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We study SU(n) symmetry breaking by rank three and rank two antisymmetric tensor fields. Using tensor 
analysis, we derive branching rules for the adjoint and antisymmetric tensor representations, and explain 
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cases. We then compute the masses of the various scalar fields in the branching expansion, in terms of 
parameters of the general renormalizable potential for the antisymmetric tensor fields.
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1. Introduction

The most familiar case of symmetry breaking for grand unified 
theories, such as minimal SU(5) ⊃ SU(2) × SU(3) × U (1), utilizes 
a scalar field in the adjoint representation, with a gauge singlet 
component with U (1) generator zero that receives a vacuum ex-
pectation. The symmetry breaking mechanism is then straightfor-
ward: since the gauge fields and the symmetry breaking scalar are 
both in the adjoint representation, the same representations ap-
pear in their branching expansions. As a consequence, the massless 
gauge fields that pick up masses, and the scalars that supply their 
longitudinal components, have the same group theoretic quantum 
numbers.

We recently noted [1,2] that when the symmetry breaking 
scalar is in a totally antisymmetric representation, the situation is 
more complicated. Using as explicit examples SU(8) broken by a 
rank three antisymmetric tensor scalar, and SU(5) broken by a rank 
two antisymmetric tensor scalar, we showed that there is a mis-
match between the U (1) generator values of the massless gauge 
fields that obtain masses, and the scalars that supply their longi-
tudinal components. We noted that this mismatch is related to the 
fact that the gauge singlet component of the antisymmetric ten-
sor field that receives a vacuum expectation has a nonzero U (1)

generator N , requiring a modular ground state that is periodic in 
integer divisors p of N .

The purpose of this paper is twofold. First, we show that the 
mismatch found in [1,2] appears in the case of general SU(n), and 
can be traced to the fact that invariant tensors lying in SU(3) or 
SU(2) subgroups are available to lower subgroup indices. This anal-
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ysis is given in Section 2, where we use tensor methods to com-
pute the relevant branching expansions and U (1) generator values. 
The second aim of this paper is to calculate the masses of the 
various scalar field components in the branching expansions, ob-
tained by expanding the general renormalizable scalar field poten-
tial around the generic symmetry breaking minimum. This analysis 
is given in Section 3, and a brief summary of our results follows in 
Section 4.

Our notation is to define the upper index totally antisymmetric 
tensor with R components to be a basis for the representation R , 
and the corresponding lower index tensor to be a basis for the con-
jugate representation R . Thus in SU(n) the tensor φα , α = 1, . . . , n, 
is a basis for the fundamental representation n, and φα is a ba-
sis for the conjugate representation n. In SU(3), the tensor φα is 
a basis for the 3, and since the totally antisymmetric tensor εαβγ

is invariant and can be used to lower indices, both the tensors φα

and φ[αβ] give a basis for the 3, and the tensor φ[αβγ ] ∝ εαβγ is 
a singlet. Similarly, in SU(2), since the invariant tensor εαβ can 
be used to lower indices the representations 2 and 2 are equiva-
lent, and can be represented by either φα or φα , and the tensor 
φ[αβ] ∝ εαβ is a singlet [3].

2. Branching rules for the SU(n) antisymmetric tensor and 
adjoint representations

2.1. Branching under SU(n) ⊃ SU(3) × SU(n − 3) × U (1) for the rank 
three antisymmetric tensor and adjoint representations

We assume that SU(n) is broken by the ground state expecta-
tion of a single component φ[123] = a �= 0, corresponding to the 
simplest case considered by Cummins and King [4], which applies 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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for all n. The conditions on the scalar potential for this case to ap-
ply will be given in Section 3. Let us now divide the tensor indices 
into two classes,

A = {1,2,3} ,

B = {4, . . . ,n} . (1)

To get the needed branching expansions, we have to enumerate the 
possibilities for tensor indices to belong to these two classes. We 
use the notation 

(
RSU(3), RSU(n−3)

)
(g), with g the U (1) generator 

eigenvalue. Writing the U (1) generator G as

G = Diag(n − 3,n − 3,n − 3,−3,−3, . . . ,−3) (2)

with n − 3 entries −3, the U (1) generator value g is simply n − 3
times the number of upper indices in A plus −3 times the num-
ber of upper indices in B; for lower indices the U (1) contributions 
are reversed in sign. Since the overall normalization of the U (1)

generator is arbitrary, normalization-independent statements refer 
only to relative values of the U (1) generators for different repre-
sentations.

