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We  examined  the  safety,  immunogenicity  and  efficacy  of  a prime-boost  vaccination  regime  involving
two  poxvirus  malaria  subunit  vaccines,  FP9-PP  and MVA-PP,  expressing  the  same  polyprotein  consisting
eywords:
alaria

accine
eterologous prime-boost

of  six  pre-erythrocytic  antigens  from  Plasmodium  falciparum.
Following  safety  assessment  of single  doses,  15  volunteers  received  a heterologous  prime-boost  vac-

cination  regime  and  underwent  malaria  sporozoite  challenge.  The  vaccines  were  safe  but  interferon-�
ELISPOT  responses  were  low  compared  to  other poxvirus  vectors,  despite  targeting  multiple  antigens.
There  was  no  vaccine  efficacy  as  measured  by  delay  in  time  to  parasitaemia.  A number  of  possible
explanations  are  discussed,  including  the  very  large  insert  size  of  the  polyprotein  transgene.
. Introduction

Plasmodium falciparum is responsible for an enormous world-
ide burden of human disease, causing an estimated 200–500
illion cases of clinical disease and 1 million deaths each year [1,2],
ost of this occurring in sub-Saharan Africa. Two billion people are

hought to live in areas at significant risk of malaria [1]. However, it
s clear from irradiated sporozoite studies in humans that it is pos-
ible to induce effective and relatively durable immunity against
. falciparum and that this can be strain-transcending [3]. Despite
his proof of principle, there remains no currently available malaria
accine.

A number of vaccine strategies are being explored at present,
ost of which focus on one or very few parasite antigens. In

ontrast, the poxvirus-vectored vaccines used in this study were

onstructed to encode the entire sequence of six separate P. fal-
iparum proteins expressed at the pre-erythrocytic stage yielding

 3240 amino-acid long ‘polyprotein’ [4]. This strategy aimed to
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generate a broad cellular immune response directed against a
variety of pre-erythrocytic parasite antigens, rather than a strong
but narrow response. The proteins were selected using immuno-
genicity data from humans living in malaria endemic areas and
from responses against irradiated sporozoites. This approach is
supported by the fact that although the immunodominant circum-
sporozoite (CS) protein response plays an important role in the
protective effect of irradiated sporozoite vaccination in mice, pro-
tection can still be induced when CS is removed as an immune
target [5]. Protection may  then be achieved with the combina-
tion of modest responses against a number of parasite proteins. A
broader response could also reduce the risk of parasite immune
escape and be effective against a variety of parasite strains and
across varying Human Leukocyte Antigen (HLA) types. Significant
humoral responses were not expected or examined for in this
study.

The viral vectors fowlpox strain FP9 and modified vaccinia virus
Ankara (MVA) have an excellent safety record in humans [6–8],
are capable of inducing powerful T-cell responses [9,10] and have
been shown to induce protection against malaria in mice [10] and in
humans [7]. Both have been engineered to express the polyprotein

Open access under CC BY license.
construct (FP9-PP and MVA-PP). When evaluated in mice, FP9-PP
was specifically shown to induce IFN�-secreting T cells by ELISPOT
against each of the six vaccine antigens and heterologous prime-
boost vaccination induced liver-stage antigen 1 (LSA-1) tetramer
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ositive CD8 T-cells that demonstrated cytotoxic activity [4]. The
mportance of IFN� has been shown by its ability to inhibit devel-
pment of exoerythrocytic parasite forms within hepatocytes [11].

This study examines the safety, immunogenicity and challenge
fficacy of these vaccines when administered to healthy human
olunteers intradermally, four weeks apart in two  different prime-
oost regimes.

.  Materials and methods

.1.  Volunteers and recruitment

Healthy malaria naïve adults aged 18–50 years old were
ecruited from April 2006 to November 2006 from the Oxford area
n the UK. Screening, vaccination and all study visits except for the
porozoite challenge day itself were carried out at the Centre for
linical Vaccinology and Tropical Medicine, University of Oxford,
hurchill Hospital, Oxford, UK. The malaria challenge took place at
he insectary of the Alexander Fleming Building, Imperial College,
ondon, UK.

Key  study exclusion criteria included: abnormal baseline
aematology or biochemistry; evidence of hepatitis B, C or HIV

nfection; history of immunosuppressive medication or immunod-
ficiency; previous history of malaria; malaria chemoprophylaxis
ithin five months (for challenge volunteers); travel to a malaria

ndemic region within six months; or history or evidence of a sig-
ificant physical or psychiatric disorder.

.2. Funding, ethical and regulatory approval

This study was principally funded by the European Malaria
accine Initiative (EMVI) now European Vaccine Initiative (EVI)
nd sponsorship responsibilities were shared through delegation
etween EMVI and the University of Oxford. The trial proto-
ol and associated documents were reviewed and approved as
wo studies by the Oxfordshire National Health Service Research
thics Committee A (OxREC A, reference numbers 04/Q1604/93
nd 06/Q1604/55) and by the Medicines and Healthcare products
egulatory Agency (MHRA, EudraCT numbers 2004-002424-17 and
006-000629-67). Recombinant vaccine use was authorised by the
enetic Modification Safety Committee (GMSC) of the Oxford Rad-
liffe Hospitals NHS Trust (reference number GM462.04.21).

All  volunteers gave written informed consent before enrolment
nd the study was conducted according to the principles of the
eclaration of Helsinki and in accordance with Good Clinical Prac-

ice (GCP). External study monitoring was provided by Appledown
linical Research.

