JOURNAL OF ALGEBRA 110, 56-73 (1987)

The Jordan Regular Ring Associated to a Finite JBW-Algebra

PEDRO JIMENEZ GARIJO

Departamento de Algebra y Fundamentos, Colegio Universitario de Almeria, Universidad de Granada, Almería, Spain

AND

ANGEL RODRIGUEZ PALACIOS

Departamento de Teoría de Funciones, Facultad de Ciencias, Universidad de Granada, Granada, Spain

Communicated by N. Jacobson

Received July 1, 1984

INTRODUCTION

If A is a finite von Neumann algebra, then there exists a *-regular ring R (in the sense of von Neumann) whose lattice of principal left ideals is isomorphic to the lattice of projections of A (it is said that R coordinatizes A); this ring was constructed by Murray and von Neumann [14] by enlarging A to contain certain unbounded operators defined on dense linear subspaces of the Hilbert space on which A acts. By using an abstract version of the Murray-von Neumann construction, Berberian showed in [4] that a finite AW^* -algebra A is always contained in a continuous *-regular ring R such that R has no new projections. Later, Hafner [7] and Pyle [16] showed that the regular ring constructed by Berberian is the maximal ring of quotients of A.

The analogous problem for Rickart *-rings was considered by Handelman [9], who constructs, for a finite Rickart C^* -algebra A, a *-regular ring R containing A such that R has no new projections. Later, Ara and Menal [3] showed that the regular ring constructed by Handelman is the classical ring of quotients of A.

In the case of Jordan algebras, Ayupov [1] has given an enlargement of a *JW*-algebra, similar to the one of Murray and von Neumann for W^* -algebras, without going into the problem of regularity or ring of quotients in the finite case. In this paper, following the abstract construction of Berberian, we show that every finite *JBW*-algebra A is contained in a von Neumann regular Jordan ring \hat{A} such that \hat{A} has no new idempotents. Moreover, we show that every finite *JBW*-algebra has the common multiple property (nonassociative analogous to the Ore condition) and that \hat{A} is the (unique) total ring of quotients of A.

1. FINITE JBW-ALGEBRAS

Recall that a *JB*-algebra *A* is a real Jordan algebra which is also a Banach space with respect to a norm $\| \|$ having the following properties:

(i)
$$||a^2|| = ||a||^2$$
,

(ii)
$$||a^2|| \le ||a^2 + b^2||,$$

(iii) $||a \cdot b|| \le ||a|| ||b||, \quad a, b \in A.$

When the *JB*-algebra *A* has an identity element then *A* is said to be a *unital JB*-algebra. We denote the identity by 1. For the general theory of *JB*-algebras, the reader is referred to [2, 8]. The treatment of *JB*-algebras in [8] is mainly based on [2], except that many proofs are altered. The standard reference for the algebraic theory of Jordan algebras is [10].

If φ is a positive operator on a unital *JB*-algebra *A*, it is clear that for any positive linear form *f*, the mapping $(x, y) \rightarrow \langle f, \varphi(x \cdot y) \rangle$ is a positive symmetric bilinear mapping. From the Cauchy–Schwarz inequality, it follows that $|\langle f, \varphi(x \cdot 1) \rangle|^2 \leq \langle f, \varphi(x^2) \rangle \cdot \langle f, \varphi(1) \rangle$. Thus, $\varphi = 0$ if and only if $\varphi(1) = 0$. In particular, since for all elements *a* in *A*, U_a is a positive operator [2, Proposition 2.7], we have $U_{a_1} \dots U_{a_n} = 0$ iff $U_{a_1} \dots U_{a_n}(1) = 0$, with $a_1 \dots a_n$ in *A*. On the other hand, if *a*, *b*, *c* are elements in a unital *JB*algebra *A*, it is not difficult to show, using the identity $[U_x(y)]^2 =$ $U_x U_y(x^2)$ [8, Identity 2.40], that $U_a U_b(c^2) = 0$ if and only if $U_c U_b(a^2) = 0$. Thus, in a unital *JB*-algebra, the following are equivalent: (i) $U_a U_b U_c = 0$: (ii) $U_a U_b(c^2) = 0$; (iii) $U_c U_b(a^2) = 0$; (iv) $U_c U_b U_a = 0$. In particular, $U_a(b^2) = 0$ iff $U_b(a^2) = 0$.

From here, using the identity 2.33 in [2], we have the following

LEMMA 1.1. If e is an idempotent element in a unital JB-algebra A, then for all a in A the following conditions are equivalent: (i) $e \cdot a = 0$; (ii) $e \cdot a^2 = 0$; (iii) $U_e(a^2) = 0$.

A JBW-algebra A is a JB-algebra which is the dual of a Banach space. In [6; Lemma 1] it is shown that every JBW-algebra is unital.

In this paper the following theorem is essential.

THEOREM 1.2. If a and b are elements in a unital JB-algebra (resp. JBWalgebra) A, then the closed (resp. w*-closed) subalgebra of A generated by a, b and 1 is isometrically isomorphic to a JC-algebra (resp. JW-algebra).

Proof. The assertion referring to JB-algebras is known [20, Proposition 2.1]. Now, if A is a JBW-algebra, the subalgebra B of A generated by a, b and 1 is (by the Shirshov-Cohn Theorem) a special Jordan algebra; since the product is w^* -continuous in each variable [18, Lemma 2.2], the w^* -closure of B is a w^* -closed subalgebra of A which satisfies all the s-identities. Thus, from [2, Lemma 9.4] it is a JC-algebra and by [18, Corollary 2.4] a JW-algebra.

Let A be a JBW-algebra; it is shown in [2, Proposition 4.9] that the set P(A) of idempotent elements in A, with the ordering $e \leq f$ iff $e \cdot f = e$ (for idempotent elements this ordering is equivalent to $e \leq f$ iff $f - e \in A^2$), is a complete, orthomodular, and complemented lattice. We denote $e \lor f = \sup(e, f)$ and $a \land f = \inf(e, f)$, e and f in P(A).

LEMMA 1.3. Let A be a JBW-algebra and consider two idempotent elements e, f in A. Then $e \lor f$ and $e \land f$ are contained in any w*-closed subalgebra of A containing e and f.

Proof. Let B be the w*-closed subalgebra of A generated by e and f; B is a JBW-algebra and so B has an identity element p. It is straightforward to verify that $e \lor f = p$; hence, if C is any w*-closed subalgebra of A containing e and f, we have $e \lor f \in C$. We divide the second part of the proof into three steps:

(i) If C is a w*-closed subalgebra of A containing e, f, and 1 then, since $e \wedge f = 1 - (1 - e) \vee (1 - f)$, it is obvious that $e \wedge f \in C$.

(ii) If C contains e and f, and is of the form $U_h(A)$, h idempotent, we have $e \cdot h = e$, $f \cdot h = f$, so $e, f \leq h$. Thus, $(e \wedge f) \cdot h = e \wedge f$ and we have $e \wedge f \in C$.

