The Jordan Regular Ring Associated to a Finite JBW-Algebra

Pedro Jimenez Garijo
Departamento de Algebra y Fundamentos, Colegıo Unversitario de Almeria, Universidad de Granada, Almeria, Spain

AND
Angel Rodriguez Palacios

Departamento de Teoria de Funciones, Facultad de Ciencias, Unitersidad de Granada, Granada, Spain

Communtcated by N. Jacobson
Received July 1, 1984

Introduction

If A is a finite von Neumann algebra, then there exists a ${ }^{*}$-regular ring R (in the sense of von Neumann) whose lattice of principal left ideals is isomorphic to the lattice of projections of A (it is said that R coordinatizes A); this ring was constructed by Murray and von Neumann [14] by enlarging A to contain certain unbounded operators defined on dense linear subspaces of the Hilbert space on which A acts. By using an abstract version of the Murray-von Neumann construction, Berberian showed in [4] that a finite $A W^{*}$-algebra A is always contained in a continuous *-regular ring R such that R has no new projections. Later, Hafner [7] and Pyle [16] showed that the regular ring constructed by Berberian is the maximal ring of quotients of A.

The analogous problem for Rickart *-rings was considered by Handelman [9], who constructs, for a finite Rickart C^{*}-algebra A, a *-regular ring R containing A such that R has no new projections. Later, Ara and Menal [3] showed that the regular ring constructed by Handelman is the classical ring of quotients of A.

In the case of Jordan algebras, Ayupov [1] has given an enlargement of a $J W$-algebra, similar to the one of Murray and von Neumann for W^{*}-algebras, without going into the problem of regularity or ring of quotients in the finite case.

In this paper, following the abstract construction of Berberian, we show that every finite $J B W$-algebra A is contained in a von Neumann regular Jordan ring \hat{A} such that \hat{A} has no new idempotents. Moreover, we show that every finite $J B W$-algebra has the common multiple property (nonassociative analogous to the Ore condition) and that \hat{A} is the (unique) total ring of quotients of A.

1. Finite $J B W$-Algebras

Recall that a $J B$-algebra A is a real Jordan algebra which is also a Banach space with respect to a norm $\|\|$ having the following properties:
(i) $\left\|a^{2}\right\|=\|a\|^{2}$,
(ii) $\left\|a^{2}\right\| \leqq\left\|a^{2}+b^{2}\right\|$,
(iii) $\|a \cdot b\| \leqq\|a\|\|b\|, \quad a, b \in A$.

When the $J B$-algebra A has an identity element then A is said to be a unital $J B$-algebra. We denote the identity by 1 . For the general theory of $J B$-algebras, the reader is referred to [2,8]. The treatment of $J B$-algebras in [8] is mainly based on [2], except that many proofs are altered. The standard reference for the algebraic theory of Jordan algebras is 「10].

If φ is a positive operator on a unital $J B$-algebra A, it is clear that for any positive linear form f, the mapping $(x, y) \rightarrow\langle f, \varphi(x \cdot y)\rangle$ is a positive symmetric bilinear mapping. From the Cauchy-Schwarz inequality, it follows that $|\langle f, \varphi(x \cdot 1)\rangle|^{2} \leqq\left\langle f, \varphi\left(x^{2}\right)\right\rangle \cdot\langle f, \varphi(1)\rangle$. Thus, $\varphi=0$ if and only if $\varphi(1)=0$. In particular, since for all elements a in A, U_{a} is a positive operator [2, Proposition 2.7], we have $U_{a_{1}} \ldots U_{a_{n}}=0$ iff $U_{a_{1}} \ldots U_{a_{n}}(1)=0$, with $a_{1} \ldots a_{n}$ in A. On the other hand, if a, b, c are elements in a unital $J B$ algebra A, it is not difficult to show, using the identity $\left[U_{x}(y)\right]^{2}=$ $U_{\mathrm{r}} U_{1}\left(x^{\prime}\right)$ [8, Identity 2.40], that $U_{a} U_{b}\left(c^{2}\right)=0$ if and only if $U_{t} U_{b}\left(a^{2}\right)=0$. Thus, in a unital $J B$-algebra, the following are equivalent: (i) $U_{u} U_{b} U_{t}=0$. (ii) $U_{a} U_{b}\left(c^{2}\right)=0$; (iii) $U_{c} U_{b}\left(a^{2}\right)=0$; (iv) $U_{c} U_{b} U_{a}=0$. In particular, $U_{a}\left(b^{2}\right)=0$ iff $U_{b}\left(a^{2}\right)=0$.

From here, using the identity 2.33 in [2], we have the following

Lemma 1.1. If e is an idempotent element in a unital $J B$-algebra A, then for all a in A the following conditions are equivalent: (i) $e \cdot a=0$; (ii) $e \cdot a^{2}=0$; (iii) $U_{e}\left(a^{2}\right)=0$.

A $J B W$-algebra A is a $J B$-algebra which is the dual of a Banach space. In [6; Lemma 1] it is shown that every $J B W$-algebra is unital.

In this paper the following theorem is essential.

Theorem 1.2. If a and b are elements in a unital JB-algebra (resp. JBWalgebra) A, then the closed (resp. w^{*}-closed) subalgebra of A generated by a, b and 1 is isometrically isomorphic to a JC-algebra (resp. JW-algebra).

Proof. The assertion referring to $J B$-algebras is known [20, Proposition 2.1]. Now, if A is a $J B W$-algebra, the subalgebra B of A generated by a, b and 1 is (by the Shirshov-Cohn Theorem) a special Jordan algebra; since the product is w^{*}-continuous in each variable [18, Lemma 2.2], the w^{*}-closure of B is a w^{*}-closed subalgebra of A which satisfies all the s-identities. Thus, from [2, Lemma 9.4] it is a $J C$-algebra and by [18, Corollary 2.4] a $J W$-algebra.

Let A be a $J B W$-algebra; it is shown in [2, Proposition 4.9] that the set $P(A)$ of idempotent elements in A, with the ordering $e \leqq f$ iff $e \cdot f=e$ (for idempotent elements this ordering is equivalent to $e \leqq f$ iff $f-e \in A^{2}$), is a complete, orthomodular, and complemented lattice. We denote $e \vee f=\sup (e, f)$ and $a \wedge f=\inf (e, f), e$ and f in $P(A)$.

Lemma 1.3. Let A be a JBW-algebra and consider two idempotent elements e, f in A. Then $e \vee f$ and $e \wedge f$ are contained in any w^{*}-closed subalgebra of A containing e and f.

Proof. Let B be the w^{*}-closed subalgebra of A generated by e and $f ; B$ is a $J B W$-algebra and so B has an identity element p. It is straightforward to verify that $e \vee f=p$; hence, if C is any w^{*}-closed subalgebra of A containing e and f, we have $e \vee f \in C$. We divide the second part of the proof into three steps:
(i) If C is a w^{*}-closed subalgebra of A containing e, f, and 1 then, since $e \wedge f=1-(1-e) \vee(1-f)$, it is obvious that $e \wedge f \in C$.
(ii) If C contains e and f, and is of the form $U_{h}(A), h$ idempotent, we have $e \cdot h=e, f \cdot h=f$, so $e, f \leqq h$. Thus, $(e \wedge f) \cdot h=e \wedge f$ and we have $e \wedge f \in C$.
(iii) Now, the w^{*}-closed subalgebra B of A generated by e and f is a w^{*}-closed subalgebra of the $J B W$-algebra $U_{p}(A)$, where $p=e \vee f$ is the identity element. Thus, by (i) $e \wedge f$ (in $\left.U_{p}(A)\right) \in B$, and from (ii) we have $e \wedge f($ in $A)=e \wedge f\left(\right.$ in $\left.U_{p}(A)\right) \in B$.