.3.  Study design

Study  groups 1–5 (n = 3 each) were single dose-escalation
roups  with the following doses: FP9-PP at 1 × 108 plaque-forming
nits (pfu), MVA-PP at 1 × 108 pfu, FP9-PP at 2 × 108 pfu, MVA-PP
t 2 × 108 pfu and MVA-PP at 5 × 108 pfu respectively. Volunteers
n groups 6 and 7 (planned n = 10 each) received the heterologous
rime-boost vaccine regimes ‘FFM’ or ‘MMF’  respectively. ‘FFM’
efers to the sequence of FP9-PP/FP9-PP/MVA-PP with each vac-
ination one month apart. ‘MMF’  refers to the equivalent sequence
f MVA-PP/MVA-PP/FP9-PP. Doses were 1, 1 and 2 × 108 pfu for
rst, second and third vaccinations for both groups 6 and 7. Con-
rol volunteers (n = 6) were recruited to undergo malaria challenge
ithout vaccination to confirm the infective efficacy of the sporo-
oite challenge. Vaccine follow-up visits for groups 1–7 were on
ays 2, 7 and 28 following each vaccination with additional visits
n day 90 (groups 1–5) and day 150 after first vaccination (groups

 and 7). In addition, all challengees were seen regularly during the
9 (2011) 7514– 7522 7515

three weeks following challenge (see sporozoite challenge below)
and then 35 and 150 days following challenge. Blood was collected
regularly for safety assessments and immunogenicity.

2.4. Vaccines and ‘polyprotein’ insert

FP9-PP and MVA-PP were manufactured according to Good
Manufacturing Practice (GMP) regulations by Impfstoffwerk
Dessau-Tornau (IDT, Roßlau, Germany). The polyprotein vaccine
insert (‘L3SEPTL’) has been fully described before [4]. It contains
six pre-erythrocytic malaria antigens linked together in a sin-
gle protein (from N to C terminus): liver stage antigen 3 (LSA3)
[12], sporozoite threonine and asparagine rich protein (STARP)
[13], exported protein-1 (Exp1) [14], Pfs16 [15], thrombospondin-
related adhesion protein (TRAP) [16] and liver stage antigen-1
(LSA1) [17]. All except possibly Pfs16 are pre-erythrocytic antigens;
LSA3, Exp1 and STARP are also expressed by blood-stage parasites
and Pfs16 is also a sexual-stage antigen [4].

Vaccines were stored at the trial site at −80 ◦C and thawed
shortly before administration. Each dose was  given intradermally
into the skin overlying the deltoid muscle of the upper arm. Doses
were divided equally between both arms. Vaccine sites were tem-
porarily covered with an absorbent dressing which was  removed
when the vaccine sites were reassessed approximately 30 min  later.

2.5. Adverse events

Volunteers were asked to complete study diary cards for the
first seven days after vaccination, beginning with the evening of
the vaccination day. These recorded local reactions (pain, redness,
swelling, itching, warmth and scaling) and systemic symptoms
(oral temperature, feverishness, myalgia, arthralgia, nausea or
vomiting, lethargy, headache and malaise). Temperature was  mea-
sured with an oral digital thermometer (Servoprax GmbH) supplied
by the investigators and redness and swelling were recorded as
maximal diameters (ensuring the measurement passed through the
puncture site). On each clinic attendance the investigators inde-
pendently collected the same measurements. Adverse events (AEs)
were recorded at each clinic visit in response to direct question-
ing, self-reporting on volunteer diary cards and examination of the
vaccine site at each attendance by the investigators.

Severity scales used for grading are shown in Online Table A.
AEs were judged as either unrelated or possibly, probably or defi-
nitely related to vaccination by the investigator, taking into account
the symptoms and time since vaccination. All AEs were followed
until resolution where possible. If the study ended before reso-
lution, attempts were made to determine outcome by contacting
the volunteer and/or general practitioner. The data presented here
includes all AEs, even if a volunteer subsequently dropped out of
the study. Where an AE stopped and restarted within 30 days of
vaccination it has only been reported once in these results, but
durations have been summed. AE durations have been rounded up
to the nearest day.

2.6.  Sporozoite challenge

Volunteers  underwent P. falciparum sporozoite challenge at
Imperial College, London two weeks after the final vaccination.
They each received bites from five mosquitoes subsequently con-
firmed to have more than 100 sporozoites per paired salivary
gland. Anopheles stephensi mosquitoes were infected with the
chloroquine-sensitive 3D7 strain of the parasite at the Walter Reed

Army Institute of Research (WRAIR), Maryland, US and reared
in the laboratory as previously described [18]. Volunteers began
attending clinic for malaria screening from the evening of day 6
after infection. At each visit they were questioned about possible
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Table  1
Volunteer demographics.

Group N Mean age (SD) Min  age Max  age No. female (%) No. male (%)

G1: low dose F 3 35.4 (8.7) 27.9 45.0 2 (66.7%) 1 (33.3%)
G2:  low dose M 3 22.4 (2.8) 19.3 24.6 3 (100%) 0 (0%)
G3:  mid  dose F 3 34 (6.4) 27.3 40.0 2 (66.7%) 1 (33.3%)
G4:  mid  dose M 3 28.8 (11.5) 21.5 42.1 0 (0%) 3 (100%)
G5:  high dose M 3 29.5 (13.8) 18.9 45.1 1 (33.3%) 2 (66.7%)
G6:  FFM 9 32.2 (10.5) 20.6 47.3 6 (66.7%) 3 (33.3%)
G7:  MMF  10 29.8 (7.5) 19.5 44.6 3 (30%) 7 (70%)
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unteers. Fifteen of the 16 volunteers completing the prime-boost
vaccination study subsequently volunteered to enter the separate
but linked challenge study. They were joined by six newly-recruited
unvaccinated malaria-naïve challenge control volunteers.
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Total  cohort 34 30.5 (8.9) 18

