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If A is a finite von Neumann algebra, then there exists a *-regular ring R 
(in the sense of von Neumann) whose lattice of principal left ideals is 
isomorphic to the lattice of projections of A (it is said that R coordinatizes 
A); this ring was constructed by Murray and von Neumann [14] by 
enlarging A to contain certain unbounded operators defined on dense 
linear subspaces of the Hilbert space on which A acts. By using an abstract 
version of the Murray-von Neumann construction, Berberian showed 
in [4] that a finite A W*-algebra A is always contained in a continuous 
*-regular ring R such that R has no new projections. Later, Hafner [7] 
and Pyle [ 161 showed that the regular ring constructed by Berberian is the 
maximal ring of quotients of A. 

The analogous problem for Rickart *-rings was considered by Han- 
delman [9], who constructs, for a finite Rickart C*-algebra A, a *-regular 
ring R containing A such that R has no new projections. Later, Ara and 
Menal [3] showed that the regular ring constructed by Handelman is the 
classical ring of quotients of A. 

In the case of Jordan algebras, Ayupov [l] has given an enlargement 
of a JW-algebra, similar to the one of Murray and von Neumann for 
W*-algebras, without going into the problem of regularity or ring of 
quotients in the finite case. 

56 
0021~8693/87 $3.00 
Copynghl 0 1987 by Academic Press, Inc 
All rights of reproduction m any form reserved 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82134532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


FINITE JBW-ALGEBRAS 57 

In this paper, following the abstract construction of Berberian, we show 
that every finite JBW-algebra A is contained in a von Neumann regular 
Jordan ring A^ such that A^ has no new idempotents. Moreover, we show 
that every finite JBW-algebra has the common multiple property (non- 
associative analogous to the Ore condition) and that a is the (unique) 
total ring of quotients of A. 

1. FINITE JB W-ALGEBRAS 

Recall that a JB-algebra A is a real Jordan algebra which is also a 
Banach space with respect to a norm 11 // having the following properties: 

(i) ll~‘ll = //4/‘~ 
(ii) lla2(l 5 (la’+ h’jl, 

(iii) lb. 41 5 llall llhll, a, SEA. 

When the JB-algebra A has an identity element then A is said to be a 
unital JB-algebra We denote the identity by 1. For the general theory of 
JB-algebras, the reader is referred to [2, 81. The treatment of JB-algebras 
in [S] is mainly based on [2], except that many proofs are altered. The 
standard reference for the algebraic theory of Jordan algebras is [lo]. 

If q is a positive operator on a unital JB-algebra A, it is clear that for 
any positive linear form ,f; the mapping (x, .t,) + (,f, cp(s.2’)) is a positive 
symmetric bilinear mapping. From the Cauchy-Schwarz inequality, it 
follows that i(,f; cp(.u. l))l”s (,/ cp(~:‘)). (f; q(1)). Thus, cp=O if and 
only if cp( 1) = 0. In particular, since for all elements a in A, U, is a positive 
operator [2, Proposition 2.71, we have U, ,... U,,,, =0 iff U, ,... U,,( 1) = 0, 
with a, . . a,, in A. On the other hand, if R, b, c are elements in a unital JB- 
algebra A, it is not difficult to show, using the identity [U.,(y)]’ = 
Ii, U,,(.u”) [8, Identity 2.401, that U, Uh(c7) = 0 if and only if U, U,(a’) =O. 
Thus, in a unital JB-algebra, the following are equivalent: (i) U,, UI, U, = 0: 
(ii) U, Uh(c2) =O; (iii) U, U,(a’) = 0; (iv) U, CT, hi, = 0. In particular, 
U,(b’) = 0 iff U,(a’) = 0. 

From here. using the identity 2.33 in [a], we have the following 

LEMMA 1.1. If e is an idempotent element in a unital JB-algebra A, then 
for all a in A the following conditions are eqkvalent: (i) e* a = 0; 
(ii) e. a’ = 0; (iii) U,(a2) = 0. 

A JBW-algebra A is a JB-algebra which is the dual of a Banach space. In 
[6; Lemma 11 it is shown that every JB W-algebra is unital. 

In this paper the following theorem is essential. 
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THEOREM 1.2. If a and b are elements in a unital JB-algebra (resp. JBW- 
algebra) A, then the closed (resp. w*-closed) subalgebra of A generated by 
a, b and 1 is isometrically isomorphic to a JC-algebra (resp. JW-algebra). 

ProoJ The assertion referring to JB-algebras is known [20, 
Proposition 2.11. Now, if A is a JBW-algebra, the subalgebra B of A 
generated by a, b and 1 is (by the Shirshov-Cohn Theorem) a special Jor- 
dan algebra; since the product is w*-continuous in each variable [18, 
Lemma 2.21, the w*-closure of B is a w*-closed subalgebra of A which 
satisfies all the s-identities. Thus, from [2, Lemma 9.41 it is a JC-algebra 
and by [ 18, Corollary 2.41 a JW-algebra. 

Let A be a JBW-algebra; it is shown in [2, Proposition 4.91 that the set 
P(A) of idempotent elements in A, with the ordering egfiff e.f=e (for 
idempotent elements this ordering is equivalent to e 5 f iff f- e E A2), is a 
complete, orthomodular, and complemented lattice. We denote 
e vf= sup(e, f) and a A f= inf(e, f), e and f in P(A). 

