2 + n − 1 = 2 + m + m − 1,
which yields n = 2m. Also, in Eq. (23), we balance U ′′′ with UV ′,
to obtain 6 + m − 3 = 2 + m + n − 1, which, therefore, gives
n = 2, m = 1. Hence, we can write the following expressions
for U(ξ) and V (ξ):

U(Υ ) = a0 + a1Υ , a1 ≠ 0, (24)

V (Υ ) = b0 + b1Υ + b2Υ , b2 ≠ 0. (25)

Substituting Eqs. (24) and (25) into Eq. (22), then equating the
coefficient of Y i (i = 0, 1, 2, 3) to zero and the removal of
redundant equations, leads to the following system:

−λa1 + kb1 + ka0a1 = 0,

2b2 + a21 = 0. (26)

Again, substituting Eqs. (24) and (25) into Eq. (23), then
equating the coefficient of Y , (i = 0, 1, 2, 3, 4) and similarly
removing redundant equations, leads to the following system:

−λb1 + kb0a1 + ka0b1 − 2k3a1 = 0,
−λb2 + ka1b1 + ka0b2 = 0, (27)
a1b2 + 2k2a1 = 0.

Solving the nonlinear system of Eqs. (26) and (27), we get:

a0 =
λ

k
, a1 = ∓2k, b0 = 2k2, b1 = 0,

b2 = −2k2.

Then:

u(x, t) =
λ

k
∓ 2k tanh(kx − λt), (28)

and:

v(x, t) = 2k2 sec h2(kx − λt). (29)

The solitary wave and behavior for λ = 0.5, k = 1 of the
solutions u(x, t) = 1/2 + 2 tanh(x − t/2) and v(x, t) =

2 sech2(x − t/2) are shown in Figures 2 and 3, respectively, for
0 ≤ t ≤ 1 and −10 ≤ x ≤ 10.

4. Travelling waves

In this section, the coupled BE, given by Eqs. (16)–(17), will
be revisited in a more general setting. This coupled system will
be rewritten in the form:

ut + avx + buux = 0, (30)
vt + c(vu)x + buux = 0. (31)

Applying the tanh method to the system (30)–(31) does not
give us a solution. Therefore, we can conclude that there is no
solution of the form (18)–(19) in this case.

Hence, we use the travelingwave hypothesis to carry out the
integration of this form of coupled BE. The hypothesis is taken
to be:

u(x, t) = g(x − λt), (32)

and:

v(x, t) = h(x − λt), (33)
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Figure 2: The solitary wave and behavior of the solutions u(x, t) = 0.5 +

2 tanh(x − t/2) for 0 ≤ t ≤ 1 and −10 ≤ x ≤ 10.

Figure 3: The solitary wave and behavior of the solutions v(x, t) = 2 sech2(x−
t/2) for 0 ≤ t ≤ 1 and −10 ≤ x ≤ 10.

where, in Eqs. (32) and (33), the functions, g and h, represent
the solitary wave profile, while λ represents the velocity of the
waves. Substituting Eqs. (32) and (33) into Eq. (30) gives the
ODE:

−λg ′
+ ah′

+ bgg ′
= 0. (34)

Here, we denoted g ′
= dg/dξ and h′

= dh/dξ , where:

ξ = x − λt. (35)

Integrating Eq. (34) and choosing the integration constant to be
zero (since the search is for soliton solutions) gives:

h =
2λg − bg2

2a
. (36)

Now, by replacing Eqs. (32) and (33) into Eq. (31), we obtain:

−λh′
+ c(gh)′ + dg ′′′

= 0. (37)

Then, integrating Eq. (37) and again taking the integration
constant to be zero gives:

(cg − λ)h + dg ′′
= 0. (38)
Thus, by virtue of Eqs. (36) and (38) reduces to:

2adg ′′
− cbg3

+ λ(2c + b)g2
− 2λ2g = 0. (39)

Multiplying both sides by g ′ and integrating once, we obtain:

(g ′)2 = k2g2
[g2

− αg + β], (40)

where:

k =


bc
4ad

, α =
4
3

λ(2c + b)
cb

,

β =
4λ2

cb
. (41)

Provided abcd > 0. Note that Eq. (40) reduces into the following
two equations:

g ′
= kg


g2 − αg + β, (42)

g ′
= −kg


g2 − αg + β. (43)

