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We study the e-approximation of linear multivariate problems defined over
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assurance. We study problem tractability by investigating when a WTP algorithm
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of the sequence of weights and the sequence of singular values for d=1. For A
we obtain a weaker result by constructing a WTP algorithm which is optimal only
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1. INTRODUCTION

Recently, multivariate problems of high dimension 4 have been success-
fully solved by deterministic algorithms. A typical example is multiva-
riate integration for financial applications with d =360 which is solved by
quasi-Monte Carlo algorithms; see, for example, [2, 5, 7, 8, 12]. The
success of these algorithms presents a challenge to provide a theoretical
explanation why some multivariate problems can be so efficiently solved
for large d.

A possible explanation was provided in [10] by identifying weighted
classes of functions for which the error of certain quasi-Monte Carlo algo-
rithms does not depend on d. This was done only for multivariate integra-
tion and for specific weighted tensor product Hilbert spaces. Furthermore,
the proofs were non-constructive.

The purpose of this paper is to study general linear multivariate
problems defined over weighted tensor product Hilbert spaces and check
which ones can be efficiently solved for large d, and, if so, to provide
constructive algorithms for their approximation. By an efficient solution we
mean that there exists a polynomial-time algorithm or equivalently that the
problem is tractable in the worst case setting.

There are a number of papers dealing with tractability of general linear
multivariate problems; see, e.g., [ 14, 16] and papers cited there. A linear
multivariate problem is specified by a linear operator whose domain is a
space of funtions of d variables. We want to compute an approximation
of the linear operator to within ¢ in the worst case setting. Such an
approximation is somputed by evaluating function values or, more
generally, values of arbitrary linear functionals. Tractability means that the
minimal number of evaluations needed to compute an e-approximation is
bounded by a polynomial in 1/¢ and d. Strong tractability means that such
a bound does not depend on d, i.e., it is a polynomial only in 1/e. The mini-
mal degrees of such polynomials are called the d-exponent and the
e-exponent of tractability or strong tractability.

The domain of a linear operator is often assumed to be a tensor product
class of functions of d variables such that each variable is equally impor-
tant. For some applications, it seems more appropriate to assume that the
significance of the jth variable changes with j. This can be modeled by
weighted tensor product rather than standard tensor product spaces. For a
weighted tensor product space, we have a sequence of nonnegative weights
7a,; Where y, ; moderates the behavior of functions for the jth variable.
Roughly speaking, a small weight y, ; means that functions depend only
slightly on the jth variable. For the extreme case, y, ;=0, functions are
independent of the jth variable. Relatively less is known for weighted ten-
sor product problems; see, e.g., [ 10, 17]. This paper is a continuation of
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the study of tractability of linear multivariate problems defined over such
weighted spaces Z;.

The formal definition of weighted tensor product spaces is given in the
next section. Here we only consider an example of such spaces from [10].
Let 7, be, roughly, the space of functions f:[0,1]¢— R for which
(T~ 72?0/0x)) f(x) is square-integrable. The weights y, ; are positive
and for any of their values, %, is a weighted tensor product Hilbert space
whose reproducing kernel is A (x, 1) =T1;_, (147, ,min{x;, 1;}). For
such #,, the integration problem, i.e., approximating the integral %,(f) =
f[o, 17¢.f(x) dx, is considered in [10]. More specifically, tractability
of Quasi-Monte Carlo algorithms is studied. In particular, it is proven
that for weights independent of d, ie., y,;=y;, strong tractability
holds iff 372, y;<co. Then the e-exponent of strong tractability belongs
to [1,2]. The proofs in [10] are non-constructive, i.e., we only know
about the existence of such stronly polynomial-time Quasi-Monte Carlo
algorithms.

In this paper we address similar questions for a general class of weighted
tensor product spaces 7, of functions of d variables and for general linear
tensor product operators ;= 5_1:1 & . More specifically, we assume that
Z,1s a reproducing kernel Hilbert space whose kernel is the product of one
dimensional kernels, and % is a linear operator defined over a reproducing
kernel Hilbert space of functions of one variable.