ata is for all volunteers enrolled (vaccinated) in the study. Age is given in decimal

ymptoms, had their temperature, pulse and blood pressure mea-
ured and gave blood for both thick film microscopy and PCR for
alaria parasites. This process was repeated twice daily from day

 to day 14 and then once daily from days 15 to 21, or until diag-
osis. Two experienced microscopists examined a minimum of
00 high power fields (100× objective) for parasite ring forms on
ach sample. A diagnosis of malaria was made as soon as one or
ore viable parasites were seen on a volunteer’s slide. Oral anti-
alarial treatment was commenced on diagnosis as an outpatient
ith oral Riamet® (Novartis, 20 mg  artemether with 120 mg  lume-

antrine) given at diagnosis and then approximately 8, 24, 36 and
8 h later. Artemether combination therapy was chosen in line with
orld Health Organisation recommendations on the treatment of

ncomplicated malaria. Volunteers returned for repeat blood film
xaminations daily after treatment commenced until two consec-
tive negative films had been seen.

.7. PCR and parasite growth rate analysis

Quantitative real-time PCR was performed at challenge baseline
nd at all post-challenge visits until treatment commenced using a
ethod described previously [19]. Clinicians, volunteers and staff

erforming other assays were blinded to the PCR results during
he study. Data was adjusted using a standard curve derived from
ounted cultured parasites in whole blood to give the number of
arasites per mL  of blood.

The PCR data was also used to estimate overall growth rates of
lood stage parasites during the challenge for each volunteer and to
ack-calculate a starting number of merozoites emerging into the
lood (around day 6–7) and hence an estimate of the number of

nfected hepatocytes responsible for initial seeding of blood-stage
arasite forms. The methods employed are based on an iterative
djustment model to derive a best fit curve to the measured data,
s described [20].

.8.  ELISPOT assay

Ex  vivo IFN�-ELISPOTs were carried out broadly as described
21]. Briefly, fresh heparinised blood was separated using Lympho-
rep (Nycomed Pharma), washed and resuspended in RPMI-1640
Sigma–Aldrich) containing 10% heat-inactivated fetal bovine
erum (BioSera), 100 U/mL penicillin, 100 �g/mL streptomycin and

 mM l-glutamine (both Invitrogen) and PBMC were counted
sing an automated CasyCounter TT (Innovatis AG). PBMC were
lated in duplicate wells at 0.4 million per well on Multi-
creen 96-well HPVDF filtration plates (MAIPS4510, Millipore)
fter coating overnight at 4 ◦C with 10 �g/mL of anti-IFN� (1-
1K, Mabtech) and blocking with the supplemented medium
escribed above. Cells were incubated (37 ◦C, 5% CO2) for 18–20 h

ith positive (phytohaemagglutinin 10 �g/mL, Sigma) or nega-

ive (supplemented medium) controls or peptide pools consisting
f up to 32 peptides (each 20mers overlapping by 10, final
oncentration 10 �g/mL/peptide). Plates were developed using
47.3 17 (50%) 17 (50%)

t. Data on subjects’ ethnic origin was not collected.

biotin–streptavidin–ALP (Mabtech) with the addition of a chro-
mogenic substrate (BioRad). Spots were counted using an ELISPOT
reader and associated software (both Autoimmun Diagnostika).
Final counts were expressed as sfu/million PBMC after averaging
duplicate well counts and subtracting background. For larger pro-
teins, responses from multiple peptide pools were summed to give
the response against the whole protein.

2.9. Data analysis

Data  analysis was carried out using Microsoft Excel®, GraphPad
Prism® and STATACorp STATA® with Kaplan-Meier analysis in
SPSS®.

3.  Results

3.1. Volunteer recruitment and group allocation

A total of 34 volunteers passed screening and were enrolled into
study groups 1–7 between April and November 2006. Volunteer
demographics are shown in Table 1. Fifteen volunteers received
one vaccination each in the dose-escalation groups 1–5 (n = 3 per
group). Nineteen volunteers were enrolled into the prime-boost
vaccination groups 6 (or ‘FFM’ receiving the vaccine sequence FP9-
PP/FP9-PP/MVA-PP, n = 9) and 7 (‘MMF’, n = 10). Three volunteers
subsequently withdrew (one from the FFM group due to a pre-
existing condition not revealed at screening and two from the
MMF group due to unforeseen changes to work and travel plans).
All available data has been included in the analysis for these vol-
Fig. 1. Frequency of vaccine-related solicited AEs in all groups. The proportion of
volunteers reporting each solicited AE within one month of vaccination is shown, per
vaccine dose (total doses = 68). The data is a combination of AEs from single dose and
prime-boost vaccination groups. ‘Local’ AEs occurred at or around the vaccination
site.
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.2. Vaccination with FP9-PP and MVA-PP is safe and
ell-tolerated

No  serious adverse events (SAEs) occurred during the study.

f 717 adverse events (AEs) recorded during the entire vaccina-

ion phase, 577 (81%) were judged probably or definitely related to
accination (termed ‘vaccine-related’ from here on). Of these, 562
97%) were AEs anticipated from previous studies of these vaccine
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vectors  about which volunteers were specifically asked at each visit
(solicited AEs, Fig. 1). The majority of all AEs reported during the
vaccination phase were mild, with only 1 (0.1%) graded severe and
8% moderate in severity. The severe AE was  local swelling at the vac-

cine site. This AE was graded ‘severe’ on the basis of the volunteer
diary card readings, which were >50 mm on the day following vac-
cination only (90 and 80 mm for left and right arms respectively).
By day 2 volunteer measurements were 34 and 28 mm and clinic
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easurements 20 and 12 mm (left and right arms respectively). The
olunteer reported that the total duration of swelling was  13 days.