(iii) Now, the w*-closed subalgebra B of A generated by e and f is a w*-closed subalgebra of the JBW-algebra $U_p(A)$, where $p = e \lor f$ is the identity element. Thus, by (i) $e \land f$ (in $U_p(A)$) $\in B$, and from (ii) we have $e \land f$ (in A) = $e \land f$ (in $U_p(A)$) $\in B$.

Following [2, p. 39] we say that two idempotents e, f in a *JBW*-algebra A are *equivalent* and write $e \sim f$ if there exists a finite family $s_1 \dots s_n$ of symmetries in A such that $U_{s_n} \dots U_{s_1}(e) = f$. Recall that a lattice L is called *modular* if $e \leq f$ implies $(e \lor f) \land g = e \lor (f \land g)$, $e, f, g \in L$. Following [19], an idempotent e in a *JBW*-algebra is called *finite* if $f \leq e$ and $f \sim e$ imply f = e. A *JWB*-algebra A is called *finite* if all idempotents in A are finite. Likewise, if A is a *JWB*-algebra, by a *center-valued trace* we

shall mean a mapping $T: A \to Z(A)$ (Z(A) denotes the center of A) such that:

 $T_1: T \text{ is linear.}$ $T_2: T(z \cdot a) = z \cdot T(a), a \text{ in } A, z \text{ in } Z(A).$ $T_3: a \ge 0 \text{ implies } T(a) \ge 0, a \in A.$ $T_4: T(U_s(a)) = T(a), \text{ for } a \text{ in } A \text{ and } s \text{ a symmetry in } A.$ $T_5: T(1) = 1.$

If a > 0 implies T(a) > 0, we say that T is *non-degenerate*. From [15, p. 371] it follows that T_4 is equivalent to

 T'_4 : $T(a \cdot (b \cdot c)) = T((a \cdot b) \cdot c)$ for all elements a, b, c in A.

It is not difficult to prove that the usual trace on the exceptional Jordan algebra M_3^8 , with the obvious normalization, is a w*-continuous and non-degenerate center-valued trace. (See [17].)

THEOREM 1.4. Let A be a JBW-algebra. Then the following conditions are equivalent:

- (i) A is a finite JBW-algebra.
- (ii) P(A) is a modular lattice.
- (iii) A has a w*-continuous and non-degenerate center-valued trace.
- (iv) A has a non-degenerate center-valued trace.

For the proof we shall need the following

LEMMA 1.5. Let X be a non-empty compact set and let A be a unital JB-algebra. If f is a continuous function from X into A, then the following conditions are equivalent:

- (i) f is a positive element in the JB-algebra C(X, A).
- (ii) $f(x) \ge 0$ for all x in X.

Proof. It is obvious that (i) implies (ii). Reciprocally, if f is an element in C(X, A) such that $f(x) \ge 0$ for all x in X, then f(x) is a square in A, for all x in X. Thus, there exists a unique positive element y in A such that $y^2 = f(x)$. Hence, we can define a mapping $g: X \to A$ such that g(x) = y. It is obvious that $g^2 = f$ and $g \in B(X, A)$ (algebra of bounded functions from X into A); thus, f is a positive element in B(X, A). Since $C(X, A) \subset B(X, A)$ and an element in a unital JB-algebra is positive if and only if it is positive in a closed subalgebra in which it is contained (see [2, pp. 14–15]), it follows that f is a positive element in C(X, A).

Proof of the theorem. It is clear that (iii) implies (iv) and (iv) implies (i).

(i) \Rightarrow (ii). Let e, f, g be idempotents in A with $e \leq g$; set $a = g - e + \frac{1}{2}e$. Thus, $\{a^n\} \rightarrow {}^{w^*}g - e$. Let B be the w^* -closed subalgebra of A generated by a, f and 1; from Theorem 1.1, B is a JW-algebra which contains g - e; moreover, $g - \frac{1}{2}e = a \in B$. Thus, g and e are contained in B. Since it is clear that $p \sim q$ (in B) implies $p \sim q$ (in A), it follows that B is finite. Hence, by [19, Proposition 14], $(e \lor f) \land g = e \lor (f \land g)$ and so P(A) is a modular lattice.

(ii) \Rightarrow (iii). Using [18, Theorem 3.9] and [19, Theorem 26] the proof is reduced to proving the existence of a w*-continuous and non-degenerate center-valued trace on $C(X, M_3^8)$ (algebra of continuous functions from a hyperstonean compact space X into M_3^8). Let f be an element in $C(X, M_3^8)$; if t is the usual (normalized) trace on M_3^8 , the mapping $\hat{f}: x \to t(f(x))$ is a center-valued continuous function from X into the center of M_3^8 . That is, \hat{f} is an element in the center of $C(X, M_3^8)$; thus, $T: f \rightarrow \hat{f}$ is a center-valued mapping defined on $C(X, M_3^8)$. It is clear that T verifies $T_1, T_2, T'_4, T_5; T_3$ is an immediate corollary of Lemma 1.5. In order to prove the w*-continuity of T we recall that the Banach space $C(X, M_3^8)$ is identified in a natural way with the dual of the Banach space $C(X)_* \otimes_{v} M_{3^*}^8$, where $C(X)_*$ and M_{3*}^8 denote the preduals of C(X) and M_{3*}^8 , respectively, and γ denotes the greatest cross norm on the (algebraic) tensor product (see [18, pp. 362 and 375]). Now, it is not difficult to show that, in this identification, our trace T is just the transpose mapping of the operator T_* on $C(X)_* \otimes M^8_{3*}$ defined by $T_*(a \otimes b) = a \otimes t_*(b), a \in C(X)_*, b \in M^8_{3*}$, where t_{\star} denotes the pretranspose mapping of the usual (normalized) centervalued operator t on M_3^8 . Therefore T is w*-continuous.

2. The Support

If a is an element in a JBW-algebra A, the w*-closed subalgebra B of A generated by a is a JBW-algebra and so B has an identity element e and obviously $e \cdot a = a$. If f is an idempotent in A such that $f \cdot a = a$, then a is contained in the subspace $A_1^{(f)}$ of the Peirce decomposition of A relative to f (see [10, pp. 118–119]). $A_1^{(f)}$ is a w*-closed subalgebra of A; thus, B is contained in $A_1^{(f)}$ and so $e \in A_1^{(f)}$; thus, $e \cdot f = e$; that is, $e \leq f$.

Thus, we have shown that for every element a in a JBW-algebra A there exists a smallest idempotent e such that $e \cdot a = a$; e is called the support of a,

and denoted by s(a). It is clear that 1 - s(a) is the largest idempotent e such that $e \cdot a = 0$. From Lemma 1.1 it is trivial that $s(a) = s(a^2)$ for all $a \in A$. Moreover, since the operators U_x are positive we have that if $a \le b$ are positive elements, then $s(a) \le s(b)$ explain.

PROPOSITION 2.1. If a is an element in a JBW-algebra A, such that $0 \le a \le 1$, then $s(a) = w^* \cdot \lim \{1 - (1 - a)^n\}$.