We define a class of ithms which are called weighted tensor
product, or shortly WTP, a thms. This class depends on a number of
parameters. The values of these parameters are very crucial and the
efficiency of WTP algorithms depends on them. WTP algorithms are a
generalization of the algorithm proposed by Smolyak [11] for unweighted
tensor product problems. In Section 3 we discuss similarities and differ-
ences between WTP and Smolyak’s algorithms in more detail.

We study tractability and strong tractability of {%;} by checking when
there exist WTP algorithms that are polynomial, i.e., when the num-
ber of evaluations used by certain WTP algorithms needed to compute
an g-approximation is polynomial in 1/e and d. Thus, our approach
is constructive. The efficiency of WTP algorithms depends greatly
on the weight sequence y,; and on the class of permissible information
operations.

Consider first the case of unrestricted information 42! for which we can
use arbitrary linear functionals as information evaluations. In this case, the
problem of approximating linear functionals % is trivial since we can now
compute %(f). Obviously, % is a linear functional iff the same holds for
<. Therefore we assume that the rank . is at least 2. We then choose the
parameters of the WTP algorithm in such a way that it is optimal in the
class of all algorithms using functionals from 4! Hence, tractability or
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strong tractability of {.%,} is equivalent to whether this optimal WTP
algorithm is polynomial or strongly polynomial.

We provide a necessary and sufficient condition for strong tractability. It
is expressed in terms of the sequence of weights y,; and the sequence of
singular values of the operator .. We obtain the ¢-exponent of strong trac-
tability, see Theorem 1. Roughly speaking, strong tractability holds if both
sequences go to zero polynomially fast, and the faster their convergence to
zero, the smaller the g-exponent of strong tractability. In particular, if the
sequence of weights goes to zero at least as fast as the sequence of singular
values, then the number of evaluations for arbitrary d is of the same order
as for d=1.

We also obtain relations between tractability and strong tractability. For
general weights, these concepts are different. If, however, the weights y, ;
do not essentially depend on d, then tractability is equivalent to strong
tractability.

Consider now the case of restricted information A% for which we can
only use function or derivative evaluations. Since approximating linear
functionals is no longer trivial, we now allow % to be a linear operator of
arbitrary rank. For example, if we set (/)= {g/(x)dx then (f)=
f[o, 170 S (X15 s X4) dxy -+ - dx, is a multivariate integration problem.

For A we choose a particular WTP algorithm. We are not sure if this
choice is optimal. We prove that this WTP algorithm is polynomial if the
sequence of singular values goes polynomially to zero (which is necessary
for tractability of {%,}) and if the sequence of weights converges suf-
ficiently fast to zero. Since we are not sure whether the parameters of this
WTP algorithm have been chosen optimally, we believe that the assump-
tion on the behavior of the weight sequence is too severe. We illustrate this
point by the integration example from [10]. As we already indicated for
Va,;=7; the condition } 7, y,< oo implies that the integration problem is
strongly tractable with the e-exponent in [1,2]. If we assume that
Y72, 7}?< o then the WTP algorithm is polynomial and its e-exponent is
at most 2. If we additionally assume that 3’7 | 7;”* < co then its e-exponent
is 1. Hence, for 37 7, <oo we have a constructive algorithm which
solves the integration problem with minimal ¢-exponent. However, it is open
whether the WTP algorithm minimizes the ¢-exponent for 372, y? < o0
with ¢ > 1/3.

The paper is organized as follows. Section 2 provides basic definitions of
weighted tensor product spaces, multivariate problems and their trac-
tability and strong tractability as well as polynomial-time algorithms.
Section 3 provides the definition and basic properties of WTP algorithms.
The results for unrestricted class 42" of information are in Section 4, and
results for restricted class A% are in Section 5. Specific applications in
Section 6 conclude the paper.
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2. FORMULATION OF THE PROBLEM

In this section, we define a weighted tensor product problem for a class
of functions of d variables. We also define information and algorithms as
well as their costs and errors. Tractability concepts will be also defined in
this section. We begin with the scalar case, d=1.

