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a b s t r a c t

A non-conventional methodology for polyaniline (PANI) synthesis using X-ray irradiation is presented
in this article, and shows the oxidants normally used in the (chemical or electrochemical) conventional
synthesis of PANI are not necessary. The method uses only high energy photons to interact with nitrate
ions (NO3

−) and aniline monomer in an aqueous solution. The polymerization mechanism has also been
investigated using radical scavenger (DMSO), and the results suggest that the hydroxyl radical (OH)
eywords:
olyaniline
-ray radiation

onizing radiation

generated in situ during exposure to X-ray could be the main agent responsible for oxidation and sub-
sequent polymerization of the aniline monomer. Characterization of the morphology of the polymer by
scanning electron microscopy (SEM) reveals that the PANI obtained by X-ray presents a predominantly
fibrillar morphology with an average fiber diameter of 90 nm. Additionally, thermogravimetric analy-
sis (TGA), elemental analysis, gel permeation chromatography (GPC), conductivity measurements, and
spectroscopic characterization in the UV–vis and IR regions, showed that the polymer obtained is the

condu
polyemeraldine salt (the

. Introduction

In recent years, ionizing radiation has been used as a tool to
repare conventional non-conjugated polymers such as in free rad-

cal polymerization to obtain polymers with a narrow distribution
f molecular weight. This has attracted considerable interest from
oth the scientific and technological points of view due to the fact
hat this presents several advantages over conventional techniques
1–3]. In particular, the approach of exposing a monomer to ionizing
adiation can be used for polymer synthesis at room temperature.
dditionally the process can be switched on and off upon expo-
ure or removal of radiation instead of using initiating or stopper
olecules to start or terminate the polymerization process.
There are very few papers published on the subject of interac-

ion of ionization radiation with non-conventional polymers, and
ost of them only analyze the influence of ionizing radiation on

olymer conductivity [4–7], and not on polymerization. From such

nalysis, it is found that polymer conductivity could increase or
ecrease depending on the doping state of the polymer, if the
olymer is in the undoped state the result of the interaction of ion-

zation radiation with the polymer is similar to the doping effect

∗ Corresponding author. Tel.: +55 81 2126 8412; fax: +55 81 2126 8412.
E-mail address: jorlandiof@yahoo.com.br (J.F. Felix).
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cting form of the polymer).
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when using acid solutions [8,9], namely an increase in conductiv-
ity. However, the response is quite different if the experiment is
performed in a solution with dimethyl sulfoxide (DMSO) [10]. In
this case, the polymer changes its oxidation state and becomes
reduced. In order to profit from the radical produced by ionizing
radiation, we developed a route for synthesis in which a solu-
tion of the aniline monomer and silver ions was irradiated with
gamma radiation from a cobalt source. As a consequence of that
interaction the conducting polymer (PANI) and silver nanoparti-
cles were obtained simultaneously [11,12]. The mechanism which
explains this result was based on the hydroxyl and hydrogen radi-
cals produced by the radiation, which act as oxidizing agents for the
polymerization of the aniline monomer and as a reducing agent for
the silver ions, respectively. Since we performed the synthesis of
a conducting polymer using low energy ionizing UV light [13] and
high energy ionization gamma ray photons [12], in this paper we
report for the first time, a non-conventional route for the synthe-
sis of PANI in aqueous medium without traditional oxidants, but
using only intermediated energy photons (X-ray). We also propose
a mechanism that is able to explain the polymerization process.