Of vaccine-related AEs (detailed in Online Table B), 394 (68%)
ere local to the vaccine site and 183 (32%) were systemic.

he median AE duration (and interquartile range, IQR) was 7
3–12) and 2 (1–2) days for local and systemic vaccine-related
Es respectively. As expected, local vaccine responses (such as
ain, redness, swelling and local tenderness) occurred with almost
very vaccine dose. The median duration (and IQR) of pain was  2
1–3.25) days and most (88.2%) were mild. Systemic responses (e.g.
eadache, myalgia and tiredness) occurred frequently after vac-
ination (Fig. 1). Myalgia was most common, reported by 48% of
olunteers. For the single vaccine dose-escalation groups 1–5, the
requency of local AEs did not alter as dose increased, but more
ystemic AEs (mostly mild in severity) were seen with increasing
ose in MVA  vaccinated volunteers (Fig. 2). The frequency of local
Es also varied little with successive vaccinations in the three-dose
eterologous prime-boost groups FFM and MMF,  but the propor-
ion of AEs graded moderate increased with successive doses in the

MF  group (Fig. 3). There was no clear trend in AE duration during
accination in these groups (Fig. 3d).

Eleven volunteers (32%) had at least one blood result falling
utside the study reference ranges during follow up, but none of
hese were associated with clinical symptoms and only two  war-
anted referral to the general practitioner for repeat testing or
nvestigation (mild hyperbilirubinaemia at 28 �mol/L and a low
aemoglobin of 9.8 g/dL which resolved at repeat testing).

.3. Single dose immunogenicity and dose selection for
rime-boost groups

Three  doses of MVA-PP and two doses of FP9-PP were assessed in

ingle-dose small groups (n = 3), primarily for safety, before decid-
ng on doses to be used in the larger prime-boost groups.

Immunogenicity for these groups was low, as expected in the
bsence of a booster dose, but pre-vaccination responses were also
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whole vaccine insert (‘L3SEPTL’) at baseline and 7 days following vaccination (‘D0’
and ‘V1+7’ respectively). Responses are displayed as spot forming units (sfu) per
million PBMC. Horizontal lines represent the median.

relatively high (Fig. 4). For MVA-PP there was a suggestion that
immunogenicity was  lower at the high dose (5 × 108 pfu).

In  deciding the dose to be used in the prime-boost groups,
the following factors were considered: firstly, although all doses
appeared safe, the frequency of systemic AEs was higher with
increasing MVA-PP dose; secondly, there was  no clear dose advan-
tage for MVA-PP at high dose; and thirdly, the possibility of
encountering anti-vector immunity cross-reactive between the dif-
ferent poxviruses. It was therefore decided that for each of the
prime-boost groups, the low vaccine dose (1 × 108 pfu) would be
used to prime and the intermediate dose (2 × 108 pfu) to boost.

3.4.  Modest prime-boost immunogenicity
IFN� ELISPOT responses against vaccine antigens for the
prime-boost groups are shown in Figs. 5 and 6. Overall, vaccine
immunogenicity was lower than expected based on studies of
other malaria antigens in the same poxvirus vectors [7,21,22].
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vaccinees was  11.9 compared to 12.8 for control volunteers. There
was no significant difference between the curves representing time
to slide positivity (Fig. 7, Log-rank Mantel–Cox test, p = 0.35) or
mean time to diagnosis between the FFM group, MMF  group or
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nd  V2+7) or 8 (V3+7). Horizontal lines represent the median. T996 and T3D7 refer
alciparum.

edian responses to the whole vaccine insert (L3SEPTL) at seven
ays after the last vaccine (V3+7) were 85 (IQR 68–180) and 96
59–128) sfu/106 PBMC for the FFM and MMF  groups respec-
ively compared to a pre-vaccination response of 80 (44–176) and
7.5 (18–49) respectively (Fig. 5). This was a statistically signifi-
ant increase for the MMF  group (Wilcoxon’s matched pairs test,

 = 0.008). Pre-vaccination responses to the vaccine insert for the
FM group were unexpectedly high in comparison to the MMF
roup. These responses were mainly directed against TRAP from
he parasite strain used in the vaccine insert (T9/96) and were sig-
ificantly higher than those in the MMF  group (Mann–Whitney test,

 = 0.003). This is unlikely to be a laboratory error as clinical proce-
ures and laboratory assays for both groups occurred concurrently
nd laboratory staff were blinded to volunteer group assignment.

MVA-PP  induced a statistically significant priming response (of
40 sfu/million PBMC) to the whole L3SEPTL insert in the MMF
roup (Wilcoxon’s matched pairs test, p = 0.008) where FP9-PP
ailed to do so in the FFM group (p = 0.68) when comparing pre-
accination responses with those at V1+7. There was no significant
ise in responses after the second vaccination (Wilcoxon’s matched
airs test, p = 0.67 for FP9-PP and p = 0.31 for MVA-PP at V2+7
ompared to V1+28 for the FFM and MMF  groups respectively).
owever, MVA-PP again induced a significant rise in responses to
3SEPTL at the final (boosting) dose (Wilcoxon’s matched pairs test,

 = 0.04 for MVA-PP, p = 0.67 for FP9-PP for the FFM and MMF  groups
espectively, comparing V3+7 with V2+7 in each case).