Proof. Since $0 \le a \le 1$, it is clear that $\{1 - (1 - a)^n\}$ is a norm bounded increasing sequence; thus, $\{1 - (1 - a)^n\}$ w*-converges to $y = \sup\{1 - (1 - a)^n\}$ [2, Lemma 4.1]; hence, $\{(1 - a)^n\} \rightarrow^{w^*} 1 - y$. From [2, Lemma 4.1] it follows that $\{(1 - a)^{2n}\} \rightarrow^{w^*} (1 - y)^2$; thus, $(1 - y)^2 = 1 - y$ and y is an idempotent. On the other hand, $\{(1 - a) \cdot (1 - a)^n\} = \{(1 - a)^{n+1}\} \rightarrow^{w^*} 1 - y$; thus, $(1 - a) \cdot (1 - y) = 1 - y$ and so $y \cdot a = a$. Now, if p is an idempotent in A such that $p \cdot a = a$, we have $(1 - p) \cdot a = 0$, which implies $(1 - p) \cdot a^n = 0$ for all n in N, and so $[1 - (1 - a)^n] \cdot (1 - p) = 0$ for all n; since $\{1 - (1 - a)^n\} \rightarrow^{w^*} y$ it follows that $y \cdot p = y$, and so $y \le p$. This completes the proof.

PROPOSITION 2.2. Let a, b be elements in a finite JBW-algebra A. Denote by T the w*-continuous and non-degenerate center-valued trace on A. Then,

$$T(s(U_a(b^2))) = T(s(U_b(a^2))).$$

Proof. Since the trace form is associative, $T(U_a(b) \cdot c) = T(b \cdot U_a(c))$. In particular $T(a^2 \cdot b) = T(U_a(b))$. On the other hand, from the Shirshov-Cohn Theorem, it follows that $U_a U_b(U_b(a^2))^{n-1} = (U_a(b^2))^n$ for all n in N, a, b in A. Then, $T((U_b(a^2))^n) = T(U_b(a^2) \cdot (U_b(a^2))^{n-1}) = T(a^2 \cdot U_b(U_b(a^2))^{n-1}) = T(U_a U_b(U_b(a^2))^{n-1}) = T((U_a(b^2))^n)$ for all n in N, a, b in A. Moreover, we can assume without loss of generality that $||U_a(b^2)|| \leq ||U_b(a^2)|| \leq 1$. Now, the required equality follows from Proposition 2.1 and the w*-continuity of the trace.

3. The Construction of the Ring

Let A be a finite JBW-algebra. Following Berberian [4], if (e_n) is a sequence of idempotents in A, $e_n \uparrow$ means that $e_n \leq e_{n+1}$. If moreover $\sup(e_n) = e$, we write $e_n \uparrow e$. In case $e_n \uparrow 1$ we say that (e_n) is an SDD (Strongly Dense Domain).

LEMMA 3.1. If (e_n) , (f_n) ,..., (k_n) are SDD's, then $(e_n \wedge f_n \wedge \cdots \wedge k_n)$ is a SDD.

Proof. First, note that if e and f are idempotents in a JBW-algebra A then, by Theorem 1.2, Lemma 1.3, and [19, Corollary 8], the Parallelogram law $e \lor f - e \sim f - e \land f$ holds. Thus, $T(e) + T(f) = T(e \lor f) + T(e \land f)$. Now, to prove the Lemma it is sufficient to consider two SDD's (e_n) , (f_n) . Set $g_n = e_n \land f_n$, $g = \sup(g_n)$; evidently $g_n \uparrow g$; since $1 - g \leq 1 - g_n = (1 - e_n) \lor (1 - f_n)$, we have $T(1 - g) \leq T(1 - e_n) + T(1 - f_n)$. Since T is w*-continuous and non-degenerate we have g = 1.

DEFINITION 3.2. Let A be a JBW-algebra and let $\{x_n\}$ be a sequence of elements in A; a SDD (e_n) is said to be *admissible* for $\{x_n\}$ if

$$m \leq n$$
 implies $(x_n - x_m) \cdot e_m = 0$.

Our purpose is to show that the set A_C of the sequences $\{x_n\}$ in A for which there exists an admissible SDD is a subalgebra of the Jordan algebra of all sequences in A. It is obvious that all constant sequences are in A_C .

LEMMA 3.3. If $\{x_n\}$, $\{y_n\}$ are in A_C and $\lambda \in R$, then $\{x_n + y_n\}$ and $\{\lambda x_n\}$ are in A_C .

Proof. It is clear that if e and f are idempotents in a unital JB-algebra A and $e \leq f$, the subalgebra of A generated by e, f, and 1 is R1 + Re + Rf which, from [2, Lemma 2.11], is strongly associative. Hence, by [5, Satz 3.7], we have $U_e U_f = U_e$. From this observation and Lemma 1.1 it follows that if $f \cdot a = 0$, $e \leq f$, then e.a = 0. Thus, if (e_n) is an admissible SDD for $\{x_n\}$ and (f_n) is an admissible SDD for $\{y_n\}$ then $(e_n \wedge f_n)$ is an admissible SDD for $\{x_n + y_n\}$. The second part of the Lemma is trivial.

The discussion of product requires another concept:

DEFINITION 3.4. If $x \in A$ and e is an idempotent in A, we write

$$x^{-1}(e) = 1 - s(U_x(1-e)).$$

It is clear that $x^{-1}(e)$ is the largest idempotent f such that $f \cdot U_x(1-e) = 0$.

LEMMA 3.5. Let A be a finite JBW-algebra. If $x \in A$ and e is an idempotent in A, then

$$T(e) \leq T(x^{-1}(e)).$$

Proof. $T(1-x^{-1}(e)) = T(s(U_x(1-e)))$; from Proposition 2.2 it follows that $T(1-x^{-1}(e)) = T(s(U_{1-e}(x^2)))$, since it is clear that $s(U_{1-e}(x^2)) \le 1-e$, we conclude $T(1-x^{-1}(e)) \le T(1-e)$, and so $T(e) \le T(x^{-1}(e))$.

LEMMA 3.6. Let (e_n) be an admissible SDD for the sequence $\{x_n\}$. Then, for any SDD (f_n) , $(e_n \wedge x_n^{-1}(f_n))$ is an SDD also.