Open access under the Elsevier OA license. 
2. Experimental

Aniline (Nuclear) was distilled under atmospheric pressure,
stored in the dark and at low temperature prior to synthesis.
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to the quinoid unit doped PANI; and the band at 820 cm−1 and
the bands at 737 and 697 cm−1 indicate 1.4-ring substitution and
1.2-ring substitution respectively, all vibration bands – except the
strong vibration mode at 1387 cm−1 that is assigned to NO3

− [18]
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mmonium hydroxide (Merck), nitric acid (Merck), DMSO (Merck),
cetonitrile (Aldrich) and all the other reagents were used with-
ut further purification. All aqueous solutions were prepared using
ltra-pure water from a Mili-Q system (resistivity 18.2 M� cm).
tock solution of the desired concentration of aniline in nitric acid
as prepared and stored at low temperature, in a dark place,
rior to use. Aniline polymerization synthesis using X-ray radia-
ion was carried out in a plastic cuvette (with a 1 cm optical path),
n which a solution of 0.5 M of aniline in 1.0 M of nitric acid, HCl
r H2SO4 was used. The solution was irradiated using as an X-ray
ource a Philips model PW 1720 with Cu anode (� = 0.1541 nm)
ith a voltage of 30 kV and a current of 40 mA. The samples were
laced 33 mm from the tube with a uniform X-ray beam at a
ose rate of 0.570 Gy/s. Afterwards, the solution was centrifuged
nd the material precipitated was washed with water and ace-
onitrile, several times, until the remaining solution became clear.
pectroscopic characterization in the UV–vis and infrared region
as performed, with an Ocean Optics spectrophotometer model
HEM2000-UV-Vis, and with a FTIR Bruker model IF 66 spectropho-
ometer, respectively, whereas the morphology of the materials
as analyzed with a (FEG-SEM) field emission scanning electron
icroscope model (FEI, Quanta 200). The TGA measurements were

arried out in N2 atmosphere at a heating rate of 10 ◦C min−1

p to a temperature of 900 ◦C, using a Shimadzu analyzer model
GA 50, and the polymer conductivity was measured by the four-
oint-probe method using a Keithley model 6517A as a current
ource and a Mminipa model ET-2500, as a voltmeter. The sam-
le dimensions were 0.6 mm (thickness) × 12.6 mm (diameter). The
lemental analysis was determined using a Carlo Erba Instruments
quipment model EA 1110. To perform yield measurements, the
amples were washed with water and acetonitrile several times (to
emove oligomers). Then, they were filtered and dried in a vacuum
t room temperature for 48 h. The undoping process was performed
y treating the green powder in 1 M NH4OH solution for 4 h. Finally,
he undoped polymer was again dried and then weighed in order
o determine the percentage yield. This was determined using
he following formulae: yield % = (mass of PANI)/(mass of aniline

onomer) × 100. The samples for gel permeation chromatography
GPC) studies were made by dissolving emeraldine base (EB)-form
ANI powder in N-methyl-pyrrolidone (NMP) at a concentration of
.140 mg/ml. The solutions were allowed to stand for 2 h at room
emperature and were then filtered through a 0.20 �m filter. The
olutions were then injected into the GPC column. The GPC stud-
es were performed using a Viscotec Viscogel column operating at
0 ◦C. Narrow distribution polystyrene was employed as the stan-
ard, and the GPC analysis was performed using a Viscotek model
DA 302 triple detector array.

. Results and discussion

The visual effects of the interaction of X-ray with the aniline
itrate solution are shown in Fig. 1. We observe that prior to irradi-
tion the solution is colorless (Fig. 1(a)) and as the dose increases,
ig. 1(b) 5 kGy and Fig. 1(c) 10 kGy, polymerization starts as small
reen marks in the cuvette wall, on the X-ray beam pathway. Also,
s the dose increases, polymerization increases and more polymer
s formed in the beam direction (see selected area, Fig. 1(b) and
c)). Polymerization proceeds while there is available aniline in the
olution.

Fig. 2(a) shows the absorption spectra of the polymer mate-

ial after it has been precipitated by centrifugation, washed with
H4OH solution, and subsequently dried and dissolved on DMSO

or analysis. It can be seen that the absorption spectra present only
wo absorption bands, one at 300 nm and the other at 650 nm,
hich are characteristics of the polyemeraldine base [14]. On the
Fig. 1. Images of aqueous solution of aniline nitrate (a) before irradiation, (b) after
5 kGy X-ray irradiation (front view), and (c) after 10 kGy X-ray irradiation at room
temperature (side view).

other hand, when the polymer is dissolved in formic acid, two new
absorption bands are observed: one at 420 nm and the second at
800 nm. These can be attributed to the polaron–p*, and polaron–p
transitions of the polymer PANI in the conducting state. These
absorption bands are a strong indication that the PANI has been
synthesized [15,16].