LEMMA 1.3. Let A be a JBW-algebra and consider two idempotent 
elements e, f in A. Then e v f and e A f are contained in any w”-closed sub- 
algebra of A containing e andJ: 

Proof Let B be the w*-closed subalgebra of A generated by e andf; B 
is a JB W-algebra and so B has an identity element p. It is straightforward 
to verify that e v,f = p; hence, if C is any w*-closed subalgebra of A con- 
taining e and f, we have e v f E C, We divide the second part of the proof 
into three steps: 

(i) If C is a w*-closed subalgebra of A containing e, f, and 1 then, 
since e Af= 1 -(l -e) v (1 -f), it is obvious that e A fEC. 

(ii) If C contains e and I; and is of the form U,(A), h idempotent, we 
have e.h=e, f.h=f, so e,fSh. Thus, (er\f).h=er\f and we have 
er\fEC. 

(iii) Now, the w*-closed subalgebra B of A generated by e andf is a 
w*-closed subalgebra of the JBW-algebra Up(A), where p= e v f is the 
identity element. Thus, by (i) e A f (in U,(A)) E B, and from (ii) we have 
er\f (in A)=eAf (in U,(A)) EB. 

Following [2, p. 391 we say that two idempotents e, f in a JBW-algebra 
A are equivalent and write e-f if there exists a finite family s, .._ s, of 
symmetries in A such that U,“... UJ,(e) =J: Recall that a lattice L is 
called modular if e sf implies (e v j) A g = e v (f A g), e, f, g E L. 
Following [ 191, an idempotent e in a JBW-algebra is called finite if f 5 e 
and f w e imply f = e. A JWB-algebra A is called finite if all idempotents in 
A are finite. Likewise, if A is a JWB-algebra, by a center-valued trace we 
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shall mean a mapping T: A -+ Z(A) (Z(A) denotes the center of A) such 
that: 

T, : T is linear. 

T2: T(,-.a)=~. T(a), a in A, L- in Z(A). 

T, : a >= 0 implies T(a) 2 0, a E A. 

T,: T( U,(a)) = T(a), for a in A and s a symmetry in A. 

T,: T(1)= 1. 

If a > 0 implies T(a) > 0, we say that T is non-kgeuzerafe. From [ 15, 
p. 3711 it follows that T, is equivalent to 

Ti: T(a.(h.c))=T((a.h).c) for all elements n,h,c in A. 

It is not difficult to prove that the usual trace on the exceptional Jordan 
algebra M:, with the obvious normalization, is a u*-continuous and non- 
degenerate center-valued trace. (See [ 171.) 

THEOREM 1.4. Let A he a JB W-ulgehra. Then the following conditions 
are equivalent : 

(i) A is a finite JB W-algebra. 
(ii) P(A) is a modular lattice. 
(iii) A has a Ir.*-continuous and non-degenerute center-valued trace. 
(iv) A has a non-degenerute center-valued trace. 

For the proof we shall need the following 

LEMMA 1.5. Let X he a non-empty compact set and let A he a unital 
JB-algebra. [f f is a continuous function from X into A, then the following 
conditions are equivalent: 

(i) f is a positive element in the JB-algebra C(X, A). 
(ii) f(x) 20 for all x in X. 

Proof: It is obvious that (i) implies (ii). Reciprocally, if f is an element 
in C(X, A) such that f(x) 20 for all x in X, thenf(x) is a square in A, for 
all x in X. Thus, there exists a unique positive element y in A such that 
y2 = f (x ). Hence, we can define a mapping g: X + A such that g(x) = y. It is 
obvious that g* =f and g E B(X, A) (algebra of bounded functions from X 
into A); thus, f is a positive element in B(X, A). Since C(X, A) c B(X, A) 
and an element in a unital JB-algebra is positive if and only if it is positive 
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in a closed subalgebra in which it is contained (see [2, pp. 1415]), it 
follows that f is a positive element in C(X, A). 

Proof of the theorem. It is clear that (iii) implies (iv) and (iv) implies 
0). 

(i) * (ii). Let e, f, g be idempotents in A with e sg; set 
a = g - e + fe. Thus, {a”} -+“‘* g - e. Let B be the w*-closed subalgebra of 
A generated by a, f and 1; from Theorem 1.1, B is a JW-algebra which con- 
tains g-e; moreover, g-&e = aE B. Thus, g and e are contained in B. 
Since it is clear that p - q (in B) implies p - q (in A), it follows that B is 
finite. Hence, by [19, Proposition 141, (e v f) A g = e v (f A g) and so 
P(A) is a modular lattice. 

(ii) * (iii). Using [ 18, Th eorem 3.91 and [ 19, Theorem 261 the proof 
is reduced to proving the existence of a Mt*-continuous and non-degenerate 
center-valued trace on C(X, M:) (algebra of continuous functions from a 
hyperstonean compact space X into Mi). Let f be an eIement in C(X, Mi); 
if r is the usual (normalized) trace on Mi, the mapping8 x -+ t(f(x)) is a 
center-valued continuous function from X into the center of Mt. That is, p 
is an element in the center of C(X, A&t); thus, T: f -p is a center-valued 
mapping defined on C(X, Mi). It is clear that T verities T,, T,, T4, T,; T3 
is an immediate corollary of Lemma 1.5. In order to prove the w*-con- 
tinuity of T we recall that the Banach space C(X, Mt) is identified in a 
natural way with the dual of the Banach space C(X), @,M!,, where 
C(X), and Mf, denote the preduals of C(X) and Mi, respectively, and y 
denotes the greatest cross norm on the (algebraic) tensor product (see [18, 
pp. 362 and 3751). Now, it is not difficult to show that, in this iden- 
tification, our trace T is just the transpose mapping of the operator T, on 
C(X), @M& defined by T,(a@b)=a@t,(b), u.EC(X),, bEM&, where 
t, denotes the pretranspose mapping of the usual (normalized) center- 
valued operator t on Mt. Therefore T is w*-continuous. 