Proof. If a and b are elements in any Jordan algebra J, and e is an idempotent in J, it is not difficult, using the Peirce decomposition of J relative to the idempotent e, to show that if $a \cdot e = b \cdot e$ then $U_a(e) = U_b(e)$ (see [10, pp. 118–119]). Now, set $g_n = e_n \wedge x_n^{-1}(f_n)$. If $m \leq n$ we have $g_m \leq 1 - s(U_{x_m}(1-f_m))$ (Definition 3.4); thus, $g_m \cdot U_{x_m}(1-f_m) = 0$ and so $U_{g_m}(U_{x_m}(1-f_m)) = 0$; hence, $U_{1-f_m}U_{x_m}(g_m) = 0$ and so $U_{1-f_n}U_{1-f_m}U_{x_m}(g_m) = 0$. Since $f_m \leq f_n$, we have $U_{1-f_n}U_{x_m}(g_m) = 0$. Since (e_n) is an admissible SDD for $\{x_n\}$ we have $(x_n - x_m) \cdot e_m = 0$ and so $(x_n - x_m) \cdot g_m = 0$. Thus, $U_{x_m}(g_m) = U_{x_n}(g_m)$; hence, we have U_{1-f_n} and so that $g_m \cdot U_{x_n}(1-f_n) = 0$ and so $g_m \leq 1 - s(U_{x_n}(1-f_n))$. That is, $g_m \leq x_n^{-1}(f_n)$; hence, $g_n \uparrow$.

Moreover, from Lemma 3.5, we have $T(f_n) \leq T(x_n^{-1}(f_n))$ for all *n*; indeed, $1 - g_n = (1 - e_n) \vee (1 - x_n^{-1}(f_n))$; thus, $T(1 - g_n) \leq T(1 - e_n) + T(1 - x_n^{-1}(f_n)) \leq T(1 - e_n) + T(1 - f_n)$. It follows that $g_n \uparrow 1$.

PROPOSITION 3.7. If $\{x_n\}$ and $\{y_n\}$ are in A_C , then $\{x_n \cdot y_n\}$ is in A_C .

Proof. If (e_n) is an admissible SDD for $\{x_n\}$ and (f_n) is an admissible SDD for $\{y_n\}$, we shall prove that $([f_n \land y_n^{-1}(e_n)] \land [e_n \land x_n^{-1}(f_n)])$ is an admissible SDD for $\{x_n \cdot y_n\}$. Setting $k_n = [f_n \land y_n^{-1}(e_n)] \land [e_n \land x_n^{-1}(f_n)]$, it is clear, by Lemmas 3.6 and 3.1, that (k_n) is an SDD. Moreover, if $m \leq n$ we have

- (i) $(x_n x_m) \cdot e_m = 0$,
- (ii) $(y_n y_m) \cdot f_m = 0$,
- (iii) $k_m \leq 1 s(U_{x_m}(1-f_m)),$
- (iv) $k_m \leq 1 s(U_{1m}(1 e_m)),$
- (v) $k_m \leq e_m$,

(vi)
$$k_m \leq f_m$$
.

Since $(x_n - x_m) \cdot e_m = 0$, we have $(x_n - x_m)^2 \cdot e_m = 0$, and so $(1 - e_m) \cdot (x_n - x_m)^2 = (x_n - x_m)^2$. Thus, $U_{1 - e_m}((x_n - x_m)^2) = (x_n - x_m)^2$; since $k_m \leq 1 - s(U_{y_m}(1 - e_m))$ we have $k_m \cdot U_{y_m}(1 - e_m) = 0$; thus, U_{k_m} , $U_{y_m}(1 - e_m) = 0$ and $U_{k_m} U_{y_m} U_1_{e_m} = 0$. So $U_{k_m} U_{y_m} U_{1 - e_m}((x_n - x_m)^2) = 0$; hence, $U_{k_m} U_{y_m}((x_n - x_m)^2) = 0$. Thus, by [2, Proposition 2.8], we have $k_m \cdot U_{y_m}((x_n - x_m)^2) = 0$, and so $k_m \leq 1 - s(U_{y_m}((x_n - x_m)^2))$. In an analogous way, we obtain $k_m \leq 1 - s(U_{x_m}((y_n - y_m)^2))$. Since $k_m \leq e_m$, $k_m \leq f_m$, we can write

- (i) $k_m \leq 1 s(x_n x_m)$,
- (ii) $k_m \leq 1 s(y_n y_m),$
- (iii) $k_m \leq 1 s(U_{y_m}((x_n x_m)^2))),$
- (iv) $k_m \leq 1 s(U_{x_m}((y_n y_m)^2))).$

Let B be the w*-closed subalgebra of A generated by $x_n - x_m$, y_m , and 1. By Theorem 1.2., B is a JW-algebra which contains $1 - s(x_n - x_m)$ and $1 - s(U_{y_m}((x_n - x_m)^2)))$ and $h = (1 - s(x_n - x_m)) \land$ therefore $(1 - s(U_{x_m}(x_n - x_m)^2))$ (Lemma 1.3); we have $h \cdot (x_n - x_m) = 0$ and $h \cdot U_{x_m}((x_n - x_m)^2) = 0$ which, in *B*, are equivalent to $h(x_n - x_m) = 0$, $hy_m(x_n - x_m) = 0$ where the juxtaposition denotes the associative product; thus, $h(x_n - x_m) y_m = 0 = hy_m(x_n - x_m)$ and so $h((x_n - x_m) \cdot y_m) = 0 =$ $((x_n - x_m) \cdot y_m) h$. Hence, $((x_n - x_m) \cdot y_m) \cdot h = 0$. Since $k_m \leq h$, we have $((x_n - x_m) \cdot y_m) \cdot k_m = 0$. Similarly, we obtain $((y_n - y_m) \cdot x_m) \cdot k_m = 0$; hence $((x_n - x_m) \cdot y_m + (y_n - y_m) \cdot x_m) \cdot k_m = 0.$ Since $(x_n - x_m) \cdot k_m = 0 =$ $(y_n - y_m) \cdot k_m$, we have $((x_n - x_m) \cdot (y_n - y_m)) \cdot k_m = 0$; therefore, $((x_n - x_m) \cdot y_m + (y_n - y_m) \cdot x_m + (x_n - x_m) \cdot (y_n - y_m)) \cdot k_m = 0$ and SO $(x_n \cdot y_n - x_m \cdot y_m) \cdot k_m = 0$. This completes the proof.

DEFINITION 3.8. If $\{x_n\}$ and $\{y_n\}$ are contained in the Jordan algebra A_C , we say that $\{x_n\}$ and $\{y_n\}$ are *equivalent*, written $\{x_n\} \equiv \{y_n\}$, if there exists a SDD (g_n) such that $(x_n - y_n) \cdot g_n = 0$ for all *n*.

The equivalent is said to be "implemented" via the SDD (g_n) . Reflexivity and symmetry of equivalence are obvious. Moreover, if $\{x_n\} \equiv \{y_n\}$ via (g_n) and $\{y_n\} \equiv \{z_n\}$ via (h_n) , then $\{x_n\} \equiv \{z_n\}$ via $(g_n \wedge h_n)$. Thus, the relation defined above is an equivalence relation.

PROPOSITION 3.9. The set $A_{CO} = \{\{x_n\} \in A_C : \{x_n\} \equiv 0\}$ is an ideal of A_C .