Following [2, p. 39] we say that two idempotents e, f in a $J B W$-algebra A are equivalent and write $e \sim f$ if there exists a finite family $s_{1} \ldots s_{n}$ of symmetries in A such that $U_{s_{n}} \ldots U_{s_{1}}(e)=f$. Recall that a lattice L is called modular if $e \leqq f$ implies $(e \vee f) \wedge g=e \vee(f \wedge g), \quad e, f, g \in L$. Following [19], an idempotent e in a $J B W$-algebra is called finite if $f \leqq e$ and $f \sim e$ imply $f=e$. A $J W B$-algebra A is called finite if all idempotents in A are finite. Likewise, if A is a $J W B$-algebra, by a center-valued trace we
shall mean a mapping $T: A \rightarrow Z(A)(Z(A)$ denotes the center of $A)$ such that:

$$
\begin{aligned}
& T_{1}: T \text { is linear. } \\
& T_{2}: T(z \cdot a)=z \cdot T(a), a \text { in } A, z \text { in } Z(A) . \\
& T_{3}: a \geqq 0 \text { implies } T(a) \geqq 0, a \in A . \\
& T_{4}: T(U,(a))=T(a), \text { for } a \text { in } A \text { and } s \text { a symmetry in } A . \\
& T_{5}: T(1)=1 .
\end{aligned}
$$

If $a>0$ implies $T(a)>0$, we say that T is non-degenerate. From [15, p. 371] it follows that T_{4} is equivalent to

$$
T_{4}^{\prime}: T(a \cdot(b \cdot c))=T((a \cdot b) \cdot c) \text { for all elements } a, b, c \text { in } A
$$

It is not difficult to prove that the usual trace on the exceptional Jordan algebra M_{3}^{8}, with the obvious normalization, is a $u^{* *}$-continuous and nondegenerate center-valued trace. (See [17].)

Theorem 1.4. Let A be a JBW-algebra. Then the following conditions are equivalent:
(i) A is a finite $J B W$-algebra.
(ii) $P(A)$ is a modular lattice.
(iii) A has a \mathfrak{w}^{*}-continuous and non-degenerate center-valued trace.
(iv) A has a non-degenerate center-valued trace.

For the proof we shall need the following

Lemma 1.5. Let X be a non-empty compact set and let A be a unital $J B$-algebra. If f is a continuous function from X into A, then the following conditions are equivalent:
(i) f is a positive element in the JB-algebra $C(X, A)$.
(ii) $f(x) \geqq 0$ for all x in X.

Proof. It is obvious that (i) implies (ii). Reciprocally, if f is an element in $C(X, A)$ such that $f(x) \geqq 0$ for all x in X, then $f(x)$ is a square in A, for all x in X. Thus, there exists a unique positive element y in A such that $y^{2}=f(x)$. Hence, we can define a mapping $g: X \rightarrow A$ such that $g(x)=y$. It is obvious that $g^{2}=f$ and $g \in B(X, A)$ (algebra of bounded functions from X into A); thus, f is a positive element in $B(X, A)$. Since $C(X, A) \subset B(X, A)$ and an element in a unital $J B$-algebra is positive if and only if it is positive
in a closed subalgebra in which it is contained (see [2, pp. 14-15]), it follows that f is a positive element in $C(X, A)$.

Proof of the theorem. It is clear that (iii) implies (iv) and (iv) implies (i).
(i) \Rightarrow (ii). Let e, f, g be idempotents in A with $e \leqq g ;$ set $a=g-e+\frac{1}{2} e$. Thus, $\left\{a^{n}\right\} \rightarrow^{w^{*}} g-e$. Let B be the w^{*}-closed subalgebra of A generated by a, f and 1 ; from Theorem $1.1, B$ is a $J W$-algebra which contains $g-e$; moreover, $g-\frac{1}{2} e=a \in B$. Thus, g and e are contained in B. Since it is clear that $p \sim q$ (in B) implies $p \sim q$ (in A), it follows that B is finite. Hence, by [19, Proposition 14], $(e \vee f) \wedge g=e \vee(f \wedge g)$ and so $P(A)$ is a modular lattice.
(ii) \Rightarrow (iii). Using [18, Theorem 3.9] and [19, Theorem 26] the proof is reduced to proving the existence of a w^{*}-continuous and non-degenerate center-valued trace on $C\left(X, M_{3}^{8}\right)$ (algebra of continuous functions from a hyperstonean compact space X into $\left.M_{3}^{8}\right)$. Let f be an element in $C\left(X, M_{3}^{8}\right)$; if t is the usual (normalized) trace on M_{3}^{8}, the mapping $\hat{f}: x \rightarrow t(f(x))$ is a center-valued continuous function from X into the center of M_{3}^{8}. That is, \hat{f} is an element in the center of $C\left(X, M_{3}^{8}\right)$; thus, $T: f \rightarrow \hat{f}$ is a center-valued mapping defined on $C\left(X, M_{3}^{8}\right)$. It is clear that T verifies $T_{1}, T_{2}, T_{4}^{\prime}, T_{5} ; T_{3}$ is an immediate corollary of Lemma 1.5. In order to prove the w^{*}-continuity of T we recall that the Banach space $C\left(X, M_{3}^{8}\right)$ is identified in a natural way with the dual of the Banach space $C(X)_{*} \otimes_{\gamma} M_{3^{*}}^{8}$, where $C(X)_{*}$ and $M_{3^{*}}^{8}$ denote the preduals of $C(X)$ and M_{3}^{8}, respectively, and γ denotes the greatest cross norm on the (algebraic) tensor product (see [18, pp. 362 and 375]). Now, it is not difficult to show that, in this identification, our trace T is just the transpose mapping of the operator T_{*} on $C(X)_{*} \otimes M_{3^{*}}^{8}$ defined by $T_{*}(a \otimes b)=a \otimes t_{*}(b), a \in C(X)_{*}, b \in M_{3^{*}}^{8}$, where t_{*} denotes the pretranspose mapping of the usual (normalized) centervalued operator t on M_{3}^{8}. Therefore T is w^{*}-continuous.

2. The Support

If a is an element in $a J B W$-algebra A, the w^{*}-closed subalgebra B of A generated by a is a $J B W$-algebra and so B has an identity element e and obviously $e \cdot a=a$. If f is an idempotent in A such that $f \cdot a=a$, then a is contained in the subspace $A_{1}^{(f)}$ of the Peirce decomposition of A relative to f (see [10, pp. 118-119]). $A_{1}^{(f)}$ is a w^{*}-closed subalgebra of A; thus, B is contained in $A_{1}^{(f)}$ and so $e \in A_{1}^{(f)}$; thus, $e \cdot f=e$; that is, $e \leqq f$.

Thus, we have shown that for every element a in a $J B W$-algebra A there exists a smallest idempotent e such that $e \cdot a=a ; e$ is called the support of a,
and denoted by $s(a)$. It is clear that $1-s(a)$ is the largest idempotent e such that $e \cdot a=0$. From Lemma 1.1 it is trivial that $s(a)=s\left(a^{2}\right)$ for all $a \in A$. Moreover, since the operators U_{x} are positive we have that if $a \leqslant b$ are positive elements, then $s(a) \leqslant s(b)$ explain.

Proposition 2.1. If a is an element in a JBW-algebra A, such that $0 \leqslant a \leqslant 1$, then $s(a)=w^{*}-\lim \left\{1-(1-a)^{n}\right\}$.

Proof. Since $0 \leqq a \leqq 1$, it is clear that $\left\{1-(1-a)^{n}\right\}$ is a norm bounded increasing sequence; thus, $\left\{1-(1-a)^{n}\right\} \quad w^{*}$-converges to $y=\sup \left\{1-(1-a)^{n}\right\} \quad\left[2, \quad\right.$ Lemma 4.1]; hence, $\quad\left\{(1-a)^{n}\right\} \rightarrow w^{w^{*}} 1-y$. From [2, Lemma 4.1] it follows that $\left\{(1-a)^{2 n}\right\} \rightarrow{ }^{n *}(1-y)^{2}$; thus, $(1-y)^{2}=1-y$ and y is an idempotent. On the other hand, $\left\{(1-a) \cdot(1-a)^{n}\right\}=\left\{(1-a)^{n+1}\right\} \rightarrow^{n^{*}} 1-y$; thus, $(1-a) \cdot(1-y)=1-y$ and so $y \cdot a=a$. Now, if p is an idempotent in A such that $p \cdot a=a$, we have $(1-p) \cdot a=0$, which implies $(1-p) \cdot a^{n}=0$ for all n in N, and so $\left[1-(1-a)^{n}\right] \cdot(1-p)=0$ for all n; since $\left\{1-(1-a)^{n}\right\} \rightarrow^{n^{*}} y$ it follows that $y \cdot p=y$, and so $y \leqq p$. This completes the proof.