2.1. Univariate Case

Let 2 <R be a closed (not necessarily finite) interval such that 0e 2.
Let # be a real separable reproducing kernel Hilbert space of real func-
tions f defined over & which vanish at zero, f(0)=0, Vfe%. The
reproducing kernel of Z will be denoted by #". For basic properties of
reproducing kernel Hilbert spaces we refer the reader to [1]. Here we
remind the reader that

H:DxD—>R

is a symmetric and nonnegative definite function. That is, #(x, y)=
A'(y, x) and the matrix (4 '(x;, X;)); ;—1, . » 1S nonnegative definite for all
n and arbitrary choices of n points x; from 2. The space 7 is the closure
of the space of linear combinations > 7_, a;# (-, x;) and

H(x)eF NxeD, [(x)=LLH(X)y, VeF, Yxea.

From the assumption that all functions from % vanish at zero we have

Let 1*: 2 — R be a fixed function such that 2*(0)=1. Let y€(0, 1]. We
define a weighted space #7 as a real separable reproducing kernel Hilbert
space whose reproducing kernel .7} is given by

Hy(x, y) =h*(x) h*(y) +yA (x, p).

Such a weighted space exists since, obviously, .#; is also a symmetric and
positive definite function.

The space #7 is the algebraic sum of # and span{/i*}, where the latter
is the space of multiples of 4*. That is, any f, €77 equals ah* + f with
aeR and fe #, and f,(0) =ah*(0) = a. The inner products of #” and F#
are related by the formula

{g1,8207=81(0) g2(0) +V_l<f1,f2>y,
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where g,=g,(0) h* +f; with f,e #. For f,e #7 we have f,—f(0)h*eF
and

115 =,50) + 971 LS, = f,(0)h*] 5.

Observe that (-, 0) = h*, and therefore {h*, f,>,,= f,(0), Vf,e #7. In
particular, <i*, f' >,,=0, Vfe #, ie., h* is orthogonal to Z.

The spaces &7t and # 2 are algebraically the same, 71 = %2, but they
have different norms for distinct y,, y,. Their norms are equivalent. That
is, for y; <y, and fe #"1=Z " we have

yz 1/2
|f|aj-y2<|f|ﬁ<<y> 11 o
1

We now take y =1 and consider the space Z '. By a solution operator we
mean a continuous linear operator

S F'> 9,

where % is a real Hilbert space.

Let ¥*: 4 — Z! denote the adjoint operator of &, and let ¥ =
IS Fr > F. Clearly, |Lf | o=<Wf,f>F. We assume that the solu-
tion opertor % is compact. This implies that ¥ is also compact and there
exists an orthonomal base of elements {7} from Z' such that

Wni=2i N W) g1 =0 )

Here, i,j=1, 2, .... If dim(¥9) < oo we formally set 4;=0 for i > dim(%¥). The
eigenvalues are ordered

M=z 21,20, and lim, 4,=0.
We have
W= Z il Sinid g i Vies!,
i=1
and A} s are singular values of . Clearly,

1LV L= 21 o 1 =24
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The solution operator % is also well defined for the space Z7 for any
y€(0,1]. We show that
max{ | Sh*| g,y | S | 5 g} SIS | 5o SULH* |5+ 7 115 2 o)
(2)

Moreover, when & is a functional, then the right-hand side inequality in
(2) becomes an equality. Indeed, for f € 7 we have

1S lg < LAO)N L R* [l g+ 1 (= S(0)h*)ll 4
<IAONL1* g+ 7" 1L | gy 2 1 f = SOV ¥]|
SO+~ IS = SOV | 5) 2 (1Sh* |5+ 7 |15 2 0)
=fle ISR*5+7 115 .0)"2

which proves the right hand side of (2).