2. THE SUPPORT 

If a is an element in a JBW-algebra A, the w*-closed subalgebra B of A 
generated by a is a JBW-algebra and so B has an identity element e and 
obviously e. a = a. If f is an idempotent in A such that f. a = a, then a is 
contained in the subspace A if) of the Peirce decomposition of A relative to 
f (see [lo, pp. 118-1191). Ai’) is a ul*-closed subalgebra of A; thus, B is 
contained in Ai” and so e E A’,“; thus, e .f = e; that is, e s:J: 

Thus, we have shown that for every element a in a JBW-algebra A there 
exists a smallest idempotent e such that e. a = a; e is called the support of a, 
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and denoted by s(a). It is clear that 1 -s(a) is the largest idempotent e 
such that e .a = 0. From Lemma 1.1 it is trivial that s(a) =s(a2) for all 
a E A. Moreover, since the operators U, are positive we have that if a < h 
are positive elements, then s(a) d s(b) explain. 

PROPOSITION 2.1. If a is an element in a JBW-algebra A, such that 
0 da < 1, then s(a) = us*-fim { 1 - (1 -a)“}. 

Proof. Since 0 5 a5 1, it is clear that (1 - (1 -a)“] is a norm 
bounded increasing sequence; thus, { 1 - (1 - a)“) w*-converges to 
y=sup{l-(l-a)“} [2, Lemma4.11; hence, ((l-a)“}-+“‘*l-j’. 
From [2, Lemma4.11 it follows that {(l-a)*“)-+“* (l-~l)~; thus, 
(1 -y)‘= 1 -y and y is an idempotent. On the other hand, 
j(l-a)~(l-a)‘i}=((l-a)“+lj+“‘*l-~y; thus, (1-a)*(l-p)=l-> 
and so .v. a = a. Now, if p is an idempotent in A such that p. a = a, we have 
(1-p)‘a=O, which implies (1 -p).a”=O for all n in N, and so 
[l -(l -a)“].(1 -p)=O for all n; since It -(l -a)“j +“*y it follows 
that J’ . p = y, and so 1’5 p. This completes the proof. 

PROPOSITION 2.2. Let a, b be elements in a finite JBW-algebra A. Denote 
by T the Iv*-continuous and non-degenerate center-valued trace OH A. Then, 

T(s(U,,(b’)))= T(s(U,(a’))). 

Proof: Since the trace form is associative, T( Ui,(b). c) = T(b U,(c)). In 
particular T(a’. h) = T( U,(b)). On the other hand, from the 
Shirshov-Cohn Theorem, it follows that U, U,( U,(a’))“- ’ = (U,(b”))” for 
all n in N, a, b in A. Then, T((U,(a’))“)= T(U,(a2).(U,(a’))“-I)= 
T(a” . U,(U,(a’))“-‘) = T(U, U,(U,(a’))“-‘) = T((U,(b*))“) for all n in N, 
a, b in A. Moreover, we can assume without loss of generality that 
II u,(b2M S II uh(a2)ll 5 1. Now, the required equality follows from 
Proposition 2.1 and the w*-continuity of the trace. 

3. THE CONSTRUCTION OF THE RING 

Let A be a finite JBW-algebra. Following Berberian [4], if (e,,) is a 
sequence of idempotents in A, e,, T means that e,, 5 e,,+ r. If moreover 
sup(e,,) = e, we write er2 r e. In case erl 9 1 we say that (e,,) is an SDD 
(Strongly Dense Domain). 

LEMMA 3.1. If (e,), (fil) ,..., (k,,) are SDD’s, then (e, r\f,, A . . . A k,,) is 
a SDD. 
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ProoJ First, note that if e and f are idempotents in a JBW-algebra A 
then, by Theorem 1.2, Lemma 1.3, and [19, Corollary 81, the 
Parallelogram law e v f - e -f - e A f holds. Thus, T(e) + T(f) = 
T(e v f) + T(e A f). Now, to prove the Lemma it is sufficient to consider 
two SDD’s (e,,), (f,,). Set g, = e, A f,, g= sup(g,); evidently g,tg; since 
I-gjl-g,,=(l-ee,)v(l-A,), we have T(l-g)sT(l-e,,)+ 
T( 1 -f,,). Since T is w*-continuous and non-degenerate we have g = 1. 

DEFINITION 3.2. Let A be a JBW-algebra and let (x,!} be a sequence of 
elements in A; a SDD (e,,) is said to be admissible for {xn> if 

m 5 n implies (x,, - xm) * e, = 0. 

Our purpose is to show that the set A, of the sequences {xl!} in A for 
which there exists an admissible SDD is a subalgebra of the Jordan algebra 
of all sequences in A. It is obvious that all constant sequences are in A,. 

LEMMA 3.3. Zf ix,,}, ( y,?} are in A, and 1 E R, then (x,, +Y,~} and 
(Ax,~} are in A.. 

ProoJ: It is clear that if e and f are idempotents in a unital JB-algebra 
A and e <f, the subalgebra of A generated by e, f, and 1 is Rl + Re + Rf 
which, from [2, Lemma 2.111, is strongly associative. Hence, by [5, Satz 
3.71, we have U, U, = U,. From this observation and Lemma 1.1 it follows 
that if f -a = 0, e if, then e.a = 0. Thus, if (e,) is an admissible SDD for 
{xn} and (f,) is an admissible SDD for { JJ~} then (e, A f,) is an 
admissible SDD for {x,, + y,,}. The second part of the Lemma is trivial. 