Fig. 3 shows the FTIR spectrum of a mixture of KBr pellets and
the polymeric material in the 400–4000 cm−1 region. From these
results, two strong bands at 1575 cm−1 and 1493 cm−1 can be
assigned to the quinoid and benzenoid unit stretching modes; the
vibration at 1293 due to the C–N stretch from the benzenoid unit
stretching the mode of the PANI; the band at 1160 cm−1 assigned
400 500 600 700 800
Wavelength (nm)

Fig. 2. UV–vis absorption spectra of PANI synthesized by X-ray irradiation (dose of
5 kGy) (a) in DMSO and (b) in formic acid.
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ig. 3. FTIR spectrum of PANI synthesized by X-ray. The inset shows the same
pectra expanded in the 1800–400 cm−1 region.

confirm the identity of the polymer and this is in agreement with
esults published in the literature [19,18].

The elemental analysis indicates that significant amounts of
ater (ca. 10%) are present in the sample. For that reason the

heoretical calculations for the percentage of carbon, hydrogen
nd nitrogen for the undoped PANI, assuming the adsorbed water
olecule C6H4.5N(H2O)0.62, are: %C, 70.83; %H, 5.65; %N, 13.77;
hereas the experimental results found are: %C, 70.9; %H, 4.4; %N,

3.9. This is very consistent with the TG analysis which shows a
oss of mass that approaches 10% in the temperature range from RT
o 120 ◦C. Furthermore, the C/N ratio is not higher than 6/1, which
trongly indicated that the material does not present a structural
efect in its polymer chain due to hydrolysis or degradation [20],
nd again these results indicate that polyaniline has been obtained.

In order to confirm that the conducting polymer polyaniline
as been obtained instead of oligomer of low molecular weight,
PC measurements were taken. The result showed a distribution
f molecular weights, with a calculated Mw of 13,863 Da, a Mn

f 13,500 Da, and the ratio Mw/Mn = 1.026 which are quite rea-
onable molecular weights for polyaniline when compared with
esults in the literature. Fig. 4 shows the TGA analysis for the doped
olyaniline, in the temperature range from room temperature to

00 ◦C. From these results, we observe that the small fractions of
eight loss up to 120 ◦C are attributed to the loss of moisture in

he polyaniline sample, whereas the weight loss between 120 and
00 ◦C was mainly due to the evolution of the doping acid. On the
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ig. 4. Thermogravimetric analysis of PANI nanofiber obtained under nitrogen
tmosphere at a heating rate of 10 ◦C min−1.
Fig. 5. SEM images of PANI nanofibers synthesized by X-ray irradiation at a dose of
5 kGy (a) low magnification image and (b) higher magnification image.

other hand, we observe that there is very little weight loss for PANI
up to 365 ◦C, indicating that PANI presents good thermal stabil-
ity. However, a very significant weight loss begins to occur above

365 ◦C which is attributed to thermal decomposition of the molec-
ular main chains. This thermal behavior seems to be in agreement
with the results found for polyaniline synthesized by conventional
techniques [21,22].

Fig. 6. Proposed polymerization mechanism.
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As to the yield (%) and electrical conductivity � (S cm−1) mea-
urements for PANI obtained by X-ray irradiation to a total dose
f 5 kGy, we obtained the values of 5.1 and 0.7 × 10−3, respec-
ively. The low yield measured for the polymer can be attributed
o the characteristics of the experimental set up, such as the small
uvette optical pathway (1 cm) and the X-ray beam convergence
n a small point of the cuvette. In addition, Fig. 1 shows that
he polymer grows in the direction of the X-ray beam. The rea-
on for these behaviors is still under investigation. However, we
bserve that if we introduce transition metal ion to the reaction
edium the yield increases considerably. On the other hand, the