Proof. It is clear that if $\{x_n\} \equiv 0$ via (h_n) and $\{y_n\} \equiv 0$ via (k_n) , then $\{x_n + y_n\} \equiv 0$ via $(h_n \wedge k_n)$. It is obvious that if $\{x_n\} \in A_{CO}$, $\lambda \in R$ then $\{\lambda x_n\} \in A_{CO}$. If $\{x_n\} \equiv 0$ via (e_n) it is clear that (e_n) is an admissible SDD for $\{x_n\}$; let $\{y_n\}$ be an element in A_C and let (f_n) be an admissible SDD for $\{y_n\}$; set $g_n = (f_n \wedge y_n^{-1}(e_n)) \wedge (e_n \wedge x_n^{-1}(f_n))$; (g_n) is a SDD and we have

- (i) $x_m \cdot e_m = 0$,
- (ii) $(y_n y_m) \cdot f_m = 0$,
- (iii) $g_m \leq 1 s(U_{y_m}(1 e_m)),$
- (iv) $g_m \leq 1 s(U_{x_m}(1 f_m)),$
- (v) $g_m \leq e_m$,
- (vi) $g_m \leq f_m$,

thus (see the proof of Proposition 3.7) we obtain $(x_m \cdot y_m) \cdot g_m = 0$ for all *m*. This completes the proof.

The quotient Jordan algebra A_C/A_{CO} is denoted \hat{A} . We denote the elements of \hat{A} by capitals letters X, Y,.... If $x \in A$, we write $\bar{x} = \{x\} + A_{CO}$. The mapping $x \to \bar{x}$ is injective. For, if (e_n) is a SDD such that $x \cdot e_n = 0$ for all n, since the product is w*-continuous, we have x = 0. Thus, we have the following.

THEOREM 3.10. Let A be a finite JBW-algebra. Define \hat{A} as indicated above. Then,

(i) \hat{A} is a real Jordan algebra with identity element $\bar{1}$.

(ii) The mapping $x \to \bar{x}$ is an isomorphism from A onto a subalgebra \bar{A} of \hat{A} . \hat{A} is said to be the regular Jordan ring associated to A.

Remark. \overline{A} is called regular for, as we shall see later, \widehat{A} is regular in the sense of von Neumann. In view of the above Theorem we will identify A with \overline{A} and therefore the notation \overline{x} , for x in A, will be avoided.

We conclude this section by showing the behaviour of the w^* -closed subalgebras of A with respect to the extension constructed above.

PROPOSITION 3.11. Let A be a finite JBW-algebra and let B be a w^* -closed subalgebra of A such that $1 \in B$. Then, B is a finite JBW-algebra and the mapping $\{x_n\} + B_{CO} \rightarrow \{x_n\} + A_{CO}$ is an isomorphism from \hat{B} in \hat{A} .

Proof. It is clear that B is a finite JBW-algebra and every SDD (e_n) in B is also a SDD in A. Thus, $\{x_n\} + B_{CO} \rightarrow \{x_n\} + A_{CO}$ is a well-defined mapping; it is obvious that it is a ring homomorphism. Suppose $\{x_n\} \in B_C$ and $\{x_n\} \in A_{CO}$; then, there exists a SDD (k_n) (in A) such that $x_n \cdot k_n = 0$ for all n. Since B is a w*-closed subalgebra of A, we have $s(x) \in B$ for all $x \in B$. Thus, $1 - s(x_n) \in B$ for all n; set $g_n = 1 - s(x_n)$. Denote $f_m = \inf\{g_n, n \ge m\}$. It is easy to see that $k_n \le f_n \le g_n$ and so (f_n) is a SDD (in B) such that $x_n \cdot f_n = 0$ for all n; hence, $\{x_n\} \in B_{CO}$ and the mapping is injective.

Remark. In what follows we will consider $\hat{B} \subset \hat{A}$.

Let C be a finite W*-algebra; in particular, C is a finite AW*-algebra. Let \hat{C} be the *-regular ring associated to C by Berberian's construction. The set Sym(C) of self-adjoint elements in C is a finite JBW-algebra. Let

Sym(C) be the Jordan regular ring associated to Sym(C). Then, we obtain the following result:

PROPOSITION 3.12. If C is a finite W*-algebra and \hat{C} denotes its associated *-regular ring, then $Sym(\hat{C}) = \widehat{Sym(C)}$.

Proof. It is clear that our construction of the Jordan regular ring associated to a finite JBW-algebra A is similar, except for notation, to Berberian's construction of the *-regular ring associated to a finite AW^* -algebra (note that for a projection e and a self-adjoint element x in a C*-algebra $x \cdot e = 0$ is equivalent to xe = ex = 0). The Proposition is a consequence of the characterization of self-adjoint elements of the *-regular ring associated to a finite AW*-algebra [4, Lemma 3.2].

4. The Regularity of the Ring

PROPOSITION 4.1. If $X = \{x_n\} + A_{CO}$ and the x_n are invertible for all n, then X is invertible and $X^{-1} = \{x_n^{-1}\} + A_{CO}$.

Proof. First, note that if e and x are elements in a JBW-algebra A, where e is idempotent and x is not a zero divisor (that is, U_x is injective), then $s(U_e(x^2)) = e$; for, it is clear that $e \cdot U_e(x^2) = U_e(x^2)$ and moreover if f is an idempotent such that $f \cdot U_e(x^2) = U_e(x^2)$, then $(1-f) \cdot U_e(x^2) = 0$, and so $U_{1-f} U_e(x^2) = 0$. Thus, $U_x U_e(1-f) = 0$ and so $U_e(1-f) = 0$; hence, $e \cdot (1-f) = 0$. That is, $e \leq f$.

Now, let (e_n) be an admissible SDD for $\{x_n\}$. Set $f_n = s(U_{x_n}(e_n))$. If $m \le n$, we have $(x_n - x_m) \cdot e_m = 0$, so $U_{x_m}(e_m) = U_{x_n}(e_m) \le U_{x_n}(e_n)$; it follows that $f_n \uparrow$. Moreover, by Proposition 2.2, $T(f_n) = T(s(U_{x_n}(e_n))) = T(s(U_{x_n}(e_n))) = T(e_n)$; so $f_n \uparrow 1$.

If $m \leq n$, set $e_0 = 1 - s(x_n - x_m)$. By Theorem 1.2, the w*-closed subalgebra B of A generated by x_n, x_m , and 1 is a JW-algebra which contains e_0 ; moreover, from [2, Proposition 2.4] it follows that x_n^{-1} and x_m^{-1} lie in B, in which it is not difficult to show that $(x_n^{-1} - x_m^{-1}) \cdot s(U_{x_m}(e_0)) = 0$. Since $(x_n - x_m) \cdot e_m = 0$ we have $e_m \leq e_0$; so $U_{x_m}(e_m) \leq U_{x_m}(e_0)$. Thus, $s(U_{x_m}(e_m)) \leq s(U_{x_m}(e_0))$ and so $(x_n^{-1} - x_m^{-1}) \cdot f_m = 0$. Hence, (f_n) is an admmissible SDD for $\{x_n^{-1}\}$. It is obvious that $X^{-1} = \{x_n^{-1}\} + A_{CO}$.