The discussion of product requires another concept: 

DEFINITION 3.4. Zf x E A and e is an idempotent in A, we write 

x-‘(e)= 1 -s(U,(l -e)). 

It is clear that x-‘(e) is the largest idempotent f such that 
f. U,(l -e)=O. 

LEMMA 3.5. Let A be a finite JB W-algebra. Zf x E A and e is an idem- 
potent in A, then 

T(e) 2 T(x-l(e)). 

ProoJ: T( 1 -x-‘(e)) = T(s( 7YK( 1 -e))); from Proposition 2.2 it follows 
that T(1 -x-‘(e)) = T(s(U,-.(x2))), since it is clear that 
s(U,-,(x2))s 1 -e, we conclude T(l -x-‘(e))5 T(l -e), and so 
T(e) 5 T(x-l(e)). 
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LEMMA 3.6. Let (e,z) be an admissible SDD for the sequence (x,~>. Then, 
for any SDD (f,), (e,, A x;‘(fil)) is an SDD also. 

Proof. If a and b are elements in any Jordan algebra J, and e is an 
idempotent in J, it is not difficult, using the Peirce decomposition of J 
relative to the idempotent e, to show that if a * e = b. e then U,(e) = U,(e) 
(see [lo, pp. 118-1191). Now, set g,?=e,, A x,;“(f,). If rnsn we have 
g,,, 5 1 - s( U,,?( 1 -A*?)) (Definition 3.4); thus, g, . UIm(l -f,) = 0 and so 
U,JU,,Jl -f,J) = 0; hence, ul -fn, u,,Ig,,l) = 0 and so ul -f, Ul -Im 
UJgl,) =O. Since f;, 5x,, we have Cl,_, U,,,,(g,) =O. Since (e,) is an 
admissible SDD for ix,,} we have (x,-xx,,). e,=O and so 
(x,, - -x,,,) . g,,, = 0. Thus, u,,jgm) = UJg,,,); hence, we have ul -fn 
U,( g,,,) = 0 and so U,,7 U,,( 1 -f,,) = 0. From [12, Proposition 2.81 it follows 
that g,,, . U,“( 1 -f,,) = 0 and so g, g 1 -s( U,j 1 -f,)). That is, g,, 5 
x,; *K k hen=, g,, T . 

Moreover, from Lemma 3.5, we have T(fn) 5 T(x;‘(f,,)) for all n; 
indeed, 1 -g,, = (1 - e,,) v (1 - x,;‘(f,,)); thus, T( 1 -g,) j r( 1 - e,,) + 
T( 1 - x,; ‘(j’,,)) 5 T( 1 - e,,) + T( 1 -fn). It follows that g,, t 1. 

PROPOStTiON 3.7. If (x,~] and {yn] are in A,-, then {.x,;y,} is in A,. 

Proqf. If (e,,) is an admissible SDD for (xn} and (f,,) is an admissible 
SDD for [ y,,}, we shall prove that ([f,, A y,‘(e,,)] A [e,, A x,‘(f,)]) is an 
admissible SDD for {-GA. Setting k = tf,, A y,;“te,)l * 
Ce,, * x,;‘(f,,)l, ‘t 1 is clear, by Lemmas 3.6 and 3.1, that (k,) is an SDD. 
Moreover, if m 5 n we have 

0) (x,,--,,,).e,,=O, 
6) (Y,, -Y,,) .fm = 0, 
(iii 1 k,, 5 1 - stu,J 1 -f,,)L 
(iv) k,,S 1 -du,,,,(l -e,,,)), 
(~1 k,, 5 e,,,, 
(vi) k <f nt = ,>, . 

Since (x,, - xM) . e,, = 0, we have (x,, - x,,~)’ . em = 0, and so 
(1 - e,,,) . (I,, - x,,)~ = (x,, - x,)~. Thus, U, --.,((x, -x,,)‘) = (x, - x,)“; 
since k, 5 1 - s( U,.“,( 1 - e,,l)) we have k, . U,,( 1 - e,) = 0; thus, U,,,> 
U,,,,( 1 - e,,,) = 0 and Uk,, U,.“, U, ~ ,+, = 0. So Uk,,, U,,,, U1 - ,,( (x, - x,,)~) = 0; 
hence, UkH, UI,((x,, - s,,,)‘) = 0. Thus, by [2, Proposition 2.81, we have 
km . u~,t(x,, - -y,J”) = 0, and so k, 5 1 - s( U,,,((x, - x,)*)). In an 
analogous way, we obtain k,n 5 1 - s( Clxm(( y,, - Y,)~)). Since k, 5 e,, 
k, If,, we can write 

481/110/l-i 
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0) k,, 5 I- dx,, -x,), 
6) k, 2 1 - s(Y,, -Y,), 

(iii) k,,, ~5 1 - s( UJ(x,, -x,)‘)), 
(iv) km5 1 -s(~.~~,((Y,~-Y~,)~)). 