We begin by deriving the branching expansion for the SU(n)

rank three antisymmetric tensor representation n(n − 1)(n − 2)/6, 
represented by the tensor φ[αβγ ] , enumerating cases as follows.

1. 3 indices in A. This corresponds to the representation(
1,1

)
(3n − 9).

2. 2 indices in A, 1 index in B. Since the index in B can be 
chosen n − 3 ways, this corresponds to the representation (
3, n − 3

)
(2n − 9).

3. 1 index in A, 2 indices in B. Since the indices in B can be 
chosen (n − 3)(n − 4)/2 ways, this corresponds to the repre-
sentation 

(
3, (n − 3)(n − 4)/2

)
(n − 9).

4. 3 indices in B. Since the indices in B can be chosen (n −
3)(n − 4)(n − 5)/6 ways, this corresponds to the representa-
tion 

(
1, (n − 3)(n − 4)(n − 5)/6

)
(−9).

Thus we have the branching expansion, for n > 8,

n(n − 1)(n − 2)

6
= (

1,1
)
(3n − 9) + (

3,n − 3
)
(2n − 9)

+
(

3,
(n − 3)(n − 4)

2

)
(n − 9)

+
(

1,
(n − 3)(n − 4)(n − 5)

6

)
(−9) . (3)

As a check on the counting, we note the identity

n(n − 1)(n − 2)

6
= 1 + 3(n − 3) + 3

(n − 3)(n − 4)

2

+ (n − 3)(n − 4)(n − 5)

6
. (4)

For the case n = 8 discussed in [1], the SU(5) three upper index 
antisymmetric tensor is equivalent, by use of the invariant tensor 
εαβγ δε , to the SU(5) two lower index antisymmetric tensor, and so 
represents a 10 rather than a 10. Thus we get the expansion

56 = (1,1)(15) + (3,5)(7) + (3,10)(−1) + (1,10)(−9) . (5)

This agrees with the expansion given in [1] and the Slansky ta-
bles [5], apart from the fact that in this paper we have chosen the 
opposite sign convention for the U (1) generator G . For n < 8, one 
makes similar conversions of upper index tensors to lower index 
ones in Eq. (3), when the number of lower indices can be made 
smaller than the number of upper indices, with the corresponding 
replacement of the representation R by R . We also note that when 
n − 3 is divisible by 3, the U (1) generator values can all be divided 
by 3, and this is the convention that is used in the Slansky tables 
(see e.g. the expansion for the 20 of SU(6)).

We turn next to the branching expansion for the SU(n) ad-
joint representation n2 − 1, represented by the tensor φα

β , with ∑
α φα

α = 0, again enumerating cases.

1. Diagonal traceless part analogous to the U (1) generator G . 
This corresponds to the representation 

(
1, 1

)
(0).

2. Upper index and lower index both in A, traceless part. This 
corresponds to the representation 

(
8, 1

)
(0).

3. Upper index and lower index both in B, traceless part. This 
corresponds to the representation 

(
1, (n − 3)2 − 1

)
(0).

4. Upper index in A, lower index in B. This corresponds to the 
representation 

(
3,n − 3

)
(n).

5. Lower index in A, upper index in B. This corresponds to the 
representation 

(
3, n − 3

)
(−n).