PROPOSITION 4.2. If $X = \{x_n\} + A_{CO}$, and $||x_n|| \leq M$ for all *n*, then X lies in A.

Proof. Let x be a w*-limit point of the sequence $\{x_n\}$. Let (e_n) be an admissible SDD for $\{x_n\}$; for a fixed m, we have $(x_n - x_m) \cdot e_m = 0$ if $n \le m$. Thus, $(x - x_m) \cdot e_m = 0$. Since m is arbitrary, we have $\{x\} \equiv \{x_n\}$ and so $\{x_n\} + A_{CO} = \{x\} + A_{CO}$.

Remark 4.3. It is clear that for any SDD (h_n) we have $\{h_n\} + A_{CO} = 1 + A_{CO}$; thus, if $X = \{x_n\} + A_{CO}$, then $X = U_1(X) = \{U_{h_n}(x_n)\} + A_{CO}$. Hence, if $X = \{x_n\} + A_{CO}$ and $||U_{h_n}(X_n)|| \leq M$ for all *n* and some SDD (h_n) , then X lies in A.

PROPOSITION 4.4. If $X \in \hat{A}$, then

- (i) $1 + X^2$ is invertible in \hat{A} ,
- (ii) $z = (1 + X^2)^{-1}$ lies in A,
- (iii) $y = X \cdot (1 + X^2)^{-1}$ lies in A,
- (iv) $X = y \cdot z^{-1}$.

Proof. If $X = \{x_n\} + A_{CO}$, then $1 + X^2 = \{1 + x_n^2\} + A_{CO}$. Now, our result follows from [2, Proposition 2.3] and Propositions 4.1 and 4.2.

Remark. Assertion (iv) in the above Proposition leads us to believe that the regular Jordan ring \hat{A} associated to a finite *JBW*-algebra *A* may be the total ring of quotients of *A*. This will be proved in the following section.

PROPOSITION 4.5. If a is an element in a finite JBW-algebra A, then the following conditions are equivalent:

- (i) s(a) = 1,
- (ii) a is invertible in \hat{A} ,
- (iii) a is not a zero divisor in A.

Proof. It is obvious that (ii) implies (iii). Likewise, (iii) implies (i), since 1-s(a) is in Ker U_a . Now, denote by *B* the *w**-closed subalgebra of *A* generated by 1 and *a*; then, *B* is the self-adjoint part of the B_c (complexifixation of *B*) which is an associative and commutative finite *W**-algebra. Corollary 7.5 of [4] and Propositions 3.11 and 3.12 complete the proof.

COROLLARY 4.6. If A is a finite JBW-algebra and B is a w*-closed subalgebra of A containing the identity element, then $b \in B \cap inv(\hat{A})$ implies $b^{-1} \in \hat{B}$.

THEOREM 4.7. If A is a finite JBW-algebra, \hat{A} is regular (in the sense of von Neumann).

Proof. Let X be an element in \hat{A} ; set $X = y \cdot z^{-1}$, y and z as in Proposition 4.4. Let B be the w*-closed subalgebra of A generated by y, z and 1. Then, B is associative. Since $z \in B \cap \text{Inv}(\hat{A})$, Corollary 4.6 implies $z^{-1} \in \hat{B}$. So $X = y \cdot z^{-1} \in \hat{B}$. From Proposition 3.12 and [4, Corollary 7.1] we have that X is regular.

We conclude this section by showing that \hat{A} has no new idempotents. We shall need two lemmas.

LEMMA 4.8. If a and b are elements in a unital JB-algebra A (resp. JBW-algebra), then the set $H = \{c \in A : U_a U_b(c^2) = 0\}$ is a closed (resp. w*-closed) quadratic ideal in A.

Proof. It is not difficult to show that H is a quadratic ideal. Moreover, it is clear that for any positive linear form f on A, the mapping $(x, y) \rightarrow \langle f, U_a U_b(x \cdot y) \rangle$ is a positive, symmetric bilinear mapping; thus, the Cauchy-Schwarz inequality gives $c \in H$ if and only if $U_a U_b(c \cdot d) = 0$ for all $d \in A$. Then, the continuity (resp. w*-continuity) of the product completes the proof.

Using the same techniques it is easy to prove the following:

LEMMA 4.9. Let F be a positive operator on a unital JB-algebra A. Let a, b be elements in A, b positive. Then, if $F(U_a(b)) = 0$ we have $F(a \cdot b) = 0$.

PROPOSITION 4.10. For every X in \hat{A} , there exist a (unique) idempotent f in A such that

- (i) $f \cdot X = X$,
- (ii) $U_Y(X^2) = 0$ if and only if $Y \cdot f = 0$, $Y \in \hat{A}$.

Proof. (i) Set $X = \{x_n\} + A_{CO}$ and let (e_n) be an admissible SDD for $\{x_n\}$. Set $f_n = s(U_{x_n}(e_n))$; we have $f_n \uparrow f$. Set $h_n = 1 - (f - f_n)$; it is clear that (h_n) is an admissible SDD for the sequence $\{f_n\}$. Set $F = \{f_n\} + A_{CO}$; it is trivial that $F^2 = F$. Setting $1 = \{e_n\} + A_{CO}$, we have $F \cdot X = U_{F,1}(X) = \{U_{f_n, e_n}(x_n)\} + A_{CO}$. For every *n*, the *w**-closed subalgebra B_n of *A* generated by x_n , e_n , and 1 is a *JW*-algebra and $f_n \in B_n$. It is not difficult to prove that $U_{f_n, e_n}(x_n) = x_n \cdot e_n$. Thus, $F \cdot X = \{x_n \cdot e_n\} + A_{CO} = (\{x_n\} + A_{CO}) \cdot (\{e_n\} + A_{CO}) = X \cdot 1 = X$. Moreover, we have $\{f_n\} \equiv \{f\}$ (via (h_n)). Hence, $F = \{f\} + A_{CO}$.

(ii) Set $X = \{x_n\} + A_{CO}$ as in (i). Let $Y = \{y_n\} + A_{CO}$ be such that $U_Y(X^2) = 0$; there exists a SDD (k_n) such that $k_n \cdot U_{y_n}(x_n^2) = 0$ for all *n*; thus, $U_{k_n} U_{y_n}(x_n^2) = 0$ and so $U_{k_n} U_{y_n} U_{y_n} = 0$; thus, $U_{k_n} U_{y_n} U_{y_n} U_{y_n} U_{e_n}(x_n^2) = 0$ and so $U_{k_n} U_{y_n} (U_{y_n}(e_n))^2 = 0$. From Lemma 4.8, we have $U_{k_n} U_{y_n}(s(U_{y_n}(e_n)))^2 = 0$. That is, $U_{k_n} U_{y_n}(f_n) = 0$. Hence, $U_{k_n}(y_n \cdot f_n) = 0$ by Lemma 4.9. Since $\{k_n\} + A_{CO} = 1 + A_{CO}$, then $Y \cdot f = \{y_n \cdot f_n\} + A_{CO} = U_1(Y \cdot f) = \{U_{k_n}(y_n \cdot f_n)\} + A_{CO} = 0$.