Let B be the HI*-closed subalgebra of A generated by x,, -x,, y,, and 1. 
By Theorem 1.2., B is a JW-algebra which contains 1 -s(x,, -x,) and 
1 - s(Uy,((-G - x,n)2)) and therefore h=(l -s(x,,-x,)) A 
(1 - s( U,.,(X,, - x,,,)~)) (Lemma 1.3); we have h . (x,, -x,) = 0 and 
/I. UF,,,((x,, -x,,,)~) = 0 which, in B, are equivalent to h(x,, -x,) = 0, 
hynl(x,, -x,,,) = 0 where the juxtaposition denotes the associative product; 
thus, h(x,-x,,)y,=O=ky,(x,-x,) and so h((x,-x,).y,)=O= 
((x,-x,).y,)h. Hence, ((x,,-~,).y,).h=O. Since k,g/z, we have 
((x,, - x,,,) . y,,,) . k,,, = 0. Similarly, we obtain ((y,, -Y,,~) . x,,) . k,, = 0; hence 
(t-y,, - -y,n 1 . Y,,? + (Y,, - Y,,,) . -y,,, 1 . km = 0. Since (x,,--X,n).k,=O= 
(Y,, -Y,,~). k,,, we have (t-x,, - T,, ) . (Y,, - Y,~~ 1) . k,,, = 0; therefore, 
((x,, - -Go 1 I’,,, + bztl - Y,,, 1 . -x,,~ + C-x,, - A, 1 (J’,, - Y,,, )I . k,,, = 0 and so 
lx,, . Yn - -y,,r . y,,?). k,,, = 0. This completes the proof. 

DEFINITION 3.8. If {I,, 1 and {vll ] are contained in the Jordan algebra 
A,, we say that (x,~> and {-v,~) are equivalent, written {x,, > = { yI1 >, if there 
exists a SDD (g,,) such that (I,, -)I,,) . g,, = 0 for all M. 

The equivalent is said to be “implemented” via the SDD (g,,). Reflexivity 
and symmetry of equivalence are obvious. Moreover, if (x,~} = {Y,~} via 
k,,) and ~.JJ,~I = i=,,> via (k,,), then {x,,} z (z,~} via (g,, A h,,). Thus, the 
relation defined above is an equivalence relation. 

PROPOSITION 3.9. The set AC0 = { { xrl 1 E A,: Ix,,) = 0} is an ideal of 

A,. 

ProoJ It is clear that if (x,?> = 0 via (A,,) and { v,~} = 0 via (k,,), then 
{x,, +yrl} E 0 via (h,, A k,,). It is obvious that if (x,[) E AC,, IE R then 
{Ax,~] E A,,. If {x,~) ~0 via (e,,) it is clear that (e,,) is an admissible SDD 
for (x,,); let {y,*} be an element in A, and let (f,,) be an admissible SDD 
for {.Y,~}; set g,,= (f,, A Y,;l(e,,)) A (e,, * -x’(L)); k,,) is a SDD and we 
have 

0) X, .e,=O, 

(ii) b,~-~~)~f~=O~ 
(iii) g, 5 1 - s(U,.“,(l -en,)), 
(iv) g, 5 1 - s(UJ1 -f,,)), 
(VI gm 5 em, 
(vi) g, ZL, 
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thus (see the proof of Proposition 3.7) we obtain (x, . v,~). g, = 0 for all m. 
This completes the proof. 

The quotient Jordan algebra AC/AC0 is denoted A^. We denote the 
elements of A by capitals letters X, Y,.... If x E A, we write X = {x} + A c0. 
The mapping x -+ X is injective. For, if (e,,) is a SDD such that x. e,, = 0 for 
all n, since the product is w*-continuous, we have .X = 0. Thus, we have the 
following. 

THEOREM 3.10. Let A he a finite JBW-algebra. Define A as indicated 
above. Then, 

(i) a is a real Jordan algebra n?ith identity element i. 
(ii) The mapping x -+ .? is an isomorphism from A onto a subalgebra A 

of a. a is said to he the regular Jordan ring associated to A. 

Remark. A^ is called regular for, as we shall see later, A is regular in the 
sense of von Neumann. In view of the above Theorem we will identify A 
with A and therefore the notation -f, for .y in A, will be avoided. 

We conclude this section by showing the behaviour of the Ml*-closed sub- 
algebras of A with respect to the extension constructed above. 

PROPOSITION 3.11. Let A be a finite JBW-algebra and let B he a 
It.*-closed s&algebra of A such that 1 E B. Then, B is a finite JBW-algebra 
und the mapping {.K,,) + B,, -+ (x,,; + ACo is an isomorphism from i? in 2. 

Proqf: It is clear that B is a finite JBW-algebra and every SDD (e,,) in 
B is also a SDD in A. Thus, {.Y,?)- + BCo -+ {s,,} + A,, is a well-defined 
mapping; it is obvious that it is a ring homomorphism. Suppose (x,?> E B, 
and {.t,?) E Ace; then, there exists a SDD (k,,) (in A) such that x,, . k,, = 0 
for all n. Since B is a bc*-closed subalgebra of A, we have S(X) E B for 
all XE B. Thus, 1 -s(x,,) E B for all n; set g,, = 1 -s(x,,). Denote 
f,), = inf{ g,, , n 2 IH}. It is easy to see that k,, sfi, 5 g,, and so (f,,) is a SDD 
(in B) such that x,, .f,! = 0 for all n; hence, (.x,~) E B,, and the mapping is 
injective. 

Remark. In what follows we will consider B c A. 
Let C be a finite W*-algebra; in particular, C is a finite A W*-algebra. 

Let 6’ be the *-regular ring associated to C by Berberian’s construction. 
The set Sym(C) of self-adjoint elements in C is a finite JBW-algebra. Let 

Ss) be the Jordan regular ring associated to Sym(C). Then, we obtain 
the following result: 



66 JIMENEZ GARIJO AND RODRIGUEZ PALACIOS 

PROPOSITION 3.12. If C is a finite W”-algebra and f denotes its 

associated *-regular ring, then Sym( C) = Sz)). 

ProoJ: It is clear that our construction of the Jordan regular ring 
associated to a finite JBW-algebra A is similar, except for notation, to 
Berberian’s construction of the *-regular ring associated to a finite 
A W*-algebra (note that for a projection e and a self-adjoint element x in a 
C*-algebra x. e = 0 is equivalent to xe = ex = 0). The Proposition is a con- 
sequence of the characterization of self-adjoint elements of the *-regular 
ring associated to a finite A W*-algebra [4, Lemma 3.21. 