Thus we have the branching expansion

n2 − 1 = (
1,1

)
(0) + (

8,1
)
(0) + (

1, (n − 3)2 − 1
)
(0)

+ (
3,n − 3

)
(n) + (

3,n − 3
)
(−n) . (6)

As a check on the counting, we note the identity

n2 − 1 = 1 + 8 + (n − 3)2 − 1 + 6(n − 3) . (7)

We now note the phenomenon discussed in the n = 8 case 
in [1,2], that the U (1) generator of the (3, n − 3) is −n in the 
branching expansion for the adjoint, whereas it is 2n − 9 in the 
branching expansion for the rank three antisymmetric tensor. The 
difference between these two U (1) generators is 2n − 9 − (−n) =
3n − 9 = 3(n − 3), which is just the U (1) generator of the sin-
glet (1, 1) in the expansion of Eq. (3). This is a direct result of the 
fact that the 3 is represented by a two upper index antisymmet-
ric tensor in the expansion of Eq. (3), and by a one lower index 
tensor in the expansion of Eq. (6), so the difference in U (1) gener-
ator values is 

(
2 − (−1)

)
(n − 3) = 3(n − 3). When we discuss the 

scalar potential in Section 3, we will see that the complex states 
(3, n −3) in Eq. (3) are zero mass Goldstone modes. When the rank 
three antisymmetric tensor is used to break the SU(n) symme-
try, the Goldstone modes are absorbed as longitudinal parts of the 
(3,n − 3) + (3, n − 3) in the adjoint. This is possible, even though 
the U (1) generators do not match, because for the (1, 1)(3n −9) to 
get a ground state expectation value, the ground state must have a 
periodic structure modulo an integer divisor of 3n − 9, and so the 
mismatch of the U (1) generator values is equivalent to zero.

2.2. Branching under SU(n) ⊃ SU(2) × SU(n − 2) × U (1) for the rank 
two antisymmetric tensor and adjoint representations

In this case we shall assume that SU(n) is broken by the ground 
state expectation of a single component φ[12] = a �= 0, correspond-
ing to the case studied by Li [6]. We now define the index classes 
by

A = {1,2} ,

B = {3, . . . ,n} , (8)

and use the notation (RSU(2), RSU(n−2))(g), with g the U (1) gener-
ator. Writing the U (1) generator G as

G = Diag(n − 2,n − 2,−2,−2, . . . ,−2) (9)

with n − 2 entries −2, the U (1) generator value g is simply n − 2
times the number of upper indices in A plus −2 times the number 
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of upper indices in B; for lower indices the U (1) contributions 
are reversed in sign. Again, since the overall normalization of the 
U (1) generator is arbitrary, normalization-independent statements 
refer only to relative values of the U (1) generators for different 
representations.

Since the enumeration of cases parallels that in the rank three 
case, we go directly to the results. For the rank two antisymmetric 
tensor, we have for n > 5

n(n − 1)

2
= (

1,1
)
(2n − 4) + (

2,n − 2
)
(n − 4)

+
(

1,
(n − 2)(n − 3)

2

)
(−4) , (10)

with the three terms corresponding, respectively, to zero, one, and 
two upper indices in B. As a check on the counting, we note the 
identity

n(n − 1)

2
= 1 + 2(n − 2) + (n − 2)(n − 3)

2
. (11)

For the case n = 5, since the SU(3) two upper index antisymmetric 
tensor represents a 3, we get the expansion

10 = (1,1)(6) + (2,3)(1) + (1,3)(−4) , (12)

in agreement with the expansion given in the Slansky tables [5]. 
When n − 2 is divisible by 2, the U (1) generator values can all be 
divided by 2, and this is the convention used in the Slansky tables 
(see, e.g., the expansion for the 15 of SU(6)).

For the adjoint representation n2 − 1 of SU(n), we get the 
branching expansion

n2 − 1 = (
1,1

)
(0) + (

3,1
)
(0) + (

1, (n − 2)2 − 1
)
(0)

+ (
2,n − 2

)
(n) + (

2,n − 2
)
(−n) , (13)

and as a check on counting

n2 − 1 = 1 + 3 + (n − 2)2 − 1 + 4(n − 2) . (14)

We again see the mismatch discussed in [2] in the n = 5 case. 
The U (1) generator of the (2, n − 2) is −n in the branching expan-
sion of the adjoint, whereas it is n − 4 in the branching expansion 
for the rank two antisymmetric tensor. The difference between 
these two U (1) values is n − 4 − (−n) = 2n − 4 = 2(n − 2), which 
is the U (1) generator of the singlet (1, 1) in the expansion of 
Eq. (10). This results from the fact that the 2 is represented by a 
one upper index tensor in the expansion of Eq. (10), and by a one 
lower index tensor in the expansion of Eq. (13), with a resulting 
difference of U (1) generator values 

(
1 − (−1)

)
(n − 2) = 2(n − 2). 