Conversely, let $Y \in \hat{A}$ such that $Y \cdot f = 0$. Then, Y is in the subspace \hat{A}_0 of the Peirce decomposition of the Jordan algebra \hat{A} relative to the idempotent f; since $X \in \hat{A}_1$, and \hat{A}_0 , \hat{A}_1 are orthogonal subalgebras of \hat{A} , we

have $X^2 \in \hat{A}_1$, $Y \in \hat{A}_0$ and so $U_Y(X^2) = 0$. The uniqueness of f is clear, for if $g \in A$ is another idempotent with the same properties as f, we have $(1-g) \cdot X = 0$, which implies $(1-g) \cdot X^2 = 0$, and so $U_{1-g}(X^2) = 0$; thus, $(1-g) \cdot f = 0$. Analogously, we have $(1-f) \cdot g = 0$. Thus, f = g.

THEOREM 4.11. Let A be a finite JBW-algebra. Let \hat{A} be the regular Jordan ring associated to A. Then, \hat{A} has no new idempotents.

Proof. Let E be an idempotent in \hat{A} . From Proposition 4.9, there exists a (unique) idempotent $e \in A$ such that $E \cdot e = E$ and $U_Y(E) = 0$ if and only if $Y \cdot e = 0$. Since $U_{1-E}(E) = 0$, we have $(1-E) \cdot e = 0$; thus, $e = E \cdot e = E$.

5. Characterization of \hat{A}

DEFINITION 5.1. Let A be a Jordan ring with identity element. If \hat{A} is a Jordan ring containing A and with the same identity element as A, \hat{A} is said to be the total ring of quotients of A if:

(i) Every non-zero divisor s in A is invertible in \hat{A} .

(ii) Every morphism f from A into a Jordan ring B, having the property that f(s) is invertible in B whenever s is not a zero divisor in A, extends in a unique way to a morphism from \hat{A} into B.

Recall that a Jordan ring A is said to have the common multiple property if for any $a, s \in A, a \neq 0$, and s not a zero divisor, there exist $a', s' \in A, s'$ not a zero divisor, such that $U_a(s') = U_s(a') \neq 0$. (See [13, p. 155].)

Recall that for associative rings, this corresponds to the Ore condition, which is sufficient for an associative ring to have a total ring of quotients. However, it is unknown in general whether a Jordan ring with the common multiple property has a ring of quotients. (There is a paper by N. Jacobson, K. McCrimmon, and M. Parvathi [11] on localization of Jordan algebras. Also, there is a forthcoming article by E. Zel'manov on Goldie theory.)

Now, our purpose is to show that the Jordan regular ring \hat{A} associated to a finite JBW-algebra A is the total Jordan ring of quotients of A. In fact, we shall prove the following

THEOREM 5.2. Let A be a finite JBW-algebra. Let \hat{A} denote the Jordan regular ring associated to A. Then:

(i) Every element X in \hat{A} is of the form $X = U_{s^{-1}}(a)$ with $a, s \in A$, and s is not a zero divisor in A. Moreover, the subalgebra of A generated by a and s is strongly associative.

- (ii) A has the common multiple property.
- (iii) \hat{A} is the (unique) total Jordan ring of quotients of A.

To prove the theorem we shall need three lemmas.

LEMMA 5.3. If M is a unital C*-algebra and $u, v \in \text{Sym}(M)$, then $1 + vu^2v$ is invertible and moreover $||uv(1 + vu^2v)^{-1}vu|| \leq 1$.

Proof. Since $1 + vu^2v = 1 + (vu)(vu)^*$, it is clear that $1 + vu^2v$ is invertible. Likewise, $1 + uv^2u$ is invertible also. Moreover, it is not difficult to show that $uv(1 + vu^2v)^{-1}vu = (1 + uv^2u)^{-1}uv^2u$. Since Sym(M) is a unital *JB*-algebra, from [2, p. 18] it follows that $||uv(1 + vu^2v)^{-1}vu|| \le 1$.

LEMMA 5.4. Let A be a finite JBW-algebra. Let \hat{A} denote the Jordan regular ring associated to A. If $b \in A$, $X \in \hat{A}$, then

- (i) $1 + U_b(X^2)$ is invertible in \hat{A} ,
- (ii) $(1 + U_b(X^2))^{-1}$ lies in A,
- (iii) $U_{\chi} U_b((1+U_b(X^2))^{-1})$ lies in A.

Proof. (i) Follows from [2, p. 17] and Proposition 4.1.

(ii) Follows from [2, p. 18] and Proposition 4.2.

(iii) If $X = \{x_n\} + A_{CO}$, then $U_X U_b((1 + U_b(X^2))^{-1}) = \{U_{x_n} U_b((1 + U_b(x_n^2))^{-1})\} + A_{CO}$. For every *n*, let B_n be the *w**-closed subalgebra of *A* generated by x_n , b, and 1; B_n is a *JW*-algebra (Theorem 1.2) and, in B_n , $U_{x_n}((1 + U_b(x_n^2))^{-1}) = x_n b(1 + bx_n^2 b)^{-1} bx_n$. From Lemma 5.3 and Proposition 4.2 it follows that $U_X U_b((1 + U_b(X^2))^{-1}) \in A$.

Recall that a subalgebra of a Jordan algebra with identity element is called a *full subalgebra* if it contains the identity element and the inverses of all its invertible elements. A Jordan algebra J, with identity element, is said to be *fully generated* by a subalgebra B if J is the smallest full subalgebra of J containing B.

LEMMA 5.5. Let A and B be Jordan algebras with identity element and let f be a morphism from A into B, such that B is fully generated by f(A). If a and b operators commute in A then f(a) and f(b) operators commute in B.

Therefore, if C is a strongly associative subalgebra of A, then f(C) is a strongly associative subalgebra of B.

Proof. For every element x in A, we have [a, x, b] = 0; thus, [f(a), f(x), f(b)] = 0. That is, f(A) is contained in the kernel of the derivation $y \to [f(a), y, f(b)]$, which is a full subalgebra of B [10, p. 54].

70

Proof of the Theorem. (i) If $X \in \hat{A}$, set $s = (1 + X^2)^{-1} \in A$, $z = X \cdot (1 + X^2)^{-1} \in A$. It is obvious that s and z are in the full subalgebra of \hat{A} generated by X, which is strongly associative from a result by Jacobson (see [12]), which states that if J is a Jordan algebra with identity element, then the full subalgebra of J generated by a strongly associative subalgbra B of J is strongly associative also. (It follows that for every element j in J, there is a strongly associative full subalgebra of J containing j.) Thus, $X = s^{-1} \cdot z = U_{y^{-1}}(a)$ with $a = s \cdot z$ and it is clear that the subalgebra of A generated by s and a is strongly associative.