Responses were more frequently identified and stronger to the
our larger antigens, LSA3, LSA1, TRAP and STARP than to the
maller Exp1 and Pfs16 (Fig. 6) but peptide pools from all antigens
ere recognised by at least one vaccine.

There was a small rise in non-malaria-specific background IFN�
esponses (to culture medium alone) after the first vaccination
ith MVA-PP at low dose (1 × 108 pfu). Median responses were

.75 and 11.25 sfu/106 PBMC at baseline (D0) and 7 days after vac-
ine 1 (V1+7) respectively (Wilcoxon’s matched pairs test, p = 0.003,

 = 12) (see Online Fig. A).

.5.  No clinical protection against P. falciparum sporozoite
hallenge

Fifteen vaccinees underwent P. falciparum sporozoite chal-
enge two weeks after receiving their final immunisation. Six

nvaccinated, malaria-naïve volunteers also took part to con-
rm the effectiveness of the challenge model. The procedure
as well-tolerated and there were no SAEs recorded. A total of

9 AEs were recorded in 13 (61.9%) challenges over four weeks
 9 (D0, V1+7 and V1+28) or 8 (V2+7 and V3+7). For MMF,  n = 10 (D0), 9 (V1+7, V1+28
AP sequences from the vaccine (T9/96) and challenge (3D7) strains of Plasmodium

following  the challenge. One was judged of moderate severity
(fatigue) but the rest were judged mild. One volunteer developed
a transient localised petechial rash on one forearm after the appli-
cation of a tourniquet. Mild thrombocytopenia was  noted (platelet
count 114 × 109/L) which resolved without intervention.

Expected symptoms of malaria were not recorded as AEs and
included anorexia, chills, diarrhoea, fever, headache, low back pain,
myalgia or arthralgia, nausea or vomiting, rigors and sweats. One
or more of these symptoms was recorded in 80% of vaccinees and in
100% of unvaccinated controls. Although all symptoms were more
frequent in the control group than vaccinees this is of unknown
significance in this unblinded study.

All 21 volunteers developed detectable parasitaemia by thick
film microscopy during the 21-day surveillance period and were
treated with anti-malarial medication without any significant com-
plication. All volunteers also developed positive PCR tests for
malaria parasites during the follow up period.

3.6. No delay in time to parasitaemia

All  vaccinees were diagnosed with blood-film positive malaria
by the morning of day 14 and all control volunteers by the evening
of day 14 following challenge. The mean day of diagnosis for all
Days post-challenge

Fig. 7. Kaplan–Meier survival curve. Time to parasitaemia is plotted for vaccinees
in  FFM (n = 8) or MMF  (n = 7) groups and unvaccinated control volunteers (n = 6).
Log-rank (Mantel–Cox) test for difference in curves: p = 0.35.



7520 D.W. Porter et al. / Vaccine 29 (2011) 7514– 7522

Table  2
Time  to diagnosis for vaccinees in FFM and MMF  groups and unvaccinated control volunteers.

Group Number in
group

No. positive for
parasites  by day 21

Mean  time to
diagnosis  (days)

SD Median day of
diagnosis

Interquartile
range

Group 6 8 8 11.6 1.5 11 10.9–12.6
12.4 

11.9 

12.8 

a
p
c
d
i
r

3

D
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e
t
c
v
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a
e
e
r
o

s

F
e
s

Group  7 7 7 

All  vaccinees 15 15 

Controls 6  6 

ll vaccinees compared to controls (Table 2, Mann–Whitney test,
 = 0.13, 0.55 and 0.20 respectively). There was also no significant
orrelation between the magnitude of the ELISPOT response on the
ay of challenge (DOC) and the time to blood-film positive malaria

n either vaccine regime or all vaccinees together (Spearman’s cor-
elation, data not shown).

.7.  No reduction in blood stage parasite growth rate by PCR

Serial  quantitative PCR measurements to detect malaria parasite
NA were carried out up to twice daily during the trial to estimate
lood stage parasite growth rates over the challenge period for each
olunteer. Clinic staff and laboratory staff responsible for blood film
ssessment were blinded to these results until after anti-malarial
reatment.

The vaccines used in this study were designed to elicit pre-
rythrocytic cellular responses primarily. However, differences in
he growth rate of the parasite asexual blood stages between vac-
inees and controls would suggest a specific blood stage effect of
accination. The same growth rate data can also be used to derive
nformation on pre-erythrocytic efficacy by back-calculating par-
site numbers to the day of emergence into the blood. Thus an
stimate of the number of infected hepatocytes responsible for the
merging merozoite load can be calculated for each volunteer. A

eduction in this number would suggest a pre-erythrocytic effect
f vaccination, even if insufficient to prevent eventual parasitaemia.

Various methods for estimating growth rates exist, including
imple linear estimation, a sine wave approximation [23] and a
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hown  in (c) but separated by study group. Error bars in (a) are the standard error of the 
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statistical model method [20]. We  employed the statistical method
in this study. Although mean blood stage parasite growth rates
were lower in the vaccinated groups (Fig. 8), this was  not statisti-
cally significant, even when vaccine groups were analysed together
(p = 0.29), suggesting that any blood stage effect of vaccination was
minimal. Asexual blood stage growth rates did not correlate signif-
icantly with time to parasitaemia (data not shown). However, the
estimated number of infected hepatocytes generated during the
liver stage of infection (derived from the PCR rate data) does corre-
late with the time to blood-film positive parasitaemia (Spearman’s
p = 0.0004, rho = −0.71, Fig. 8c).