When we discuss the scalar potential in Section 3, we will see 
that the complex states (2, n − 2) in Eq. (10) are zero mass Gold-
stone modes. When the rank two antisymmetric tensor is used to 
break the SU(n) symmetry, the Goldstone modes are absorbed as 
longitudinal parts of the (2,n − 2) + (2, n − 2) in the adjoint. This 
is possible, despite the U (1) generator mismatch, because for the 
(1, 1)(2n − 4) to get a ground state expectation value, the ground 
state must have a periodic structure modulo an integer divisor of 
2n − 4, and so the mismatch of the U (1) generator values is equiv-
alent to zero.

3. Residual scalar masses

In this section we analyze the residual scalar masses aris-
ing from SU(n) symmetry breaking with a general renormalizable 
scalar potential, first for a rank three antisymmetric tensor scalar, 
and then for a rank two antisymmetric tensor.
3.1. Residual scalar masses for SU(n) symmetry breaking by a rank 
three antisymmetric tensor

The most general SU(n) invariant fourth degree potential 
formed from φ[αβγ ] , where the indices all range from 1 to n, has 
the form [4]

V (φ) = −1

2
μ2

∑
αβγ

φ∗[αβγ ]φ[αβγ ] + 1

4
λ1

(∑
αβγ

φ∗[αβγ ]φ[αβγ ])2

+ 1

4
λ2

∑
αβγρκτ

φ∗[αβγ ]φ[αβτ ]φ∗[ρκτ ]φ[ρκγ ] . (15)

We assume μ2 > 0, so that the origin is a local maximum, and 
consider the case λ2 < 0 studied in [4], for which the potential is 
bounded from below, for all n, when 3λ1 + λ2 > 0,

V (φ) ≥ −3

4

μ4

3λ1 + λ2
. (16)

This lower bound is attained when only one component of φ is 
nonzero, and as in our branching analysis we take the nonvanish-
ing component to be φ[123] = a �= 0, where

|a|2 = 1

2

μ2

3λ1 + λ2
. (17)

We will derive Eqs. (16) and (17) shortly.
Continuing to follow [4], we note that the potential of Eq. (15)

can be rewritten in terms of

θτ
γ ≡

∑
αβ

φ∗[αβγ ]φ[αβτ ] , (18)

which obeys (θτ
γ )∗ = θ

γ
τ , as

V (φ) = −1

2
μ2

∑
γ

θ
γ
γ + 1

4
λ1(

∑
γ

θ
γ
γ )2 + 1

4
λ2

∑
γ τ

θτ
γ θ

γ
τ

= −1

2
μ2

∑
γ

θ
γ
γ + 1

4
λ1(

∑
γ

θ
γ
γ )2 + 1

4
λ2

∑
γ

(θ
γ
γ )2

+ 1

2
λ2

∑
γ <τ

θτ
γ θ

γ
τ . (19)

To expand the potential around its minimum, we substitute

φ[αβγ ] = φ[αβγ ] + σ [αβγ ] , (20)

where φ[αβγ ] = aεαβγ is nonzero only when its tensor indices are 
some permutation of 1, 2, 3. For θτ

γ we find

θτ
γ = 2

∑
α<β

(
φ ∗[αβγ ]φ[αβτ ] + φ ∗[αβγ ]σ [αβτ ] + σ ∗[αβγ ]φ[αβτ ]

+ σ ∗[αβγ ]σ [αβτ ]) . (21)

We consider first the term 
∑

γ <τ θτ
γ θ

γ
τ in Eq. (19). The term 

in θτ
γ that is quadratic in φ must have γ = τ , and so does not 

contribute to this sum over γ < τ . Hence the term in θτ
γ that is 

quadratic in σ makes a contribution to this sum that is third order 
in σ , and can be dropped in calculating the potential to second 
order in σ . Thus we get∑
γ <τ