Proposition 2.2. Let $a . b$ be elements in a finite $J B W$-algebra A. Denote by T the w^{*}-continuous and non-degenerate center-valued trace on A. Then,

$$
T\left(s\left(U_{a}\left(b^{2}\right)\right)\right)=T\left(s\left(U_{b}\left(a^{2}\right)\right)\right) .
$$

Proof. Since the trace form is associative, $T\left(U_{u}(b) \cdot c\right)=T\left(b \cdot U_{u}(c)\right)$. In particular $T\left(a^{2} \cdot b\right)=T\left(U_{a}(b)\right)$. On the other hand, from the Shirshov-Cohn Theorem, it follows that $U_{a} U_{b}\left(U_{b}\left(a^{2}\right)\right)^{n-1}=\left(U_{a}\left(b^{2}\right)\right)^{n}$ for all n in N, a, b in A. Then, $T\left(\left(U_{b}\left(a^{2}\right)\right)^{n}\right)=T\left(U_{b}\left(a^{2}\right) \cdot\left(U_{b}\left(a^{2}\right)\right)^{n-1}\right)=$ $T\left(a^{2} \cdot U_{b}\left(U_{b}\left(a^{2}\right)\right)^{n-1}\right)=T\left(U_{a} U_{b}\left(U_{b}\left(a^{2}\right)\right)^{n-1}\right)=T\left(\left(U_{a}\left(b^{2}\right)\right)^{n}\right)$ for all n in N, a, b in A. Moreover, we can assume without loss of generality that $\left\|U_{a}\left(b^{2}\right)\right\| \leqq\left\|U_{b}\left(a^{2}\right)\right\| \leqq 1$. Now, the required equality follows from Proposition 2.1 and the w^{*}-continuity of the trace.

3. The Construction of the Ring

Let A be a finite $J B W$-algebra. Following Berberian [4], if $\left(e_{n}\right)$ is a sequence of idempotents in $A, e_{n} \uparrow$ means that $e_{n} \leqq e_{n+1}$. If moreover $\sup \left(e_{n}\right)=e$, we write $e_{n} \uparrow e$. In case $e_{n} \uparrow 1$ we say that $\left(e_{n}\right)$ is an SDD (Strongly Dense Domain).

Lemma 3.1. If $\left(e_{n}\right),\left(f_{n}\right), \ldots,\left(k_{n}\right)$ are SDD's, then $\left(e_{n} \wedge f_{n} \wedge \cdots \wedge k_{n}\right)$ is a SDD.

Proof. First, note that if e and f are idempotents in a $J B W$-algebra A then, by Theorem 1.2, Lemma 1.3, and [19, Corollary 8], the Parallelogram law $e \vee f-e \sim f-e \wedge f$ holds. Thus, $T(e)+T(f)=$ $T(e \vee f)+T(e \wedge f)$. Now, to prove the Lemma it is sufficient to consider two SDD's $\left(e_{n}\right),\left(f_{n}\right)$. Set $g_{n}=e_{n} \wedge f_{n}, g=\sup \left(g_{n}\right)$; evidently $g_{n} \uparrow g$; since $1-g \leqq 1-g_{n}=\left(1-e_{n}\right) \vee\left(1-f_{n}\right)$, we have $T(1-g) \leqq T\left(1-e_{n}\right)+$ $T\left(1-f_{n}\right)$. Since T is w^{*}-continuous and non-degenerate we have $g=1$.

Definition 3.2. Let A be a $J B W$-algebra and let $\left\{x_{n}\right\}$ be a sequence of elements in A; a $\operatorname{SDD}\left(e_{n}\right)$ is said to be admissible for $\left\{x_{n}\right\}$ if

$$
m \leqq n \text { implies }\left(x_{n}-x_{m}\right) \cdot e_{m}=0
$$

Our purpose is to show that the set A_{C} of the sequences $\left\{x_{n}\right\}$ in A for which there exists an admissible SDD is a subalgebra of the Jordan algebra of all sequences in A. It is obvious that all constant sequences are in A_{C}.

Lemma 3.3. If $\left\{x_{n}\right\},\left\{y_{n}\right\}$ are in A_{C} and $\lambda \in R$, then $\left\{x_{n}+y_{n}\right\}$ and $\left\{\lambda x_{n}\right\}$ are in A_{C}.

Proof. It is clear that if e and f are idempotents in a unital $J B$-algebra A and $e \leqslant f$, the subalgebra of A generated by e, f, and 1 is $R 1+R e+R f$ which, from [2, Lemma 2.11], is strongly associative. Hence, by [5, Satz 3.7], we have $U_{e} U_{f}=U_{e}$. From this observation and Lemma 1.1 it follows that if $f \cdot a=0, e \leqq f$, then e. $\mathbf{a}=0$. Thus, if $\left(e_{n}\right)$ is an admissible SDD for $\left\{x_{n}\right\}$ and $\left(f_{n}\right)$ is an admissible SDD for $\left\{y_{n}\right\}$ then $\left(e_{n} \wedge f_{n}\right)$ is an admissible SDD for $\left\{x_{n}+y_{n}\right\}$. The second part of the Lemma is trivial.

The discussion of product requires another concept:
Definition 3.4. If $x \in A$ and e is an idempotent in A, we write

$$
x^{-1}(e)-1-s\left(U_{x}(1-e)\right)
$$

It is clear that $x^{-1}(e)$ is the largest idempotent f such that $f \cdot U_{x}(1-e)=0$.

Lemma 3.5. Let A be a finite JBW-algebra. If $x \in A$ and e is an idempotent in A, then

$$
T(e) \leqq T\left(x^{-1}(e)\right)
$$

Proof. $T\left(1-x^{-1}(e)\right)=T\left(s\left(U_{x}(1-e)\right)\right)$; from Proposition 2.2 it follows that $\quad T\left(1-x^{-1}(e)\right)=T\left(s\left(U_{1-e}\left(x^{2}\right)\right)\right)$, since it is clear that $s\left(U_{1-e}\left(x^{2}\right)\right) \leqq 1-e$, we conclude $T\left(1-x^{-1}(e)\right) \leqq T(1-e)$, and so $T(e) \leqq T\left(x^{-1}(e)\right)$.

Lemma 3.6. Let $\left(e_{n}\right)$ be an admissible SDD for the sequence $\left\{x_{n}\right\}$. Then, for any $\operatorname{SDD}\left(f_{n}\right),\left(e_{n} \wedge x_{n}^{-1}\left(f_{n}\right)\right)$ is an SDD also.

Proof. If a and b are elements in any Jordan algebra J, and e is an idempotent in J, it is not difficult, using the Peirce decomposition of J relative to the idempotent e, to show that if $a \cdot e=b \cdot e$ then $U_{d}(e)=U_{b}(e)$ (see [10, pp. 118-119]). Now, set $g_{n}=e_{n} \wedge x_{n}^{-1}\left(f_{n}\right)$. If $m \leqq n$ we have $g_{m} \leqq 1-s\left(U_{x_{m}}\left(1-f_{m}\right)\right.$) (Definition 3.4); thus, $g_{m} \cdot U_{x_{m}}\left(1-f_{m}\right)=0$ and so $U_{g_{m}}\left(U_{r_{m}}\left(1-f_{m}\right)\right)=0$; hence, $U_{1-f_{m}} U_{x_{m}}\left(g_{m}\right)=0$ and so $U_{1-f_{n}} U_{1-f_{m}}$ $U_{\chi_{m}}\left(g_{m}\right)=0$. Since $f_{m} \leqq f_{n}$, we have $U_{1-f_{n}} U_{x_{m}}\left(g_{m}\right)=0$. Since $\left(e_{n}\right)$ is an admissible SDD for $\left\{x_{n}\right\}$ we have $\left(x_{n}-x_{n}\right) \cdot e_{m}=0$ and so $\left(x_{n}-x_{m}\right) \cdot g_{m}=0$. Thus, $U_{x_{m}}\left(g_{m}\right)=U_{x_{n}}\left(g_{m}\right)$; hence, we have $U_{1-f_{n}}$ $U_{r_{n}}\left(g_{m}\right)=0$ and so $U_{g_{m}} U_{r_{n}}\left(1-f_{n}\right)=0$. From [2, Proposition 2.8] it follows that $g_{m} \cdot U_{x_{n}}\left(1-f_{n}\right)=0$ and so $g_{m} \leqq 1-s\left(U_{x_{n}}\left(1-f_{n}\right)\right)$. That is, $g_{m} \leqq$ $x_{n}^{-1}\left(f_{n}\right)$; hence, $g_{n} \uparrow$.