4. Discussion

4.1. Rationale

We  conducted a prospective phase I/IIa dose-escalation and
sporozoite challenge trial in healthy malaria-naïve human volun-
teers administered the novel malaria vaccines FP9-PP and MVA-PP.
Vaccinations in the prime-boost groups were given one month
apart and volunteers underwent challenge three weeks after the
last vaccination.

The vaccines encode a ‘polyprotein’ construct (‘L3SEPTL’) con-
sisting of six pre-erythrocytic malaria antigens (from N to C

terminus): LSA3, STARP, Exp1, Pfs16, TRAP and LSA1. Although the
aim of immunisation was to stimulate a pre-erythrocytic cellular
response, expression during the blood stage of the malaria parasite
lifecycle has also been reported for STARP [13], Exp1 [14] and for
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an parasite growth rate estimated from PCR data. (c) Infected hepatocyte numbers
the number of infected hepatocytes for points close (but not equal to) zero. (d) Data
mean and horizontal lines in (b) and (d) represent the geometric mean.
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 LSA3 homologue [12,24]. Pfs16 is also expressed at sexual stages
25]. The expressed protein is 3240 amino acids long and has been
hown to induce T cell responses to peptide pools from each of the
ix antigens in mice [4]. To our knowledge this is the largest foreign
nsert in a viral vectored vaccine tested in a clinical trial.

The  viral vectors employed here have been used extensively in
uman vaccination [7,26,27]. Previous vaccine studies using these
ectors in human prime-boost regimes with much smaller inserts
ave demonstrated the ability to induce strong T-cell responses
easured by the ex vivo IFN�-ELISPOT and induce sterile protection

n malaria challenge in some volunteers [7]. The approach explored
n this study was to attempt to broaden the vaccine-induced
mmune response to cover multiple malarial antigens and provide
trong pre-erythrocytic and perhaps some blood-stage immunity.
he potential advantages of a broader immune response should be
o: (1) reduce the risk of immune escape; (2) improve potential pro-
ective efficacy by increasing the number of antigens and epitopes
argeted by protective T cells; (3) limit inter-individual variation
n vaccine immunogenicity related to HLA-restriction and lack of

 cell epitopes in a single antigen insert; and (4) provide a more
ost-effective solution than vaccinating with mixtures of multiple
ingle-antigen vaccines.

.2.  Safety

Both vaccines were found to be safe and well tolerated. Higher
oses of the vaccines did not appear to increase the frequency or
everity of local AEs. Increasing doses of MVA-PP were associated
ith a greater frequency of systemic AEs, though generally of mild

everity. Successive doses of vaccine in the MMF  regime led to a
etectable increase in the severity of local AEs but no clear effect
n AE duration.

.3.  Cellular immunity

IFN�  ELISPOT responses to single vaccine doses were low. There
as no clear effect of dose on immune response in the dose-

scalation groups, but these group sizes were not powered to allow
mmunogenicity comparisons, and responses were expected to be
ow following a single priming dose.

However, immunogenicity was also disappointingly low in the
wo heterologous prime-boost groups. FP9-PP failed to induce a sig-
ificant priming response in the FFM group (albeit from a relatively
igh baseline) but also failed to boost responses in the MMF  group.
edian responses in the MMF  group reached only 140 sfu/million

BMC following priming compared to 43 sfu/million PBMC at
aseline. In comparison, previous prime-boost vaccine studies
sing these vectors expressing the TRAP antigen have yielded
p to 400–500 sfu/106 PBMC [7,21]. Where partial protection was
chieved, with an ME-TRAP insert, the magnitude of peak immuno-
enicity correlated with delay to parasitaemia [7], indicating that
esponses in the present study were very unlikely to have reached
rotective levels. Previous work with FP9-PP and MVA-PP in mice
4] examined the CD8 response primarily after intravenous admin-
stration of vaccine and is not easily comparable, particularly as
uman immunogenicity with many vaccines is often lower than
hat observed in murine studies.

The reasons for this failure of immunogenicity are uncertain.
ossible explanations include: (1) the size of the L3SEPTL pro-
ein produced may  have limited expression of the transgene so
hat insufficient protein was produced to induce a strong immune
esponse. The polyprotein used here is substantially larger than

thers reported to date and was under the control of a standard
oxvirus p7.5 promoter. (2) The large number of potential epitopes
resent in the polyprotein construct may  have resulted in signif-

cant competition between antigens all of which are expressed
9 (2011) 7514– 7522 7521

in  the same cell. (3) Increasing evidence supports cross-priming
as the principal method of presentation of antigens expressed by
poxviruses [28], although the extent to which this mechanism can
allow immunogenicity of large complex inserts is unclear.

Importantly, none of these suggested mechanisms prevented
immunogenicity of the same vaccine vectors in murine studies [4].
While this may  represent a dose effect related to the relatively
greater dose per weight administered in mice, it could also sug-
gest that any effect of insert size may  be greater in humans than in
mice. Further studies will be required to assess the effects of dose
and limits of transgene size that can be effectively expressed in
poxvirus vaccines in humans and to assess relevant mechanisms.

4.4.  Efficacy

The vaccine regimes studied here were unable to induce sterile
protection in a sporozoite challenge or delay the onset of patent
parasitaemia in vaccinees. IFN�-ELISPOT responses at challenge
did not predict how quickly parasitaemia developed. Estimates of
infected hepatocyte numbers responsible for subsequent blood-
stage parasite load and growth in vaccinees proved to be a good
predictor of time to slide positive parasitaemia across all challenged
subjects. This study was designed to assess a possible liver stage
effect of vaccination, but if a significant blood stage effect had been
anticipated then a blood stage challenge protocol [29] may  have
been preferable.