θτ
γ θ

γ
τ =

∑
γ <τ

|θτ
γ |2

= 4
∑
γ <τ

|
∑ (

φ ∗[αβγ ]σ [αβτ ] + σ ∗[αβγ ]φ[αβτ ])|2

α<β
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= 4
∑
γ <τ

|
∑
α<β

φ ∗[αβγ ]σ [αβτ ]|2 , (22)

where in the final line we have used the fact that when α, β , τ
are permutations of 1, 2, 3, then when τ = 1 there is no γ obeying 
γ < τ , and when τ = 2 or τ = 3, the γ obeying γ < τ must equal 
either α or β , and so the factor σ ∗[αβγ ] multiplying φ[αβτ ] vanishes. 
By similar reasoning, the sum over τ in the final line of Eq. (22)
must range from 4 to n independent of the values of α < β , since if 
τ ≤ 3, then γ ≤ 2 and either the first or the second factor vanishes. 
Hence we get

∑
γ <τ

θτ
γ θ

γ
τ = 4|a|2

∑
(α, β)=(1,2), (1,3), (2,3)

n∑
τ=4

|σ [αβτ ]|2 . (23)

Since σ [αβτ ] in this equation has α ∈ A, β ∈ A, and τ ∈ B, it 
belongs to the representation (3, n − 3), and so we can rewrite 
Eq. (23) as

∑
γ <τ

θτ
γ θ

γ
τ = 4|a|2

3∑
k=1

n−3∑
l=1

|σ(3,k;n − 3, l)|2 . (24)

The remaining terms in Eq. (19) all involve the diagonal ele-
ment θγ

γ , which from Eq. (21) is given by

θ
γ
γ = 2

∑
α<β

(|φ[αβγ ]|2 + 2 Re
(
φ ∗[αβγ ]σ [αβγ ]) + |σ [αβγ ]|2) . (25)

From this, substituting φ[αβγ ] = aεαβγ , splitting sums on γ into 
disjoint sums 

∑
γ ∈A and 

∑
γ ∈B , and dropping terms of higher 

order than quadratic in σ , one finds
∑
γ

(θ
γ
γ )2 = 12

(
|a|4 + 4|a|2 Re(a∗σ [123]) + 2|a|2|σ [123]|2

+ 4
(
Re(a∗σ [123])

)2
)

,

∑
γ

θ
γ
γ = 6

(
|a|2 + 2 Re(a∗σ [123]) + |σ [123]|2

)

+
∑
αβ

∑
γ ∈B

|σ [αβγ ]|2 ,

(∑
γ

θ
γ
γ

)2 = 36
(
|a|4 + 4|a|2 Re(a∗σ [123]) + 2|a|2|σ [123]|2

+ 4
(
Re(a∗σ [123])

)2
)

+ 12|a|2
∑
αβ

∑
γ ∈B

|σ [αβγ ]|2 .

(26)

Substituting Eqs. (24) and (26) into Eq. (19), and combining the 
first order terms in σ , we get

Re(a∗σ [123])(−6μ2 + 36λ1|a|2 + 12λ2|a|2) , (27)

which when equated to zero gives Eq. (17). Using this value of |a|2, 
we find the lower bound of Eq. (16) for the value of the potential 
at the minimum. Splitting the sum 

∑
αβ

∑
γ ∈B |σ [αβγ ]|2 into three 

pieces,∑
αβ

∑
γ ∈B

|σ [αβγ ]|2

= ( ∑
αβ∈A

∑
γ ∈B

+2
∑
α∈A

∑
βγ ∈B

+
∑

αβγ ∈B

)|σ [αβγ ]|2 , (28)

and relabeling σ [αβγ ] in terms of the representations appearing in 
the branching expansion of Eq. (3), we get as the final result for 
the expansion of the potential near the minimum through second 
order terms,

V (φ + σ)

= −3

4

μ4

3λ1 + λ2

+
(

Re(
a∗

|a|σ(1,1))