Both of these equations can be easily solved by separating
variables, and its solutions are given by:

g1(ξ) =
4βe

√
β(c1+kξ)

(α2 − 4β)e2
√

β(c1+kξ) + 2αe2
√

β(c1+kξ) + 1
, (44)

and:

g2(ξ) =
4βe

√
β(c1+kξ)

(α2 − 4β)e2
√

β(c1+kξ) + 2αe2
√

β(c1+kξ) + e2
√

β(kξ)
,(45)

where c1 is an arbitrary constant. Corresponding expressions for
h1(ξ) and h2(ξ) can be obtained directly from Eq. (36). Together
with Eq. (41), they define two pairs of solutions;

ui(x, t) = gi(x − λt),
vi(x, t) = hi(x − λt), ui(x, t) = gi(x − λt),
i = 0, 1, (46)

of the initial system. In a similar way, we can obtain analogous
solutions for abcd < 0. In Section 3.2, we considered the system
(30)–(31) for a = b = c = d = 1. As we already noted, that
system is also considered in [1]. In such a case, our solutions (by
taking c1 = 0) reduce to:

u1(x, t) =
16λ2eλ(x−λt)

8λeλ(x−λt) + 1
,

v1(x, t) =
16λ3eλ(x−λt)

(8λeλ(x−λt) + 1)2
, (47)

and:

u2(x, t) =
16λ2

eλ(x−λt) + 8λ
,

v2(x, t) =
16λ3eλ(x−λt)

(eλ(x−λt) + 8λ)2
. (48)

These solutions are independent of those obtained in Section3.2
(i.e. Eqs. (28) and (29)). However, for the purpose of simplifica-
tion, we had to choose integration constants to be zero. For Eq.
(40), the other choice would lead to the differential equation
which contains a square root of the fourth-order polynomial,
and is probably not integrable in closed form.
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Now, let us consider when function u(x, t), in the soliton
solution Eq. (46), has a sech profile. By choosing c1 = 0 and
α = 0 (i.e. b = −2c), Eqs. (44)–(45) reduce to:

g1(ξ) = −

8λ2

c2
e

λ√
ad

ξ

8λ2
c2

e
2λ√
ad

ξ
+ 1

,

g2(ξ) = −

8λ2

c2
e

λ√
ad

ξ

e
2λ√
ad

ξ
+

8λ2
c2

. (49)

In order to have a sech profile, we choose 8λ2
= c2, i.e. λ =

∓c/2
√
2. This gives:

g1(ξ) = g2(ξ) = −
1
2
sech


cξ

2
√
2ad


. (50)

And, hence:

u1(ξ) = u2(ξ) = −
1
2
sech


c

2
√
2ad


x ∓

c

2
√
2
t


. (51)

Corresponding expressions for h1(ξ) = h2(ξ) and v1(x, t) =

v2(x, t) are obtained from Eq. (36), which are given by;

h1(ξ) = h2(ξ)

= −

c sech


cξ
2
√
2ad

 √
2 − 2 sech


cξ

2
√
2ad


8a

, (52)

and:

v1(ξ) = v2(ξ)

=

−c sech


c(∓ct−2
√
2x)

8
√
ad

 √
2 − 2 sech


c(∓ct−2

√
2x)

8
√
ad


8a

. (53)

Additionally, we also had to assume that ad ≠ 0. If, however,
ad < 0, then all sech functions reduce to sec functions which
are periodic singular waves.

5. Conclusions

This paper studied the application of the tanhmethod to two
different forms of Boussinesq equation. It is shown that these
two variants have solutions that are expressed as a polynomial
in the tanh function, where the independent variable is related
to the traveling wave variable. Since that was not the case
in the generalization of the second variant (coupled BE), we
used a direct approach in this situation. Besides that, the tanh
method is useful, since its application is usually not difficult and
it is efficient whenever an equation permits a soliton solution,
namely, a polynomial of the tanh function that is dependent on
the traveling wave variable.

The future of this research holds a lot of promise. These
results will be analyzed further. Later, the semi-inverse vari-
ational approach will be utilized to integrate these equations
where closed form analytical soliton solutions will be obtained.
Additionally, the soliton perturbation theory will be employed
to obtain the adiabatic dynamics of the soliton parameters. Fur-
thermore, these models will be studied with time-dependent
coefficients. This represents situations that are closer to reality.
The stochastic perturbation terms will be taken into consider-
ation too. The results of this research will be reported in future
publications.
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