5.  Conclusions

There is an increasing consensus in the malaria vaccine devel-
opment field that multiple antigens will be required in a vaccine to
achieve high levels of efficacy in field trials. Heterologous prime-
boost immunisation has been one of the very few approaches to
successfully induce sterile efficacy in any human vaccinees and
this study has assessed a polyprotein approach to broadening the
immunogenicity of the induced T cell responses. Our results sug-
gest that there may be limits to the insert size that will be readily
immunogenic in humans, at least using standard vaccinia promot-
ers. Hence other vector design strategies, such as the use of multiple
promoters and insertion sites [30], or mixtures of single vaccines
may be more suitable for exploiting the great capacity of poxviruses
to express foreign antigens.

Acknowledgements

This  study was principally funded by the European Malaria Vac-
cine Initiative (EMVI) now European Vaccine Initiative (EVI). The
authors would like to thank Odile Leroy and Egeruan Imoukhuede
for advice and support. Additional support from the Wellcome
Trust and the NIHR Oxford Biomedical Research Centre is grate-
fully acknowledged. SG is a Jenner Institute Investigator and AVSH
is a Wellcome Trust Principal Research Fellow.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.vaccine.2011.03.083.

References

[1] Snow RW,  Guerra CA, Noor AM,  Myint HY, Hay SI. The global distribution of
clinical  episodes of Plasmodium falciparum malaria. Nature 2005;434(March

(7030)):214–7.

[2]  WHO. World Malaria Report; August 2008.
[3] Hoffman SL, Goh LM,  Luke TC, Schneider I, Le TP, Doolan DL, et al. Protec-

tion  of humans against malaria by immunization with radiation-attenuated
Plasmodium falciparum sporozoites. J Infect Dis 2002;185(April (8)):1155–64.

http://dx.doi.org/10.1016/j.vaccine.2011.03.083


7 ccine 2

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

522 D.W. Porter et al. / Va

[4]  Prieur E, Gilbert SC, Schneider J, Moore AC, Sheu EG, Goonetilleke N, et al. A
Plasmodium  falciparum candidate vaccine based on a six-antigen polyprotein
encoded  by recombinant poxviruses. Proc Natl Acad Sci U S A 2004;101(January
(1)):290–5.

[5]  Kumar KA, Sano G, Boscardin S, Nussenzweig RS, Nussenzweig MC, Zavala F,
et  al. The circumsporozoite protein is an immunodominant protective antigen
in  irradiated sporozoites. Nature 2006;444(December (7121)):937–40.

[6] Moorthy VS, Pinder M,  Reece WH,  Watkins K, Atabani S, Hannan C, et al. Safety
and  immunogenicity of DNA and modified vaccinia virus Ankara malaria vac-
cination  in African adults. J Infect Dis 2003;188(8):1239–44.

[7]  Webster DP, Dunachie S, Vuola JM,  Berthoud T, Keating S, Laidlaw SM,  et al.
Enhanced  T cell-mediated protection against malaria in human challenges by
using the recombinant poxviruses FP9 and modified vaccinia virus Ankara. Proc
Natl  Acad Sci U S A 2005;102(March (13)):4836–41.

[8]  Imoukhuede EB, Berthoud T, Milligan P, Bojang K, Ismaili J, Keating S, et al.
Safety  and immunogenicity of the malaria candidate vaccines FP9 CS and MVA
CS  in adult Gambian men. Vaccine 2006;24(October (42–43)):6526–33.

[9] McShane H, Pathan AA, Sander CR, Keating SM,  Gilbert SC, Huygen K, et al.
Recombinant  modified vaccinia virus Ankara expressing antigen 85A boosts
BCG-primed  and naturally acquired antimycobacterial immunity in humans.
Nat  Med  2004;10(November (11)):1240–4.

10]  Schneider J, Gilbert SC, Blanchard TJ, Hanke T, Robson KJ, Hannan CM,  et al.
Enhanced  immunogenicity for CD8+ T cell induction and complete protective
efficacy  of malaria DNA vaccination by boosting with modified vaccinia virus
Ankara.  Nat Med  1998;4(April (4)):397–402.

11]  Ferreira A, Schofield L, Enea V, Schellekens H, van der Meide P, Collins WE,
et  al. Inhibition of development of exoerythrocytic forms of malaria parasites
by  gamma-interferon. Science 1986;232(May (4752)):881–4.

12] Daubersies P, Thomas AW,  Millet P, Brahimi K, Langermans JA, Ollomo B, et al.
Protection  against Plasmodium falciparum malaria in chimpanzees by immu-
nization  with the conserved pre-erythrocytic liver-stage antigen 3. Nat Med
2000;6(November (11)):1258–63.

13] Fidock DA, Bottius E, Brahimi K, Moelans II, Aikawa M,  Konings RN, et al. Cloning
and  characterization of a novel Plasmodium falciparum sporozoite surface anti-
gen,  STARP. Mol  Biochem Parasitol 1994;64(April (2)):219–32.

14] Hope IA, Hall R, Simmons DL, Hyde JE, Scaife JG. Evidence for immunologi-
cal  cross-reaction between sporozoites and blood stages of a human malaria
parasite.  Nature 1984;308(March (5955)):191–4.

15]  Moelans II, Cohen J, Marchand M,  Molitor C, de Wilde P, van Pelt JF, et al.
Induction  of Plasmodium falciparum sporozoite-neutralizing antibodies upon
vaccination  with recombinant Pfs16 vaccinia virus and/or recombinant Pfs16
protein  produced in yeast. Mol  Biochem Parasitol 1995;72(June (1–2)):179–92.