)2

6μ2

+
3∑

k=1

n−3∑
l=1

|σ(3,k;n − 3, l)|2 × 0

+
3∑

k=1

(n−3)(n−4)/2∑
l=1

|σ(3,k; (n − 3)(n − 4)/2, l)|22μ2 −λ2

3λ1 + λ2

+
(n−3)(n−4)(n−5)/6∑

l=1

|σ(1; (n − 3)(n − 4)(n − 5)/6, l)|23μ2

× −λ2

3λ1 + λ2
. (29)

The remarks made in Section 2 about using the rank n − 3 ep-
silon tensor to replace upper index tensors by lower index tensors 
in conjugate representations, when this reduces the number of 
indices, applies here. We see that as noted in Section 2, the Gold-
stone modes, with mass 0, are in the representation (3, n − 3), 
which has a U (1) generator mismatch with respect to the corre-
sponding representation in the expansion of the adjoint represen-
tation.

3.2. Residual scalar masses for SU(n) symmetry breaking by a rank two 
antisymmetric tensor

The most general SU(n) invariant fourth degree potential 
formed from the rank two antisymmetric tensor scalar φ[αβ] , 
where the indices all range from 1 to n, has the form [6] for n > 4,1

V (φ) = −1

2
μ2

∑
αβ

φ∗[αβ]φ[αβ] + 1

4
λ1

(∑
αβ

φ∗[αβ]φ[αβ])2

+ 1

4
λ2

∑
αβρτ

φ∗[αρ]φ[ατ ]φ∗[βτ ]φ[βρ] . (30)

Since the method of analysis parallels that used in the rank three 
case, we state only the final results. We assume that λ2 < 0 and 
2λ1 + λ2 > 0, and as in our branching analysis we take the non-
vanishing component of φ[αβ] to be φ[12] = a �= 0. The potential 
minimum is at

|a|2 = μ2

2λ1 + λ2
, (31)

and the value of the potential at the minimum is

−1

2

μ4

2λ1 + λ2
. (32)

1 A perceptive referee has pointed out that for SU(4) there is an exception; one 
can construct the invariant φαβφγ δεαβγ δ + adjoint, and so the most general renor-
malizable potential has a more complicated form than Eq. (30). For rank three 
antisymmetric tensors in SU(6) the analog of this invariant vanishes by antisym-
metry of the epsilon tensor, so there is not a similar exception to the potential 
of Eq. (15). The paper of Li [6] overlooked the rank two exception because it first 
treated rank two symmetric tensors, and then took the same potential for the anti-
symmetric tensor case.
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For the expansion of the potential through second order terms, we 
find

V (φ + σ)

= −1

2

μ4

2λ1 + λ2

+
(

Re(
a∗

|a|σ(1,1))

)2

2μ2

+
2∑

k=1

n−2∑
l=1

|σ(2,k;n − 2, l)|2 × 0

+
(n−2)(n−3)/2∑

l=1

|σ(1; (n − 2)(n − 3)/2, l)|2μ2 −λ2

2λ1 + λ2
. (33)

The remarks made in Section 2 about using the rank n − 2 ep-
silon tensor to replace upper index tensors by lower index tensors 
in conjugate representations, when this reduces the number of in-
dices, applies here. As noted in Section 2, the zero mass Goldstone 
modes are in the representation (2, n − 2), which has a U (1) gen-
erator mismatch with respect to the corresponding representation 
in the expansion of the adjoint representation.
4. Summary

We have derived further properties of SU(n) symmetry break-
ing by rank three and rank two antisymmetric tensor scalars, 
extending previous analyses in the literature. The U (1) genera-
tor mismatch highlighted in [1,2] is seen to originate from the 
fact that the SU(3) representation 3 can be represented by a two 
upper index antisymmetric tensor, or a one lower index tensor, 
the former occurring in the branching expansion for the rank 
three antisymmetric tensor, and the latter in the branching ex-
pansion for the adjoint. An analogous statement holds for the 
SU(2) representation 2 ≡ 2 in the rank two antisymmetric tensor 
case. The results of Eqs. (29) and (33) for residual scalar masses 
will be of use in model building in which SU(n) symmetry is 
broken by a rank three or rank two antisymmetric tensor scalar 
field.
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