4. THE REGULARITY OF THE RING 

PROPOSITION 4.1. If X= {xn> +A,, and the x, are invertible for all n, 
then X is invertible and X- ’ = {x; ’ ) + A,,. 

Prooj First, note that if e and x are elements in a JBW-algebra A, 
where e is idempotent and x is not a zero divisor (that is, U, is injective), 
then s(U,(x*)) = e; for, it is clear that e. U,(x’) = U,(x”) and moreover iff 
is an idempotent such thatf. U,(x’) = U,(x’), then (1 -f) . U,(x’) = 0, and 
so u,-, U,(x’) = 0. Thus, U, U,( 1 -f) = 0 and so U,( 1 -f) = 0; hence, 
e.(l -f)=O. That is, esf: 

Now, let (e,,) be an admissible SDD for {x~}. Set f, = s(U,(e,)). If 
m 5 ~1, we have (x,, -x,) . e,, = 0, so Ur,(e,) = UJe,) 5 U,(e,); it follows 
that fi, t. Moreover, by Proposition 2.2, T(f,) = T(s( UJe,))) = 
WU,n(x3)) = T(e,J; so fir 9 1. 

If m sn, set e, = 1 -s(x,, - x,). By Theorem 1.2, the w*-closed sub- 
algebra B of A generated by x,, , x,, and 1 is a JW-algebra which contains 
e,; moreover, from [2, Proposition 2.41 it follows that x; l and x;’ lie in 
B, in which it is not difficult to show that (x, l- x; ‘) . s( U,_(e,)) = 0. Since 
(x,, -x,) . e, = 0 we have e, 5 e,; so U,z(e,) 5 U,,(e,). Thus, 
s(U+,(e,)) js(U,_(e,)) and so (x,;‘-x;‘).f, =O. Hence, (fi) is an 
admmissible SDD for (x; l >. It is obvious that X-’ = {x,;‘) + A,,. 

PROPOSITION 4.2. If X= {xn ] + A,,, and jlx,Ij < M for all n, then X lies 
in A. 

ProoJ Let x be a Ma*-limit point of the sequence (xn}. Let (e,,) be an 
admissible SDD for (x, >; for a fixed m, we have (x, -x,) . e, = 0 if n 5 m. 
Thus, (x-xx,). e, = 0. Since m is arbitrary, we have (x> = (x,?} and so 
(x,J+&o=b~+A.o. 
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Remark 4.3. It is clear that for any SDD (h,) we have (/z,~} + A,, = 
1 +A,,; thus, if X= {x,,) +A,,, then X= U,(X)= {U,,,(x,,)) +A,,. 
Hence, if X = (.‘c,, > + A cO and I/ U,l,(X,)II 2 M for all y1 and some SDD (h,), 
then X lies in A. 

PROPOSITION 4.4. Ij XE& then 

(i) 1 +X2 is invertible in 2, 
(ii) z=(l +X2)-’ lies in A, 
(iii) y=X.(l +X’)-’ lies in A, 
(iv) X=2’.:-‘. 

Proof. If X= ~x,,}+A~~, then 1 +X2= (1+-~~)+.4~~. Now, our 
result follows from [2, Proposition 2.31 and Propositions 4.1 and 4.2. 

Remark. Assertion (iv) in the above Proposition leads us to believe that 
the regular Jordan ring 2 associated to a finite JBW-algebra A may be the 
total ring of quotients of A. This will be proved in the following section. 

PROPOSITION 4.5. If a is an element in a finite JBW-algebra A, then the 
jbllowing conditions are equivalent: 

(i) s(a) = 1, 
(ii) a is invertible in A, 
(iii) a is not a zero divisor in A. 

Proqf It is obvious that (ii) implies (iii). Likewise, (iii) implies (i), since 
1 -s(a) is in Ker U,. Now, denote by B the w*-closed subalgebra of A 
generated by 1 and a; then, B is the self-adjoint part of the B, (com- 
plexifixation of B) which is an associative and commutative finite 
W*-algebra. Corollary 7.5 of [4] and Propositions 3.11 and 3.12 complete 
the proof. 

COROLLARY 4.6. If A is a finite JB W-algebra and B is a &+-closed sub- 
algebra of A containing the identity element, then bE Bninv(A) implies 
b-leg. 

THEOREM 4.7. If A is a finite JBW-algebra, A is regular (in the sense of 
van Neumann). 

Proof. Let X be an element in A; set X=y.z-*, y and z as in 
Proposition 4.4. Let B be the w*-closed subalgebra of A generated by y, z 
and 1. Then, B is associative. Since z E B n Inv(A), Corollary 4.6 implies 
z ~ ’ E B. So X = y . z-i E l?. From Proposition 3.12 and [4, Corollary 7.13 
we have that X is regular. 
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We conclude this section by showing that A has no new idempotents. We 
shall need two lemmas. 

LEMMA 4.8. If a and b are elements in a unital JB-algebra A (resp. 
JB W-algebra), then the set H = {c E A: U, U,(c*) = 0) is a closed (resp. 
w”-closed) quadratic ideal in A. 

Pro@ It is not difficult to show that H is a quadratic ideal. Moreover, 
it is clear that for any positive linear form f on A, the mapping (x, y) -+ 
(J; U, U,(x.y)) is a positive, symmetric bilinear mapping; thus, the 
Cauchy-Schwarz inequality gives c E H if and only if U, U,(c . d) = 0 for all 
de A. Then, the continuity (resp. )v* -continuity) of the product completes 
the proof. 