Moreover, from Lemma 3.5, we have $T\left(f_{n}\right) \leqq T\left(x_{n}^{-1}\left(f_{n}\right)\right.$) for all n; indeed, $\quad 1-g_{n}=\left(1-e_{n}\right) \vee\left(1-x_{n}^{-1}\left(f_{n}\right)\right)$; thus, $T\left(1-g_{n}\right) \leqq T\left(1-e_{n}\right)+$ $T\left(1-x_{n}^{-1}\left(f_{n}\right)\right) \leqq T\left(1-e_{n}\right)+T\left(1-f_{n}\right)$. It follows that $g_{n} \uparrow 1$.

Proposition 3.7. If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are in A_{C}, then $\left\{x_{n} \cdot y_{n}\right\}$ is in A_{C}.
Proof. If $\left(e_{n}\right)$ is an admissible SDD for $\left\{x_{n}\right\}$ and $\left(f_{n}\right)$ is an admissible SDD for $\left\{y_{n}\right\}$, we shall prove that ($\left.\left[f_{n} \wedge y_{n}^{-1}\left(e_{n}\right)\right] \wedge\left[e_{n} \wedge x_{n}^{-1}\left(f_{n}\right)\right]\right)$ is an admissible SDD for $\left\{x_{n} \cdot y_{n}\right\}$. Setting $k_{n}=\left[f_{n} \wedge y_{n}^{-1}\left(e_{n}\right)\right] \wedge$ $\left[e_{n} \wedge x_{n}^{-1}\left(f_{n}\right)\right]$, it is clear, by Lemmas 3.6 and 3.1 , that $\left(k_{n}\right)$ is an SDD. Moreover, if $m \leqq n$ we have
(i) $\left(x_{n}-x_{m}\right) \cdot e_{m}=0$,
(ii) $\left(y_{n}-y_{m}\right) \cdot f_{m}=0$,
(iii) $k_{m} \leqq 1-s\left(U_{\gamma_{m}}\left(1-f_{n}\right)\right)$,
(iv) $k_{m} \leqq 1-s\left(U_{y_{m}}\left(1-e_{m}\right)\right.$,
(v) $k_{m} \leqq e_{m}$,
(vi) $k_{m} \leqq f_{m}$.

Since $\left(x_{n}-x_{m}\right) \cdot e_{m}=0$, we have $\left(x_{n}-x_{m}\right)^{2} \cdot e_{m}=0$, and so $\left(1-e_{m}\right) \cdot\left(x_{n}-x_{m}\right)^{2}=\left(x_{n}-x_{m}\right)^{2}$. Thus, $U_{1-e_{m}}\left(\left(x_{n}-x_{m}\right)^{2}\right)=\left(x_{n}-x_{m}\right)^{2}$; since $k_{m} \leqq 1-s\left(U_{y_{m}}\left(1-e_{m}\right)\right)$ we have $k_{m} \cdot U_{r_{m}}\left(1-e_{m}\right)=0$; thus, $U_{k_{m}}$ $U_{1 m}\left(1-e_{m}\right)=0$ and $U_{k_{m}} U_{y_{m}} U_{1} \quad e_{m}=0$. So $U_{k_{m}} U_{y_{m}} U_{1} \quad c_{m}\left(\left(x_{n}-x_{m}\right)^{2}\right)=0$; hence, $U_{k_{k m}} U_{1 m}\left(\left(x_{n}-x_{m}\right)^{2}\right)=0$. Thus, by [2, Proposition 2.8], we have $k_{m} \cdot U_{y_{m}}\left(\left(x_{n}-x_{m}\right)^{2}\right)=0$, and so $k_{m} \leqq 1-s\left(U_{3 m}\left(\left(x_{n}-x_{m}\right)^{2}\right)\right)$. In an analogous way, we obtain $k_{m} \leqq 1-s\left(U_{x_{m}}\left(\left(y_{n}-y_{m}\right)^{2}\right)\right)$. Since $k_{m} \leqq e_{m}$, $k_{m} \leqq f_{m}$, we can write
(i) $k_{m} \leqq 1-s\left(x_{n}-x_{m}\right)$,
(ii) $k_{m} \leqq 1-s\left(y_{n}-y_{m}\right)$,
(iii) $k_{m} \leqq 1-s\left(U_{y_{m}}\left(\left(x_{n}-x_{m}\right)^{2}\right)\right)$,
(iv) $k_{m} \leqq 1-s\left(U_{x_{m}}\left(\left(y_{n}-y_{m}\right)^{2}\right)\right)$.

Let B be the w^{*}-closed subalgebra of A generated by $x_{n}-x_{m}, y_{m}$, and 1 . By Theorem 1.2., B is a $J W$-algebra which contains $1-s\left(x_{n}-x_{m}\right)$ and $1-s\left(U_{y_{m}}\left(\left(x_{n}-x_{m}\right)^{2}\right)\right) \quad$ and \quad therefore $\quad h=\left(1-s\left(x_{n}-x_{m}\right)\right) \wedge$ $\left(1-s\left(U_{y_{m}}\left(x_{n}-x_{m}\right)^{2}\right)\right) \quad$ (Lemma 1.3); we have $h \cdot\left(x_{n}-x_{m}\right)=0$ and $\left.h \cdot U_{v_{m}}\left(x_{n}-x_{m}\right)^{2}\right)=0$ which, in B, are equivalent to $h\left(x_{n}-x_{m}\right)=0$, $h y_{m}\left(x_{n}-x_{m}\right)=0$ where the juxtaposition denotes the associative product; thus, $h\left(x_{n}-x_{m}\right) y_{m}=0=h y_{m}\left(x_{n}-x_{m}\right)$ and so $h\left(\left(x_{n}-x_{m}\right) \cdot y_{m}\right)=0=$ $\left(\left(x_{n}-x_{m}\right) \cdot y_{m}\right) h$. Hence, $\left(\left(x_{n}-x_{m}\right) \cdot y_{m}\right) \cdot h=0$. Since $k_{m} \leqq h$, we have $\left(\left(x_{n}-x_{m}\right) \cdot y_{m}\right) \cdot k_{m}=0$. Similarly, we obtain $\left(\left(y_{n}-y_{m}\right) \cdot x_{m}\right) \cdot k_{m}=0$; hence $\left(\left(x_{n}-x_{m}\right) \cdot y_{m}+\left(y_{n}-y_{m}\right) \cdot x_{m}\right) \cdot k_{m}=0$. Since $\quad\left(x_{n}-x_{m}\right) \cdot k_{m}=0=$ $\left(y_{n}-y_{m}\right) \cdot k_{m}$, we have $\left(\left(x_{n}-x_{m}\right) \cdot\left(y_{n}-y_{m}\right)\right) \cdot k_{m}=0$; therefore, $\left(\left(x_{n}-x_{m}\right) \cdot y_{m}+\left(y_{n}-y_{m}\right) \cdot x_{m}+\left(x_{n}-x_{m}\right) \cdot\left(y_{n}-y_{m}\right)\right) \cdot k_{m}=0 \quad$ and \quad so $\left(x_{n} \cdot y_{n}-x_{m} \cdot y_{m}\right) \cdot k_{m}=0$. This completes the proof.

Definition 3.8. If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are contained in the Jordan algebra A_{C}, we say that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are equivalent, written $\left\{x_{n}\right\} \equiv\left\{y_{n}\right\}$, if there exists a SDD $\left(g_{n}\right)$ such that $\left(x_{n}-y_{n}\right) \cdot g_{n}=0$ for all n.

The equivalent is said to be "implemented" via the $\operatorname{SDD}\left(g_{n}\right)$. Reflexivity and symmetry of equivalence are obvious. Moreover, if $\left\{x_{n}\right\} \equiv\left\{y_{n}\right\}$ via $\left(g_{n}\right)$ and $\left\{y_{n}\right\} \equiv\left\{z_{n}\right\}$ via $\left(h_{n}\right)$, then $\left\{x_{n}\right\} \equiv\left\{z_{n}\right\}$ via $\left(g_{n} \wedge h_{n}\right)$. Thus, the relation defined above is an equivalence relation.