onductivity obtained (�) of the order of 0.7 × 10−3 S cm−1 is low
ompared with 1–10 S cm−1 found in the literature [23,24]. Nev-
rtheless, this is considerably higher when compared with the
ligomeric conductivity which presents conductivity of the order
f 2.4 × 10−10 S cm−1 [25]. This result together with GPC measure-
ent allowed us to conclude that the conducting polymer has been

btained instead of an oligomer [26].
Fig. 5 shows the FEG-SEM image of the dried PANI polymer

rown from a solution of aniline nitrate irradiated with X-ray radi-
tion to a total dose of 5 kGy. From this result, we can see that
nstead of a micro-compact spheroid surface morphology which is
sually found for pure PANI obtained by chemical synthesis [17],
he SEM image clearly shows fibrillar morphology with an average
ber diameter of 90 nm and a length of several microns. In addi-
ion, we noticed that the fiber is highly networked and is probably
ormed by the fusion of several spheroid structures, induced by the
-ray radiation field along the beam propagation. The reason for

his morphology is still under investigation. It is interesting to men-
ion here that when we compare the morphology of the chemically
ynthesized polyaniline [27], the polyaniline obtained by gamma
adiation [11,12] and the results of Fig. 5, we observe that the mor-
hology somehow seems to be correlated with the energy of the

onization radiation. For the chemical synthesis the morphology is
lobular while for the sample irradiated with gamma radiation, the
ber morphology is more defined. On the other hand, the X-ray
ynthesis appears to be a half term, and we observed that globules
re formed together with fiber that seems to be the fusion of several
lobules.

Also, it is interesting to mention here that the polymerization
nly occurs when nitrate ions are used. If we change to H2SO4 or
ome other acids, polymerization does not occur, which once again
uggests that the nitrate ions play an important role in the PANI
olymerization process. Additionally, if we carry out the experi-
ent in the presence of an (•OH) radical scavenger such as DMSO,

olymerization does not occur [10].
A search in the literature reveals that NO3

− has been exten-
ively used as an oxidizing agent for treating organic contaminants
n water [28], and the mechanism suggested is the decomposition
f NO3

− by ionization with UV light which yields hydroxyl radicals
•OH) that turn out to be oxidizing agents. In our case, we irradiate
he aniline nitrate solution with an X-ray that is more energetic
han UV light. However, the mechanism could be the same since it
s only the solution with nitrate ions that is able to polymerize.

The above results strongly suggest that it is again the hydroxyl
adicals (•OH) which seem to be responsible for aniline photon
olymerization in the first stage. In Fig. 6 we present the most likely
echanism for aniline photo polymerization. In summary, the X-
ay radiation interacts with the NO3
− ions and forms the hydroxyl

adicals (•OH), which attack the aniline monomer and form the
ation radical, which therefore couples with another cation rad-
cal, thus forming the dimmer, tetramer, octamer and finally the
olymer.

[
[
[

[

ls 161 (2011) 173–176

4. Conclusions

This article showed that only nitrate ions are able to promote
the polymerization of the aniline monomers when irradiated with
X-ray. The results presented here strongly suggest that the ani-
line monomer is oxidized by the hydroxyl radicals (•OH) produced
by the interaction of X-ray radiation with the nitrate ions NO3

−.
The radicals (•OH), attack the aniline monomer, and the process
continues until the polymer is formed. The GPC measurements
showed that polyaniline with a molecular weight Mw of the order of
13,863 Da has been obtained and the SEM measurement shows that
the polymer presents highly fibrillar morphology with an average
fiber diameter of 90 nm and several microns in length. In addition,
we noticed that the fibers are highly networked and are proba-
bly formed by the fusion of several spheroid structures, induced
by the X-ray radiation field along the beam propagation, instead of
templates or other organic solvents usually used for that purpose.
Further studies are underway to better understand the polymer-
ization process and the physical and chemical properties of the
polyaniline fibers and their networked structure.
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