To prove the left hand side, note that |A*| . = |h*| -1 =h*0)=1.
Hence, | ¥ | s o= |Sh*|,. Take now fe # with || f| =1 and | ¥f],
= SNy g Since 1=[flo=p"1fls then |Ff]y=]]s 4=
PRI I fl This shows that 191, o372 171, . and
completes the proof of (2).

The adjoint % *: 77— % now depends on y since the inner product of
F7 does depend on y. Let #, =9 %9 F"— F7. It is easy to check that

W, f = (L= s Wh*) g h* +y W], VfeZF?.
Let {#,,, 4, ,} be the orthonormal sequence of eigenpairs of 7,
/'Wy”i,y:/"hi,y”i,y’ <’7i,y7 ’7],y>.977:§i,j7
with ordered eigenvalues
A,y Z il y = ot Z Ay, =0,
Since 4y, =Y, 512 5= | %, 4, we have due to (2)
|SR* 5 <A,y < | Lh*( 5+ 721 3)
Observe that , differs from y#” by a rank one operator (1—7y)
{fo Wh* Y 1 h* whose eigenvalue is (1 — ) h*, Wh*) =1 —y) | Lh*|%

> 0. Weyl’s monotonicity theorem, see, e.g., [6], yields

ylli l y V’lz 1> Vl:z, 3, (4)
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We also have

%f: Z )”i,y<fo 77i,y>yv’]i,y, erg,fy.

i=1

The weighted case simplifies when we assume that #'h*=*Sh* =
B?h* for some nonnegative . Then

Wy f =BV h* +y W (f —f(0)h*)

and #"# < #. The eigenpairs of #, are now {n,,} ={n,} and {1,,} =
{ B2, p2;}. If p2, < B then

Ay =P Aiy=7Ai_1 for i=23, ...

So far we assumed that y is positive. It is also possible to take y=0.
Then the space #°=span{h*} is a one dimensional space and < f, g> 0=

f(0) g(0) for 1, ge F°.
We illustrate these concepts by the following example.

ExampLE. Let 2=[0,1] and #'(x, y)=min{x, y}. Then # is the
space of absolutely continuous functions f with f(0) =0 and L,-integrable
f'. Of course,

1
0

L &s=] [ g(x) dx.

Let i*=1. Then #7= WJ([0,1]) is the classical Sobolev space with
inner product given by

&= SO 80477 [ 110 ¢'0)

For y=0 we have /' =0 for all f€.#°, and we adopt the convention that
0/0 =0 in the formula above, as well as in the rest of this paper.

The integration solution operator is given by S (f)=INT(f)=
j@f(x) dx with 4 =R. Then ¥h*=1 and | ¥h*| ,=1. It is easy to check
that the norm of INT over %7 is given by

/]"l,y: HINTHZgr'V_,g: 1 +y/3'
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Since % is a functional then all 4, ,=0 for i>2.
The approximation solution operator is given by S (f)=APP(f)=f

with %= %([0,1]). As before, Yh*=1 and |¥h*||,=1. For the
approximation operator, the operator #, =% *%: #"— F7 is given by

Wy )= Ky (o) ) dy =] Sy | mingx v} S0

Let (f, ) be an eigenpair of ¥, (¥, f)(x)=Aif(x) for xe[0, 1]. Then
setting x =0 we obtain

1
J, Sty dy=21(0).
After differentiating with respect to x we obtain

Jf(1)=0,
—f(x) = 4f"(x).

By substituting f(x)=cos(ax —a) we find out that the orthonormal
sequence of eigenpairs of % is equal to

1, ,(x)=a,,cos(a; ,x—a; ), Aiy =y/oc?’ p I= 1,2, ..,
where «; , € ((i — 1)z, in) is the unique solution of
cot x = Xx/y for xe((i—1)xn, in),

and

—12
(Xi’ .
= 10082, =011 7 = (o) + 5 (1, — 05 sin(2a, ) )

2.2. Weighted Multivariate Case

The weighted multivariate problems studied in this paper are defined
as tensor products of univariate problems over weighted spaces. For
d=1,2, .., assume that the weights

are given.
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The weighted real separable Hilbert space %; of multivariate functions
f: 2% R is defined as the tensor product of 4. spaces,