Proposition 3.9. The set $A_{C O}-\left\{\left\{x_{n}\right\} \in A_{C}:\left\{x_{n}\right\} \equiv 0\right\}$ is an ideal of A_{C}.

Proof. It is clear that if $\left\{x_{n}\right\} \equiv 0$ via $\left(h_{n}\right)$ and $\left\{y_{n}\right\} \equiv 0$ via $\left(k_{n}\right)$, then $\left\{x_{n}+y_{n}\right\} \equiv 0$ via $\left(h_{n} \wedge k_{n}\right)$. It is obvious that if $\left\{x_{n}\right\} \in A_{C O}, \lambda \in R$ then $\left\{\lambda x_{n}\right\} \in A_{C O}$. If $\left\{x_{n}\right\} \equiv 0$ via $\left(e_{n}\right)$ it is clear that $\left(e_{n}\right)$ is an admissible SDD for $\left\{x_{n}\right\}$; let $\left\{y_{n}\right\}$ be an element in A_{C} and let $\left(f_{n}\right)$ be an admissible SDD for $\left\{y_{n}\right\}$; set $g_{n}=\left(f_{n} \wedge y_{n}^{-1}\left(e_{n}\right)\right) \wedge\left(e_{n} \wedge x_{n}^{-1}\left(f_{n}\right)\right) ;\left(g_{n}\right)$ is a SDD and we have
(i) $x_{m} \cdot e_{m}=0$,
(ii) $\left(y_{n}-y_{m}\right) \cdot f_{m}=0$,
(iii) $g_{m} \leqq 1-s\left(U_{y m}\left(1-e_{m}\right)\right)$,
(iv) $g_{m} \leqq 1-s\left(U_{r_{m}}\left(1-f_{m}\right)\right)$,
(v) $g_{m} \leqq e_{m}$,
(vi) $g_{m} \leqq f_{m}$,
thus (see the proof of Proposition 3.7) we obtain $\left(x_{m} \cdot y_{m}\right) \cdot g_{m}=0$ for all m. This completes the proof.

The quotient Jordan algebra $A_{C} / A_{C O}$ is denoted \hat{A}. We denote the elements of \hat{A} by capitals letters X, Y, \ldots. If $x \in A$, we write $\bar{x}=\{x\}+A_{c o}$. The mapping $x \rightarrow \bar{x}$ is injective. For, if $\left(e_{n}\right)$ is a SDD such that $x \cdot e_{n}=0$ for all n, since the product is w^{*}-continuous, we have $x=0$. Thus, we have the following.

Theorem 3.10. Let A be a finite JBW-algebra. Define \hat{A} as indicated above. Then,
(i) \hat{A} is a real Jordan algebra with identity element $\overline{1}$.
(ii) The mapping $x \rightarrow \bar{x}$ is an isomorphism from A onto a subalgebra \bar{A} of $\hat{A} . \hat{A}$ is said to be the regular Jordan ring associated to A.

Remark. \hat{A} is called regular for, as we shall see later, \hat{A} is regular in the sense of von Neumann. In view of the above Theorem we will identify A with \bar{A} and therefore the notation \bar{x}, for x in A, will be avoided.

We conclude this section by showing the behaviour of the w^{*}-closed subalgebras of A with respect to the extension constructed above.

Proposition 3.11. Let A be a finite JBW-algebra and let B be a w^{*}-closed subalgebra of A such that $1 \in B$. Then, B is a finite JBW-algebra and the mapping $\left\{x_{n}\right\}+B_{C O} \rightarrow\left\{x_{n}\right\}+A_{C O}$ is an isomorphism from \hat{B} in \hat{A}.

Proof. It is clear that B is a finite $J B W$-algebra and every $\operatorname{SDD}\left(e_{n}\right)$ in B is also a SDD in A. Thus, $\left\{x_{n}\right\}+B_{C O} \rightarrow\left\{x_{n}\right\}+A_{C O}$ is a well-defined mapping; it is obvious that it is a ring homomorphism. Suppose $\left\{x_{n}\right\} \in B_{C}$ and $\left\{x_{n}\right\} \in A_{C O}$; then, there exists a $\operatorname{SDD}\left(k_{n}\right)$ (in A) such that $x_{n} \cdot k_{n}=0$ for all n. Since B is a w^{*}-closed subalgebra of A, we have $s(x) \in B$ for all $x \in B$. Thus, $1-s\left(x_{n}\right) \in B$ for all n; set $g_{n}=1-s\left(x_{n}\right)$. Denote $f_{m}=\inf \left\{g_{n}, n \geqq m\right\}$. It is easy to see that $k_{n} \leqq f_{n} \leqq g_{n}$ and so (f_{n}) is a SDD (in B) such that $x_{n} \cdot f_{n}=0$ for all n; hence, $\left\{x_{n}\right\} \in B_{C o}$ and the mapping is injective.

Remark. In what follows we will consider $\hat{B} \subset \hat{A}$.
Let C be a finite W^{*}-algebra; in particular, C is a finite $A W^{*}$-algebra. Let \hat{C} be the *-regular ring associated to C by Berberian's construction. The set $\operatorname{Sym}(C)$ of self-adjoint elements in C is a finite $J B W$-algebra. Let $\widehat{\operatorname{Sym}(C)}$ be the Jordan regular ring associated to $\operatorname{Sym}(C)$. Then, we obtain the following result:

Proposition 3.12. If C is a finite W^{*}-algebra and \hat{C} denotes its associated ${ }^{*}$-regular ring, then $\operatorname{Sym}(\hat{C})=\widehat{\operatorname{Sym}(C)}$.

Proof. It is clear that our construction of the Jordan regular ring associated to a finite $J B W$-algebra A is similar, except for notation, to Berberian's construction of the *-regular ring associated to a finite $A W^{*}$-algebra (note that for a projection e and a self-adjoint element x in a C^{*}-algebra $x \cdot e=0$ is equivalent to $x e=e x=0$). The Proposition is a consequence of the characterization of self-adjoint elements of the *-regular ring associated to a finite $A W^{*}$-algebra [4, Lemma 3.2].

4. The Regularity of the Ring

Proposition 4.1. If $X=\left\{x_{n}\right\}+A_{C O}$ and the x_{n} are invertible for all n, then X is invertible and $X^{-1}=\left\{x_{n}^{-1}\right\}+A_{\text {Co }}$.

Proof. First, note that if e and x are elements in a $J B W$-algebra A, where e is idempotent and x is not a zero divisor (that is, U_{x} is injective), then $s\left(U_{e}\left(x^{2}\right)\right)=e$; for, it is clear that $e \cdot U_{e}\left(x^{2}\right)=U_{e}\left(x^{2}\right)$ and moreover if f is an idempotent such that $f \cdot U_{e}\left(x^{2}\right)=U_{e}\left(x^{2}\right)$, then $(1-f) \cdot U_{e}\left(x^{2}\right)=0$, and so $U_{1-f} U_{e}\left(x^{2}\right)=0$. Thus, $U_{x} U_{e}(1-f)=0$ and so $U_{e}(1-f)=0$; hence, $e \cdot(1-f)=0$. That is, $e \leqq f$.

Now, let $\left(e_{n}\right)$ be an admissible SDD for $\left\{x_{n}\right\}$. Set $f_{n}=s\left(U_{x_{n}}\left(e_{n}\right)\right)$. If $m \leqq n$, we have $\left(x_{n}-x_{m}\right) \cdot e_{m}=0$, so $U_{x_{m}}\left(e_{m}\right)=U_{x_{n}}\left(e_{m}\right) \leqq U_{x_{n}}\left(e_{n}\right)$; it follows that $\quad f_{n} \uparrow$. Moreover, by Proposition 2.2, $\quad T\left(f_{n}\right)=T\left(s\left(U_{\imath_{n}}\left(e_{n}\right)\right)\right)=$ $T\left(s\left(U_{e_{n}}\left(x_{n}^{2}\right)\right)\right)=T\left(e_{n}\right)$; so $f_{n} \uparrow 1$.