Using the same techniques it is easy to prove the following: 

LEMMA 4.9. Let F be a positive operator on a unitai JB-algebra A. Let 
a, b be elements in A, h positive. Then, lf F( U,,(b)) = 0 Lee have F(a . h) = 0. 

PROPOSITION 4.10. For ever)* X in A^, there exist a (unique) idempotent f 
in A such that 

(i) j-.X=X, 
(ii) U&l’“)=0 zyand onll, if’Y.,f’=O, YEA. 

ProoJ. (i) Set X= {.u,,j +A,, and let (e,,) be an admissible SDD for 
i-~ 1. Set f,, = .y( u,je,,)); we have f,, Tf: Set 1z,, = 1 - (f-f,,); it is clear that 
(h,,) is an admissible SDD for the sequence {L,]. Set F= if,,) + AC.; it is 
trivial that F*= F. Setting 1 = {e,,} -I- ACo, we have F.X= U,,(X)= 
[U,,,,C,r,(x,,)} + AC,. For every n, the ul*-closed subalgebra B, of A 
generated by I,,, e,, , and 1 is a JW-algebra and f,, E B,,. It is not difficult 
to prove that U ,,,, e,(~,,)=~~,Z.e,,. Thus, F.X= (xn .e,,} +Aco= 
((-u,,}+A.,)~({e,,}+A..)=X~l=X.Moreover,wehave{f,}-{f)(via 
(h,,)). Hence, F= (.f'} $-AC,. 

(ii) Set X= {x,~) -t A,, as in (i). Let Y= {ylZ) + A,, be such that 
U,(X2) =O; there exists a SDD (k,,) such that k,; U,.,,(xz) =O for all n; 
thus, U,,, U,.,,(x~)=O and so U,,> U ,,,, U,=O; thus, U,,, U !.,, Ui, U ‘,,, (x,21) =0 
and so UkB U,,,(U,,?(e,,))‘= 0. From Lemma 4.8, we have U,,l 
U,.,~(s(Uy,~(e,7)))2 = 0. That is, u,,, UJf,,) = 0. Hence, UJy,, .fiJ = 0 by 
Lemma 4.9. Since (k,,) + A,, = 1 + A,,, then Y.f= { y,;f,,) + A,, = 
U,(Y.A= {G~~,,(Y,,.f,,))+A.,=o. 

Conversely, let YE A such that Y.f= 0. Then, Y is in the subspace A^, of 
the Peirce decomposition of the Jordan algebra A relative to the idem- 
potent f; since XEA,, and &, A”, are orthogonal subalgebras of A, we 
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have X2 E a,, YE a, and so U,(X”) = 0. The uniqueness off is clear, for if 
gE A is another idempotent with the same properties as A we have 
(1 -8) . X = 0, which implies (1 -g) . X2 = 0, and so U, -,&X2) = 0; thus, 
(1 -g) .,f= 0. Analogously, we have (1 -f) . g = 0. Thus, f= g. 

THEOREM 4.11. Let A be a finite JB W-algebra. Let 2 be the regular 
Jordan ring associated to A. Then, A^ has no new idempotents. 

Proof Let E be an idempotent in a. From Proposition 4.9, there exists 
a (unique) idempotent e E A such that E. e = E and U,(E) = 0 if and only if 
Y.e=O. Since U,_.(E)=O, we have (1 -E).e=O; thus, e=E.e=E. 

5. CHARACTERIZATION OF a 

DEFINITION 5.1. Let A be N Jordun ring with identity element. If A is a 
Jordan ring containing A and ,llith the same identiry element as A, a is said 
to be the total ring qf quotients of A $ 

(i) Ever), non-zero divisor s in A is invertible in A^. 
(ii) Every morphism f .from A into u Jordan ring B, having the 

property that f(s) is invertible in B whenever s is not a zero divisor in A, 
extends in a unique wa>j to a morphism from A^ into B. 

Recall that a Jordan ring A is said to have the common multiple property 
if for any a, s E A, a # 0, and s not a zero divisor, there exist a’, s’ E A, s’ not 
a zero divisor, such that U,,(s’) = U,(a’) # 0. (See [ 13, p. 1551.) 

Recall that for associative rings, this corresponds to the Ore condition, 
which is sufficient for an associative ring to have a total ring of quotients. 
However, it is unknown in general whether a Jordan ring with the common 
multiple property has a ring of quotients. (There is a paper by N. Jacob- 
son, K. McCrimmon, and M. Parvathi [l l] on localization of Jordan 
algebras. Also, there is a forthcoming article by E. Zel’manov on Goldie 
theory.) 

Now, our purpose is to show that the Jordan regular ring 2 associated 
to a finite JBW-algebra A is the total Jordan ring of quotients of A. In fact, 
we shall prove the following 

THEOREM 5.2. Let A be a ,finite JB W-algebra. Let 2 denote the Jordan 
regular ring associated to A. Then: 

(i) Every element X in a is of the form X= U,-,(a) with a, s E A, and 
s is not a zero divisor in A. Moreover, the subalgebra of A generated by a 
and s is strongly associative. 
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(ii) A has the common multiple property. 

(iii) A is the (unique) total Jordan ring of quotients of A. 

To prove the theorem we shall need three lemmas 

LEMMA 5.3. If M is a unital C*-algebra and u, v E Sym(M), then 
1 + vu20 is invertible and moreover I( uv( 1 + vu’v) ~ ’ vu I( < 1. 