16] Robson KJ, Hall JR, Davies LC, Crisanti A, Hill AV, Wellems TE. Polymor-

phism of the TRAP gene of Plasmodium falciparum. Proc R Soc Lond B Biol Sci
1990;242(December (1305)):205–16.

17] Guerin-Marchand C, Druilhe P, Galey B, Londono A, Patarapotikul J, Beaudoin
RL,  et al. A liver-stage-specific antigen of Plasmodium falciparum characterized
by  gene cloning. Nature 1987;329(September (6135)):164–7.

[

9 (2011) 7514– 7522

18]  Chulay JD, Schneider I, Cosgriff TM,  Hoffman SL, Ballou WR,  Quakyi IA, et al.
Malaria  transmitted to humans by mosquitoes infected from cultured Plas-
modium  falciparum. Am J Trop Med  Hyg 1986;35(January (1)):66–8.

19] Andrews L, Andersen RF, Webster D, Dunachie S, Walther RM,  Bejon P, et al.
Quantitative  real-time polymerase chain reaction for malaria diagnosis and
its  use in malaria vaccine clinical trials. Am J Trop Med  Hyg 2005;73(July
(1)):191–8.

20] Hermsen CC, de Vlas SJ, van Gemert GJ, Telgt DS, Verhage DF, Sauerwein RW.
Testing  vaccines in human experimental malaria: statistical analysis of para-
sitemia  measured by a quantitative real-time polymerase chain reaction. Am J
Trop  Med  Hyg 2004;71(August (2)):196–201.

21] Vuola JM,  Keating S, Webster DP, Berthoud T, Dunachie S, Gilbert SC, et al. Differ-
ential  immunogenicity of various heterologous prime-boost vaccine regimens
using  DNA and viral vectors in healthy volunteers. J Immunol 2005;174(January
(1)):449–55.

22] Moorthy VS, Imoukhuede EB, Keating S, Pinder M,  Webster D, Skinner MA,  et al.
Phase  1 evaluation of 3 highly immunogenic prime-boost regimens, including
a  12-month reboosting vaccination, for malaria vaccination in Gambian men. J
Infect  Dis 2004;189(June (12)):2213–9.

23] Bejon P, Andrews L, Andersen RF, Dunachie S, Webster D, Walther M,  et al. Cal-
culation  of liver-to-blood inocula, parasite growth rates, and preerythrocytic
vaccine efficacy, from serial quantitative polymerase chain reaction studies of
volunteers  challenged with malaria sporozoites. J Infect Dis 2005;191(February
(4)):619–26.

24]  Barnes DA, Wollish W,  Nelson RG, Leech JH, Petersen C. Plasmodium falci-
parum:  D260, an intraerythrocytic parasite protein, is a member of the glutamic
acid  dipeptide-repeat family of proteins. Exp Parasitol 1995;81(August (1)):
79–89.

25]  Moelans II, Meis JF, Kocken C, Konings RN, Schoenmakers JG. A novel protein
antigen  of the malaria parasite Plasmodium falciparum, located on the surface of
gametes  and sporozoites. Mol  Biochem Parasitol 1991;45(April (2)):193–204.

26] Stickl H, Hochstein-Mintzel V, Mayr A, Huber HC, Schafer H, Holzner
A.  MVA  vaccination against smallpox: clinical tests with an attenuated
live  vaccinia virus strain (MVA) (author’s transl). Dtsch Med  Wochenschr
1974;99(November (47)):2386–92.

27] Li S, Locke E, Bruder J, Clarke D, Doolan DL, Havenga MJ,  et al. Viral vectors for
malaria  vaccine development. Vaccine 2007;25(March (14)):2567–74.

28] Gasteiger G, Kastenmuller W,  Ljapoci R, Sutter G, Drexler I. Cross-priming of
cytotoxic  T cells dictates antigen requisites for modified vaccinia virus Ankara
vector  vaccines. J Virol 2007;81(November (21)):11925–36.

29]  Sanderson F, Andrews L, Douglas AD, Hunt-Cooke A, Bejon P, Hill AV.
Blood-stage challenge for malaria vaccine efficacy trials: a pilot study with
discussion  of safety and potential value. Am J Trop Med  Hyg 2008;78(June (6)):

878–83.

30] Ockenhouse  CF, Sun PF, Lanar DE, Wellde BT, Hall BT, Kester K, et al. Phase
I/IIa  safety, immunogenicity, and efficacy trial of NYVAC-Pf7, a pox-vectored,
multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria.
J  Infect Dis 1998;177(June (6)):1664–73.


	A human Phase I/IIa malaria challenge trial of a polyprotein malaria vaccine
	1 Introduction
	2 Materials and methods
	2.1 Volunteers and recruitment
	2.2 Funding, ethical and regulatory approval
	2.3 Study design
	2.4 Vaccines and ‘polyprotein’ insert
	2.5 Adverse events
	2.6 Sporozoite challenge
	2.7 PCR and parasite growth rate analysis
	2.8 ELISPOT assay
	2.9 Data analysis

	3 Results
	3.1 Volunteer recruitment and group allocation
	3.2 Vaccination with FP9-PP and MVA-PP is safe and well-tolerated
	3.3 Single dose immunogenicity and dose selection for prime-boost groups
	3.4 Modest prime-boost immunogenicity
	3.5 No clinical protection against P. falciparum sporozoite challenge
	3.6 No delay in time to parasitaemia
	3.7 No reduction in blood stage parasite growth rate by PCR

	4 Discussion
	4.1 Rationale
	4.2 Safety
	4.3 Cellular immunity
	4.4 Efficacy

	5 Conclusions
	Acknowledgements
	Appendix A Supplementary data
	Appendix A Supplementary data