If $m \leqq n$, set $e_{0}=1-s\left(x_{n}-x_{m}\right)$. By Theorem 1.2, the w^{*}-closed subalgebra B of A generated by x_{n}, x_{m}, and 1 is a $J W$-algebra which contains e_{0}; moreover, from [2, Proposition 2.4] it follows that x_{n}^{-1} and x_{m}^{-1} lie in B, in which it is not difficult to show that $\left(x_{n}^{-1}-x_{m}^{-1}\right) \cdot s\left(U_{x_{m}}\left(e_{0}\right)\right)=0$. Since $\left(x_{n}-x_{m}\right) \cdot e_{m}=0$ we have $e_{m} \leqq e_{0} ;$ so $U_{x_{m}}\left(e_{m}\right) \leqq U_{x_{m}}\left(e_{0}\right)$. Thus, $s\left(U_{\mathrm{r}_{m}}\left(e_{m}\right)\right) \leqq s\left(U_{x_{m}}\left(e_{0}\right)\right)$ and so $\left(x_{n}^{-1}-x_{m}^{-1}\right) \cdot f_{m}=0$. Hence, $\left(f_{n}\right)$ is an admmissible SDD for $\left\{x_{n}^{-1}\right\}$. It is obvious that $X^{-1}=\left\{x_{n}^{-1}\right\}+A_{\text {Co }}$.

Proposition 4.2. If $X=\left\{x_{n}\right\}+A_{\text {co }}$, and $\left\|x_{n}\right\| \leqslant M$ for all n, then X lies in A.

Proof. Let x be a w^{*}-limit point of the sequence $\left\{x_{n}\right\}$. Let $\left(e_{n}\right)$ be an admissible SDD for $\left\{x_{n}\right\}$; for a fixed m, we have $\left(x_{n}-x_{m}\right) \cdot e_{m}=0$ if $n \leqq m$. Thus, $\left(x-x_{m}\right) \cdot e_{m}=0$. Since m is arbitrary, we have $\{x\} \equiv\left\{x_{n}\right\}$ and so $\left\{x_{n}\right\}+A_{C O}=\{x\}+A_{C O}$.

Remark 4.3. It is clear that for any $\operatorname{SDD}\left(h_{n}\right)$ we have $\left\{h_{n}\right\}+A_{C O}=$ $1+A_{c o}$; thus, if $X=\left\{x_{n}\right\}+A_{C o}$, then $X=U_{1}(X)=\left\{U_{h_{n}}\left(x_{n}\right)\right\}+A_{c o}$. Hence, if $X=\left\{x_{n}\right\}+A_{C o}$ and $\left\|U_{h_{n}}\left(X_{n}\right)\right\| \leqq M$ for all n and some $\operatorname{SDD}\left(h_{n}\right)$, then X lies in A.

Proposition 4.4. If $X \in \hat{A}$, then

(i) $1+X^{2}$ is invertible in \hat{A},
(ii) $z=\left(1+X^{2}\right)^{-1}$ lies in A,
(iii) $y=X \cdot\left(1+X^{2}\right)^{-1}$ lies in A,
(iv) $X=y \cdot z{ }^{1}$.

Proof. If $X=\left\{x_{n}\right\}+A_{\text {co }}$, then $1+X^{2}=\left\{1+x_{n}^{2}\right\}+A_{C o}$. Now, our result follows from [2, Proposition 2.3] and Propositions 4.1 and 4.2.

Remark. Assertion (iv) in the above Proposition leads us to believe that the regular Jordan ring \hat{A} associated to a finite $J B W$-algebra A may be the total ring of quotients of A. This will be proved in the following section.

Proposition 4.5. If a is an element in a finite JBW-algebra A, then the following conditions are equivalent:
(i) $s(a)=1$,
(ii) a is invertible in \hat{A},
(iii) a is not a zero divisor in A.

Proof. It is obvious that (ii) implies (iii). Likewise, (iii) implies (i), since $1-s(a)$ is in Ker U_{a}. Now, denote by B the w^{*}-closed subalgebra of A generated by 1 and a; then, B is the self-adjoint part of the $R_{\mathbb{C}}$ (complexifixation of B) which is an associative and commutative finite W^{*}-algebra. Corollary 7.5 of [4] and Propositions 3.11 and 3.12 complete the proof.

Corollary 4.6. If A is a finite $J B W$-algebra and B is $a w^{*}$-closed subalgebra of A containing the identity element, then $b \in B \cap \operatorname{inv}(\hat{A})$ implies $b^{-1} \in \hat{B}$.

Theorem 4.7. If A is a finite $J B W$-algebra, \hat{A} is regular (in the sense of von Neumann).

Proof. Let X be an element in \hat{A}; set $X=y \cdot z^{-1}, y$ and z as in Proposition 4.4. Let B be the w^{*}-closed subalgebra of A generated by y, z and 1. Then, B is associative. Since $z \in B \cap \operatorname{Inv}(\hat{A})$, Corollary 4.6 implies $z^{-1} \in \hat{B}$. So $X=y \cdot z^{-1} \in \hat{B}$. From Proposition 3.12 and [4, Corollary 7.1] we have that X is regular.

We conclude this section by showing that \hat{A} has no new idempotents. We shall need two lemmas.

Lemma 4.8. If a and b are elements in a unital JB-algebra A (resp. $J B W$-algebra), then the set $H=\left\{c \in A: U_{a} U_{b}\left(c^{2}\right)=0\right\}$ is a closed (resp. w^{*}-closed) quadratic ideal in A.

Proof. It is not difficult to show that H is a quadratic ideal. Moreover, it is clear that for any positive linear form f on A, the mapping $(x, y) \rightarrow$ $\left\langle f, U_{a} U_{b}(x \cdot y)\right\rangle$ is a positive, symmetric bilinear mapping; thus, the Cauchy-Schwarz inequality gives $c \in H$ if and only if $U_{u} U_{b}(c \cdot d)=0$ for all $d \in A$. Then, the continuity (resp. w^{*}-continuity) of the product completes the proof.

Using the same techniques it is easy to prove the following:
Lemma 4.9. Let F be a positive operator on a unital JB-algebra A. Let a, b be elements in A, b positive. Then, if $F\left(U_{u}(b)\right)=0$ we have $F(a \cdot b)=0$.

Proposition 4.10. For every X in \hat{A}, there exist a (unique) idempotent f in A such that
(i) $f \cdot X=X$,
(ii) $U_{Y}\left(X^{2}\right)=0$ if and only if $Y \cdot f=0, Y \in \hat{A}$.

Proof. (i) Set $X=\left\{x_{n}\right\}+A_{c o}$ and let $\left(e_{n}\right)$ be an admissible SDD for $\left\{x_{n}\right\}$. Set $f_{n}=s\left(U_{r_{n}}\left(e_{n}\right)\right)$; we have $f_{n} \uparrow f$. Set $h_{n}=1-\left(f-f_{n}\right)$; it is clear that $\left(h_{n}\right)$ is an admissible SDD for the sequence $\left\{f_{n}\right\}$. Set $F=\left\{f_{n}\right\}+A_{C O}$; it is trivial that $F^{2}=F$. Setting $1=\left\{e_{n}\right\}+A_{C O}$, we have $F \cdot X=U_{F, 1}(X)=$ $\left\{U_{t_{n}, e_{n}}\left(x_{n}\right)\right\}+A_{C O}$. For every n, the w^{*}-closed subalgebra B_{n} of A generated by x_{n}, e_{n}, and 1 is a $J W$-algebra and $f_{n} \in B_{n}$. It is not difficult to prove that $U_{f_{n}, e_{n}}\left(x_{n}\right)=x_{n} \cdot e_{n}$. Thus, $F \cdot X=\left\{x_{n} \cdot e_{n}\right\}+A_{C O}=$ $\left(\left\{x_{n}\right\}+A_{C O}\right) \cdot\left(\left\{e_{n}\right\}+A_{C O}\right)=X \cdot 1=X$. Moreover, we have $\left\{f_{n}\right\} \equiv\{f\}$ (via $\left(h_{n}\right)$. Hence, $F=\{f\}+A_{\text {co }}$.
(ii) Set $X=\left\{x_{n}\right\}+A_{C O}$ as in (i). Let $Y=\left\{y_{n}\right\}+A_{C O}$ be such that $U_{Y}\left(X^{2}\right)=0$; there exists a $\operatorname{SDD}\left(k_{n}\right)$ such that $k_{n} \cdot U_{y_{n}}\left(x_{n}^{2}\right)=0$ for all n; thus, $U_{k_{n}} U_{y_{n}}\left(x_{n}^{2}\right)=0$ and so $U_{k_{n}} U_{\mathrm{v}_{n}} U_{r_{n}}=0$; thus, $U_{k_{n}} U_{y_{n}} U_{r_{n}} U_{e_{n}}\left(x_{n}^{2}\right)=0$ and so $U_{k_{n}} U_{i_{n}}\left(U_{r_{n}}\left(e_{n}\right)\right)^{2}=0$. From Lemma 4.8, we have $U_{k_{n}}$ $U_{y_{n}}\left(s\left(U_{\tau_{n}}\left(e_{n}\right)\right)\right)^{2}=0$. That is, $U_{k_{n}} U_{1_{n}}\left(f_{n}\right)=0$. Hence, $U_{k_{n}}\left(y_{n} \cdot f_{n}\right)=0$ by Lemma 4.9. Since $\left\{k_{n}\right\}+A_{C O}=1+A_{C O}$, then $Y \cdot f=\left\{y_{n} \cdot f_{n}\right\}+A_{C O}=$ $U_{1}(Y \cdot f)=\left\{U_{k_{n}}\left(y_{n} \cdot f_{n}\right)\right\}+A_{C O}=0$.