Proof: Since I+ vu*v = 1 + (vu)(vu)*, it is clear that 1+ vu2v is inver- 
tible. Likewise, 1 + uv*u is invertible also. Moreover, it is not difficult to 
show that uv( 1 + vu2v) ~ ’ vu = (1 + uv’u))’ uv*u. Since Sym(M) is a unital 
J&algebra, from [2, p. 181 it follows that ((uv( 1 + vu’v)-’ vu(I d 1. 

LEMMA 5.4. Let A be a finite JBW-algebra. Let A denote the Jordan 
regular ring associated to A. If b E A, XE A, then 

(i) 1 + U,(X’) is invertible in A, 

(ii) (1 + U,(X’))-’ lies in A, 

(iii) U, U,((l + U,(X*))-‘) lies in A. 

Proof (i) Follows from [Z, p. 171 and Proposition 4.1. 
(ii) Follows from [2, p. 181 and Proposition 4.2. 
(iii) If X= {x,~> + Ace, then U, U,,((l + Uh(X2))-‘) = { lYYn U,((l + 

W-d-‘)} +A,,. For every n, let B,, be the w*-closed subalgebra of A 
generated by x,,, b, and 1; B,, is a JW-algebra (Theorem 1.2) and, in B,,, 
U,,,((l + U,(x;))-‘)=x,zb(l +bx,:b)--‘bx,,. From Lemma 5.3 and 
Proposition 4.2 it follows that U, U,(( 1 + U,(X2))-‘) E A. 

Recall that a subalgebra of a Jordan algebra with identity element is 
called a full subalgebra if it contains the identity element and the inverses of 
all its invertible elements. A Jordan algebra J, with identity element, is said 
to be fully generated by a subalgebra B if J is the smallest full subalgebra of 
J containing B. 

LEMMA 5.5. Let A and B be Jordan algebras with identity element and 
let f be a morphism from A into B, such that B is fully generated by f (A). If 
a and b operators commute in A then f(a) andf(b) operators commute in B. 

Therefore, if C is a strongly associative subalgebra of A, then f(C) is a 
strongly associative subalgebra of B. 

Proof For every element x in A, we have [a, x, b] = 0; thus, 
CfCa),f(x), f(b)l=o. That is, f(A) . 1s contained in the kernel of the 
derivation y + [f(a), y, f(b)], which is a full subalgebra of B [ 10, p. 541. 
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Proof of the Theorem. (i) If XEA^, set s=(1+X2))‘~A, 
z = A’. (1 + X2) ~ ’ E A. It is obvious that s and z are in the full subalgebra of 
a generated by X, which is strongly associative from a result by Jacobson 
(see [12]), which states that if J is a Jordan algebra with identity element, 
then the full subalgebra of J generated by a strongly associative subalgbra 
B of J is strongly associative also. (It follows that for every element j in J, 
there is a strongly associative full subalgebra of J containing j.) Thus, 
X=$-l.:= U,-!(a) with a=s.z and it is clear that the subalgebra of A 
generated by s and a is strongly associative. 

(ii) Let a, s be elements in A such that n # 0 and s is not a zero 
divisor. By Proposition 4.5, s is invertible in A. Setting 
a’ = U,- I U,( (1 + U,,(s ‘)) ~ ’ ), s’ = (1 + U,(s”)) ’ we have s, a’ E A 
(Lemma 5.4). It is obvious that s’ is not a zero divisor and we have 
U,(a’) = U,,(d) # 0, for if U<,(d) = 0, since s’ is a positive element, we have 
U,,(h’) = 0, where h denotes the positive square root of s’ (note that /I is 
not a zero divisor also); hence, U,?(a”) = 0 and so a = 0. Contradiction. 

(iii) Let B be a Jordan ring with identity element, and let f: A --+ B be 
a morphism of A into B, having the property that f(s) is invertible in B 
whenever s is not a zero divisor in A. It is clear that if there exists an exten- 
sion g off to A it should be of the form g(U,-,(a)) = U;,‘, (f(a)). We will 
prove that g is a well-defined mapping: If U,-,(a) = U,.-,(a’), there exist s!, 
s’, E A, sI is not a zero divisor, such that U,(s, ) = U,(s’, ); s and s, arc inver- 
tible in a; thus, UA(s,) is invertible and so U,(s; ) is invertible also. Hence, 
s; is invertible in A. Thus, s, s, , s’, s; are all invertible in A^. Using the Fun- 
damental Identity [ 10, p. 521 we have 

U,-I (a) = UGj,,,(U, U,,(a)) 

U,.-,(a’) = U;s’c,i,(U,fU,i(a’l) = U;j,,,(U, U,$a’)l 

thus 

and so 

U, u,, (a) = u.,, U,i(a’) 
thus 

u,c5, U,,.,,,(f(a)) = Ut(.~,,Urc.,i,(f(a’)) 
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Thus 

Using the same techniques it is easy to see that g(X+ Y) =g(X) +g( Y), 
X and Y in a. To complete the proof, it remains to show that 
g(X’) = (g(X))’ for all X in a. Set X= U,-,(a), where a and s generate a 
strongly associative subalgebra C of A. We can assume, without loss of 
generality, that B is fully generated byf(A). Setting m=f(s), n=f(a), we 
have 9(X2) = U,,I-~(n2), (g(X))2 = (U,T,-~(n))2 with m, n EJ(C), which is a 
strongly associative subalgebra of B by Lemma 5.3. Let D be the full sub- 
algebra of B generated by f(C); D is a strongly associative subalgebra and 
we have m,n,m-’ E D. Thus, (g(X))’ = ( Um-l(n))2 = Urn-2(n2) = g(X’) and 
the proof is complete. 
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