(ii) Let a, s be elements in A such that $a \neq 0$ and s is not a zero divisor. By Proposition 4.5, s is invertible in \hat{A} . Setting $a' = U_{s^{-1}} U_a((1 + U_a(s^{-2}))^{-1}), s' = (1 + U_a(s^2))^{-1}$ we have $s, a' \in A$ (Lemma 5.4). It is obvious that s' is not a zero divisor and we have $U_s(a') = U_a(s') \neq 0$, for if $U_a(s') = 0$, since s' is a positive element, we have $U_a(h^2) = 0$, where h denotes the positive square root of s' (note that h is not a zero divisor also); hence, $U_h(a^2) = 0$ and so a = 0. Contradiction.

(iii) Let *B* be a Jordan ring with identity element, and let $f: A \to B$ be a morphism of *A* into *B*, having the property that f(s) is invertible in *B* whenever *s* is not a zero divisor in *A*. It is clear that if there exists an extension *g* of *f* to \hat{A} it should be of the form $g(U_{s^{-1}}(a)) = U_{f(s)}^{-1}(f(a))$. We will prove that *g* is a well-defined mapping: If $U_{s^{-1}}(a) = U_{s^{s^{-1}}}(a')$, there exist s_1 , $s'_1 \in A$, s_1 is not a zero divisor, such that $U_s(s_1) = U_{s^{s^{-1}}}(a')$, there exist s_1 , $s'_1 \in A$, s_1 is not a zero divisor, such that $U_s(s_1) = U_{s^{s^{-1}}}(a')$, there exist s_1 , s'_1 is invertible in \hat{A} ; thus, $U_s(s_1)$ is invertible and so $U_{s^s}(s'_1)$ is invertible also. Hence, s'_1 is invertible in \hat{A} . Thus, s, s_1, s', s'_1 are all invertible in \hat{A} . Using the Fundamental Identity [10, p. 52] we have

$$U_{s^{-1}}(a) = U_{U_s(s_1)}^{-1}(U_s U_{s_1}(a))$$

$$U_{s^{-1}}(a') = U_{U_s(s_1)}^{-1}(U_{s'} U_{s_1}(a')) = U_{U_s(s_1)}^{-1}(U_s U_{s_1}(a'))$$

thus

$$U_{U_{s}(s_{1})}^{-1}(U_{s}U_{s_{1}}(a)) = U_{U_{s}(s_{1})}^{-1}(U_{s'}U_{s_{1}}(a'))$$

and so

$$U_{s}U_{s_1}(a) = U_{s'}U_{s_1}(a')$$

thus

$$U_{f(s)}U_{f(s_1)}(f(a)) = U_{f(s')}U_{f(s_1)}(f(a'))$$

and so

$$U_{U_{f(s)}(f(s_{1}))}^{-1}(U_{f(s)}U_{f(s_{1})}(f(a))) = U_{U_{f(s)}(f(s_{1}))}^{-1}(U_{f(s')}U_{f(s'_{1})}(f(a')))$$

= $U_{U_{f(s')}(f(s'_{1}))}^{-1}(U_{f(s')}U_{f(s'_{1})}(f(a'))).$

Thus

$$U_{t(s)}^{-1}(f(a)) = U_{t(s')}^{-1}(f(a')),$$

Using the same techniques it is easy to see that g(X+Y) = g(X) + g(Y), X and Y in \hat{A} . To complete the proof, it remains to show that $g(X^2) = (g(X))^2$ for all X in \hat{A} . Set $X = U_{s^{-1}}(a)$, where a and s generate a strongly associative subalgebra C of A. We can assume, without loss of generality, that B is fully generated by f(A). Setting m = f(s), n = f(a), we have $g(X^2) = U_{m^{-2}}(n^2)$, $(g(X))^2 = (U_{m^{-1}}(n))^2$ with m, $n \in f(C)$, which is a strongly associative subalgebra of B by Lemma 5.3. Let D be the full sub-algebra of B generated by f(C); D is a strongly associative subalgebra and we have $m, n, m^{-1} \in D$. Thus, $(g(X))^2 = (U_{m^{-1}}(n))^2 = U_{m^{-2}}(n^2) = g(X^2)$ and the proof is complete.

References

- S. A AYUPOV, On the construction of Jordan algebras of selfadjoint operators, Soviet. Math. Dokl. 26 (3) (1982), 623-625.
- 2. E. M. ALFSEN, F. W SHULTZ, AND E. STORMER, A Gelfand-Neumark theorem for Jordan algebras, Adv. in Math. 28 (1978), 11-56.
- 3. P. ARA AND P MENAL, On regular rings with involution, Arch. Math. 42 (1984), 126-130.
- S. K. BERBERIAN, The regular ring of a finite AW*-algebra, Ann. of Math. 65 (2) (1957), 224-240.
- 5. H. BRAUN AND M. KOECHER, "Jordan Algebren," Springer-Verlag, Berlin/New York, 1966.
- C. M. EDWARDS, On the centres of hereditary JBW-subalgebras of a JBW-algebra, Math. Proc. Cambridge Philos. Soc. 85 (1979), 317-324.
- 7. I. HAFNER, The regular ring and the maximal ring of quotients of a finite Baer *-ring. *Muchigan Math. J.* 21 (1974), 153-160.
- 8. H. HANCHE-OLSEN AND E. STORMER, "Jordan Operator Algebras," Pitman, London.
- 9. D. HANDELMAN, Finite Rickart C*-algebras and their properties, Stud. Anal. Adv. in Math. Suppl. Stud. 4 (1979), 171–196.
- N. JACOBSON, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ. 39 (1968)
- N. JACOBSON, K. MACCRIMMON, AND M. PARVATHI, Localization of Jordan algebras, Comm. Algebra 6 (9) (1978), 911–958.
- 12. J. MARTINEZ MORENO, "Sobre Algebras de Jordan Normadas Completas," Tesis doctoral, *Publicaciones de la Universidad de Granada*, 1977.
- 13. S. MONTGOMERY, Rings of quotients for a class of special Jordan rings, J. Algebra 31 (1974), 154-165.

- 14. F. J. MURRAY AND J. VON NEUMANN, On rings of operators, Ann. of Math. 37 (2) (1936), 116–229.
- G. K. PEDERSEN AND E. STORMER, Traces on Jordan algebras, Canad. J. Math. 34 (2) (1982), 370–373.
- E. S. PYLE, The regular ring and the maximal ring of quotients of a finite Baer *-ring, Trans. Amer. Math. Soc. 203 (1975), 210-213.
- 17. R. D. SCHAFFER, "An Introduction to Nonassociative Algebras," Academic Press, New York/London, 1966.
- F. W. SHULTZ, On normed Jordan algebras which are Banach dual spaces, J. Funct. Anal. 31 (1979), 360-376.
- 19. D. M. TOPPING, Jordan algebras of selfadjoint operators, Mem. Amer. Math. Soc. 53 (1965), 1-48.
- 20. J. M. D. WRIGHT, Jordan C*-algebras, Michigan Math. J. 24 (1977), 291-302.