Conversely, let $Y \in \hat{A}$ such that $Y \cdot f=0$. Then, Y is in the subspace \hat{A}_{0} of the Peirce decomposition of the Jordan algebra \hat{A} relative to the idempotent f; since $X \in \hat{A}_{1}$, and \hat{A}_{0}, \hat{A}_{1} are orthogonal subalgebras of \hat{A}, we
have $X^{2} \in \hat{A}_{1}, Y \in \hat{A}_{0}$ and so $U_{Y}\left(X^{2}\right)=0$. The uniqueness of f is clear, for if $g \in A$ is another idempotent with the same properties as f, we have $(1-g) \cdot X=0$, which implies $(1-g) \cdot X^{2}=0$, and so $U_{1-g}\left(X^{2}\right)=0$; thus, $(1-g) \cdot f=0$. Analogously, we have $(1-f) \cdot g=0$. Thus, $f=g$.

Theorem 4.11. Let A be a finite JBW-algebra. Let \hat{A} be the regular $J o r d a n$ ring associated to A. Then, \hat{A} has no new idempotents.

Proof. Let E be an idempotent in \hat{A}. From Proposition 4.9, there exists a (unique) idempotent $e \in A$ such that $E \cdot e=E$ and $U_{y}(E)=0$ if and only if $Y \cdot e=0$. Since $U_{1-E}(E)=0$, we have $(1-E) \cdot e=0$; thus, $e=E \cdot e=E$.

5. Characterization of \hat{A}

Definition 5.1. Let A be a Jordan ring with identity element. If \hat{A} is a Jordan ring containing A and with the same identity element as A, \hat{A} is said to be the total ring of quotients of A if:
(i) Every non-zero divisor s in A is invertible in \hat{A}.
(ii) Every morphism from A into a Jordan ring B, having the property that $f(s)$ is invertible in B whenever s is not a zero divisor in A, extends in a unique way to a morphism from \hat{A} into B.

Recall that a Jordan ring A is said to have the common multiple property if for any $a, s \in A, a \neq 0$, and s not a zero divisor, there exist $a^{\prime}, s^{\prime} \in A, s^{\prime}$ not a zero divisor, such that $U_{d}\left(s^{\prime}\right)=U_{1}\left(a^{\prime}\right) \neq 0$. (See [13, p. 155].)

Recall that for associative rings, this corresponds to the Ore condition, which is sufficient for an associative ring to have a total ring of quotients. However, it is unknown in general whether a Jordan ring with the common multiple property has a ring of quotients. (There is a paper by N. Jacobson, K. McCrimmon, and M. Parvathi [11] on localization of Jordan algebras. Also, there is a forthcoming article by E. Zel'manov on Goldie theory.)

Now, our purpose is to show that the Jordan regular ring \hat{A} associated to a finite $J B W$-algebra A is the total Jordan ring of quotients of A. In fact, we shall prove the following

Theorem 5.2. Let A be a finite JBW-algebra. Let \hat{A} denote the Jordan regular ring associated to A. Then:
(i) Every element X in \hat{A} is of the form $X=U_{s-i}(a)$ with $a, s \in A$, and s is not a zero divisor in A. Moreover, the subalgebra of A generated by a and s is strongly associative.
(ii) A has the common multiple property.
(iii) \hat{A} is the (unique) total Jordan ring of quotients of A.

To prove the theorem we shall need three lemmas.

Lemma 5.3. If M is a unital C^{*}-algebra and $u, v \in \operatorname{Sym}(M)$, then $1+v u^{2} v$ is invertible and moreover $\left\|u v\left(1+v u^{2} v\right)^{-1} v u\right\| \leqslant 1$.

Proof. Since $1+v u^{2} v=1+(v u)(v u)^{*}$, it is clear that $1+v u^{2} v$ is invertible. Likewise, $1+u v^{2} u$ is invertible also. Moreover, it is not difficult to show that $u v\left(1+v u^{2} v\right)^{-1} v u=\left(1+u v^{2} u\right)^{-1} u v^{2} u$. Since $\operatorname{Sym}(M)$ is a unital $J B$-algebra, from [2, p. 18] it follows that $\left\|u v\left(1+v u^{2} v\right)^{-1} v u\right\| \leqslant 1$.

Lemma 5.4. Let A be a finite JBW-algebra. Let \hat{A} denote the Jordan regular ring associated to A. If $b \in A, X \in \hat{A}$, then
(i) $1+U_{l}\left(X^{2}\right)$ is invertible in \hat{A},
(ii) $\left(1+U_{b}\left(X^{2}\right)\right)^{-1}$ lies in A,
(iii) $\quad U_{X} U_{b}\left(\left(1+U_{b}\left(X^{2}\right)\right)^{-1}\right)$ lies in A.

Proof. (i) Follows from [2, p. 17] and Proposition 4.1.
(ii) Follows from [2, p. 18] and Proposition 4.2.
(iii) If $X=\left\{x_{n}\right\}+A_{C O}$, then $U_{X} U_{b}\left(\left(1+U_{b}\left(X^{2}\right)\right)^{-1}\right)=\left\{U_{x_{n}} U_{b}((1+\right.$ $\left.\left.\left.U_{b}\left(x_{n}^{2}\right)\right)^{-1}\right)\right\}+A_{C O}$. For every n, let B_{n} be the w^{*}-closed subalgebra of A generated by x_{n}, b, and $1 ; B_{n}$ is a $J W$-algebra (Theorem 1.2) and, in B_{n}, $U_{x_{n}}\left(\left(1+U_{b}\left(x_{n}^{2}\right)\right)^{-1}\right)=x_{n} b\left(1+b x_{n}^{2} b\right)^{-1} b x_{n}$. From Lemma 5.3 and Proposition 4.2 it follows that $U_{X} U_{b}\left(\left(1+U_{b}\left(X^{2}\right)\right)^{-1}\right) \in A$.

Recall that a subalgebra of a Jordan algebra with identity element is called a full subalgebra if it contains the identity element and the inverses of all its invertible elements. A Jordan algebra J, with identity element, is said to be fully generated by a subalgebra B if J is the smallest full subalgebra of J containing B.

Lemma 5.5. Let A and B be Jordan algebras with identity element and let f be a morphism from A into B, such that B is fully generated by $f(A)$. If a and b operators commute in A then $f(a)$ and $f(b)$ operators commute in B.

Therefore, if C is a strongly associative subalgebra of A, then $f(C)$ is a strongly associative subalgebra of B.

Proof. For every element x in A, we have $[a, x, b]=0$; thus, $[f(a), f(x), f(b)]=0$. That is, $f(A)$ is contained in the kernel of the derivation $y \rightarrow[f(a), y, f(b)]$, which is a full subalgebra of $B[10$, p. 54].