Fy= @ Fat (5)

We remind the reader of the tensor product operations. The tensor product

f=A® - ®f,= Q%_, fr for numbers f; is just the product [¢_, fr.
When the /. are scalar functions, f is a function of d variables given by

Sty ot l_Ik 1 Jie(te)-
By ,/’ ® d_, F7x we mean a Hilbert space spanned by ®¢ =1 S
with f, e FVak and the inner product in %, is given by ( ®¢ k=1 s

@k_lhk>yd Hk—l s hk>yydk for f, hye Z%*r Note that, in par-
ticular, { ®%_, 7. jk}jl ..... ;. is an orthogonal system in 7 if {7, ;}, is an
orthogonal system in Z %« for every k=1, ..., d.

The reproducing kernel .7, of %, is given by

d
a(x, y) = n v x K> Vi) = n (h*(xi) B*(yie) + va e A (Xies yie)) (6)

=1

for all x =[xy, .. Xg1, Y=[V1s 0 Va] €D
We are ready to define weighted multivariate solution operators %;. In
Subsection 2.1, we defined ¥: #7 — 4. Let ¥, be a tensor product of ¥,

d
=R 9
k=1

The weighted multivariate solution operator %;: %;— 9, is defined as a
tensor product of &,

d
-® 7 (7)
k=1

Let us recall that for linear operators Ty, T= ®¢_, T} is a linear operator
such that T(®¢_, /)= ®%¢_, Ti(f%)- Then we also have that 1Tl - o,

=1_[;'f=1 HTka/—}’d’kag'
We illustrate the multivariate case for the example from Subsection 2.1.

ExAMPLE (continued). We now have 2¢=[0, 1]¢ and

d
2(x, y) = ﬂ (14 7,4 min{xg, yi}).
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The space Z;= W{--1([0, 1]7) is now the tensor product of the classi-
cal Sobolev spaces W3([0, 1]) of functions f defined over [0, 1]¢ with the
following norm, see [ 10],

F 2 dx
;_ _ 2 O + < ~— Ju X ) 7](,
Hf“ d f ( ) u;@ J[o,l]‘”‘ ]Euaxkf( ) keu yd,k

where the summation is with respect to all nonempty subsets u < {1, ..., d},
|u| denotes its cardinality, and f,(x)= f(y) where y,=x, for keu and
V=0 for k¢ u.

For the integration problem we have ¥,=R and INT,(f)=
f[o, 17¢f(x) dx. For the approximation problem we have ¥,= %([0, 11%)
and APP,(f)=f.

2.3. Tractability and Polynomial-Time Algorithms

The problem studied in this paper is to approximate the solution
elements %, f by linear algorithms A that use finitely many linear func-
tionals as information about f. That is,

A=Y aLi(f) (8)

for elements «,€%, and continuous linear functionals L;: #,— R. The
number n of functionals used in (8) is called the cost of A, cost(A4)=n.?

The linear functionals L; are from a given class 4. In this paper we con-
sider two classes. The first is 4% =.7 % consisting of all continuous linear
functionals, and the second is A% consisting of function and derivative
evaluations. That is, L e A% iff there exists a sample point x € ¢ and an
integer j such that L(f) = fY(x), Vfe Z,.

We study the worst case setting in which the error of A is defined as

e(A4, %)= sup

1fll5,<1

Iaf —A(f)llg, 9)

ie., it is the (operator) norm H%—Auyﬁ%.

2 As it is well known, the restriction to linear algorithms and nonadaptive information is
without loss of generality for linear problems defined over Hilbert spaces in the worst case
setting. Then, assuming that precomputation is allowed, the cost of computing A(f) is equal
to the computation of n functionals L;(f) as well as performing » multiplications and n — 1
additions in the space 4. For simplicity, we take n as the cost of 4; see, e.g., [13] for more
details.



WEIGHTED TENSOR PRODUCT ALGORITHMS 413

For n=0 we set A=0 and ¢(0, %) = H%,Hgﬂg Hence, || » g,
the initial error for approximating %, without sampllng the function.