Proof of the Theorem. (i) If $X \in \hat{A}$, set $s=\left(1+X^{2}\right)^{-1} \in A$, $z=X \cdot\left(1+X^{2}\right)^{-1} \in A$. It is obvious that s and z are in the full subalgebra of \hat{A} generated by X, which is strongly associative from a result by Jacobson (see [12]), which states that if J is a Jordan algebra with identity element, then the full subalgebra of J generated by a strongly associative subalgbra B of J is strongly associative also. (It follows that for every element j in J, there is a strongly associative full subalgebra of J containing j.) Thus, $X=s^{-1} \cdot z=U_{s-1}(a)$ with $a=s \cdot z$ and it is clear that the subalgebra of A generated by s and a is strongly associative.
(ii) Let a, s be elements in A such that $a \neq 0$ and s is not a zero divisor. By Proposition 4.5, s is invertible in \hat{A}. Setting $a^{\prime}=U_{s,-1} U_{a}\left(\left(1+U_{a}\left(s^{-2}\right)\right)^{-1}\right), \quad s^{\prime}=\left(1+U_{u}\left(s^{2}\right)\right)^{-1} \quad$ we have $s, a^{\prime} \in A$ (Lemma 5.4). It is obvious that s^{\prime} is not a zero divisor and we have $U_{s}\left(a^{\prime}\right)=U_{u}\left(s^{\prime}\right) \neq 0$, for if $U_{u}\left(s^{\prime}\right)=0$, since s^{\prime} is a positive element, we have $U_{a}\left(h^{2}\right)=0$, where h denotes the positive square root of s^{\prime} (note that h is not a zero divisor also); hence, $U_{h}\left(a^{2}\right)=0$ and so $a=0$. Contradiction.
(iii) Let B be a Jordan ring with identity element, and let $f: A \rightarrow B$ be a morphism of A into B, having the property that $f(s)$ is invertible in B whenever s is not a zero divisor in A. It is clear that if there exists an extension g of f to \hat{A} it should be of the form $g\left(U_{,-1}(a)\right)=U_{f(,)}^{-1}(f(a))$. We will prove that g is a well-defined mapping: If $U_{3-1}(a)=U_{,-1}\left(a^{\prime}\right)$, there exist s_{1}, $s_{1}^{\prime} \in A, s_{1}$ is not a zero divisor, such that $U_{1}\left(s_{1}\right)=U_{1}\left(s_{1}^{\prime}\right) ; s$ and s_{1} are inver. tible in \hat{A}; thus, $U_{1}\left(s_{1}\right)$ is invertible and so $U_{,}\left(s_{1}^{\prime}\right)$ is invertible also. Hence, s_{1}^{\prime} is invertible in \hat{A}. Thus, $s_{2}, s_{1}, s^{\prime}, s_{1}^{\prime}$ are all invertible in \hat{A}. Using the Fundamental Identity [10, p. 52] we have

$$
\begin{aligned}
U_{,-1}(a) & =U_{U_{, 1, i)}}^{-1}\left(U_{,} U_{, 1}(a)\right) \\
U_{s^{\prime}-1}\left(a^{\prime}\right) & =U_{L_{, 1, i)}^{-1}}^{-1}\left(U_{,} U_{, i}\left(a^{\prime}\right)\right)=U_{L_{, 1,1}}^{-1}\left(U_{,} U_{, i}\left(a^{\prime}\right)\right)
\end{aligned}
$$

thus

$$
U_{U,(, 1)}^{-1}\left(U_{,} U_{, i}(a)\right)=U_{U_{,(1,1}}^{-1}\left(U_{,} U_{s, 1}\left(a^{\prime}\right)\right)
$$

and so

$$
U_{s} U_{s 1}(a)=U_{s} U_{s i}\left(a^{\prime}\right)
$$

thus

$$
U_{f(s)} U_{t(s) 1}(f(a))=U_{f\left(s^{\prime}\right)} U_{f(s i)}\left(f\left(a^{\prime}\right)\right)
$$

and so

$$
\begin{aligned}
U_{U_{f(s)}\left(f\left(s_{1}\right)\right)}^{1}\left(U_{f(s)} U_{f\left(s_{1}\right)}(f(a))\right) & =U_{U_{f(s)}\left(f\left(s_{1}\right)\right)}^{-1}\left(U_{f\left(s^{\prime}\right)} U_{f\left(s_{1}\right)}\left(f\left(a^{\prime}\right)\right)\right) \\
& =U_{U_{f\left(s^{\prime}\right)}}^{-1}\left(f\left(s^{\prime}\right)\right)
\end{aligned}\left(U_{f\left(s^{\prime}\right)} U_{f\left(s_{1}^{\prime}\right)}\left(f\left(a^{\prime}\right)\right)\right) .
$$

Thus

$$
U_{f(,)}^{-1}(f(a))=U_{f\left(s^{\prime}\right)}^{-1}\left(f\left(a^{\prime}\right)\right),
$$

Using the same techniques it is easy to see that $g(X+Y)=g(X)+g(Y)$, X and Y in \hat{A}. To complete the proof, it remains to show that $g\left(X^{2}\right)=(g(X))^{2}$ for all X in \hat{A}. Set $X=U_{s^{-1}}(a)$, where a and s generate a strongly associative subalgebra C of A. We can assume, without loss of generality, that B is fully generated by $f(A)$. Setting $m=f(s), n=f(a)$, we have $g\left(X^{2}\right)=U_{m^{-2}}\left(n^{2}\right),(g(X))^{2}=\left(U_{m^{-1}}(n)\right)^{2}$ with $m, n \in f(C)$, which is a strongly associative subalgebra of B by Lemma 5.3. Let D be the full subalgebra of B generated by $f(C) ; D$ is a strongly associative subalgebra and we have $m, n, m^{-1} \in D$. Thus, $(g(X))^{2}=\left(U_{m^{-1}}(n)\right)^{2}=U_{m^{-2}}\left(n^{2}\right)=g\left(X^{2}\right)$ and the proof is complete.

References

1. S. A Ayupov, On the construction of Jordan algebras of selfadjoint operators, Sovet. Math. Dokl. 26 (3) (1982), 623-625.
2. E. M. Alfsen, F. W Shultz, and E. Stormer, A Gelfand-Neumark theorem for Jordan algebras, Adv. in Math. 28 (1978), 11-56.
3. P. Ara and P Menal, On regular rings with involution, Arch. Math. 42 (1984), 126-130.
4. S. K. Berberian, The regular ring of a finite $A W^{*}$-algebra, Ann. of Math. 65 (2) (1957), 224-240.
5. H. Braun and M. Koecher, "Jordan Algebren," Springer-Verlag, Berlin/New York, 1966.
6. C. M. Edwards, On the centres of hereditary $J B W$-subalgebras of a $J B W$-algebra, Math. Proc. Cambridge Philos. Soc. 85 (1979), 317-324.
7. I. Hafner, The regular ring and the maximal ring of quotients of a finite Baer *-ring. Michigan Math. J. 21 (1974), 153-160.
8. H. Hanche-Olsen and E. Stormer, "Jordan Operator Algebras," Pitman, London.
9. D. Handelman, Finite Rickart C^{*}-algebras and their properties, Stud. Anal. Adv. in Math. Suppl. Stud. 4 (1979), 171-196.
10. N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ. 39 (1968)
11. N. Jacobson, K. MacCrimmon, and M. Parvathi, Localization of Jordan algebras, Comm. Algebra 6 (9) (1978), 911-958.
12. J. Martinez Moreno, "Sobre Algebras de Jordan Normadas Completas," Tesis doctoral, Publicacıones de la Universidad de Granada, 1977.
13. S. Montgomery, Rings of quotients for a class of special Jordan rings, J. Algebra 31 (1974), 154-165.
14. F. J. Murray and J. von Neumann, On rings of operators, Ann. of Math. 37 (2) (1936), 116-229.
15. G. K. Pedersen and E. Stormer, Traces on Jordan algebras, Canad. J. Math. 34 (2) (1982), 370-373.
16. E. S. Pyce, The regular ring and the maximal ring of quotients of a finite Baer ${ }^{*}$-ring, Trans. Amer. Math. Soc. 203 (1975), 210-213.
17. R. D. Schaffer, "An Introduction to Nonassociative Algebras," Academic Press, New York/London, 1966.
18. F. W. Shuitz, On normed Jordan algebras which are Banach dual spaces, I. Funct. Anal. 31 (1979), 360-376.
19. D. M. Topping, Jordan algebras of selfadjoint operators, Mem. Amer. Math. Soc. 53 (1965), 1-48.
20. J. M. D. Wright, Jordan C*-algebras, Michigan Math. J. 24 (1977), 291-302.