We would like to reduce the initial error by a factor &, where € (0, 1).
That is, we seek an algorithm A4 for which

is

e(d, ) <e || %l (10)

Fi—>Y
If (10) holds then we say that A(f) is an e-approximation. Let comp(e, d)

be the worst case complexity (minimal cost) of computing an e-approximation.
That is,>

comp(e, d) =min{n: 34 with e(4, ;) <¢ 1941l #,—. 4, and cost(A) <n}.
(11)

As in [15] we say that the problem {¥,} is tractable iff there exist
nonnegative numbers C, ¢ and p such that

comp(e, d) < Cd%™7, Vd>=1, Vee(0,1]. (12)

The infima of ¢ and p for which (12) holds are called the d-exponent and
e-exponent of tractability for {%;}. If ¢=0 in (12) then we say that the
problem {.%,} is strongly tractable.

Consider now a family of algorithms {4, ,}. We say that the family
{A, 4} is a polynomial-time algorithm iff there exist nonnegative C, ¢ and
p such that

e(A, 4 Sy)<e H%Hyd_,gd and cost(4, ;)< Cd%™?, Vd=1, Vee(0,1].
(13)

The infima of ¢ and p for which (13) holds are called the d-exponent and
e-exponent of the polynomial-time algorithm {A4, ,}. If ¢=0 in (13) then
we say that the sequence {4, ,} is a strongly polynomial-time algorithm.
Obviously, a necessary condition for tractability is that %, is compact.
That is why we already assumed that ¥: #' — % is compact since this is
equivalent to the compactness of %, on %, for any choice of parameters

yl,da [} Vd, d:

3 Sometimes comp(e, d) is defined as the minimal » for which the condition e(A4, ;) <e
holds. Our condition e(A4, %) <e || %] 7,9, Can be viewed as the normalization of the
operator .%,;. That is, for ‘/” = HJ;,Hy Sg, Y, we have H/A\,d =1 and the two conditions
coincide.

-9,
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3. WEIGHTED TENSOR PRODUCT ALGORITHMS

In this section, we define a class of weighted tensor product algorithms
(or WTP algorithms, for short) for approximation of the weighted multi-
variate solution operator %,. These algorithms depend on a number of
parameters. Our main issue will be to find out when there exist WTP algo-
rithms that are polynomial, or even strongly polynomial. As we shall see,
this will depend, in particular, on the sequence of weights y, .

As already mentioned in the introduction, WTP algorithms are related
to the algorithm proposed by Smolyak [11] for (unweighted) tensor
product problems. In Remark 1 we discuss similarities and differences
between them.

We now define WTP algorithms. As Smolyak’s algorithm, they are based
on a sequence of algorithms for the scalar cases. Hence, we start with algo-
rithms for the spaces Z7.

Let {U, ,} be a sequence of algorithms of the form (8) for approxima-
tion of the operator &: #7 — 4. That is,

zanyt }’lylf) (14)

for some elements a,, , ; of ¥ and some continuous linear functionals L, , ;
from the class 4. For n=0, we set U, ,=0. Observe that the cost of U, ,
is n.

We remark that since the spaces # 7 differ from the space % only by a
one dimensional space spanned by /4*, it is usually enough to have algo-
rithms for approximating the operator % over the space % and then
properly extend these algorithms to the spaces # 7. Indeed, if { B,} is such
a sequence for the space % then we may set

Uy, (1) =1(0) h*,

and

U, (1)=/(0) Sh*+ B, _(f—f(0)h*)  for n=2. (15)

In this case U, , does not depend on y Observe that U, , is well defined
since f — f(0) h* €% and B, _; (f— f(0)h*) makes sense. The information
used by U, , consists of one function value f ) and the information used
by B, _,. Since the functional L, L(f)= f(0), belongs to both classes A
and 42!, the information used by U, , belongs to the same class A as the
information used by B,,_;. The number of information evaluations used by
U, , is at most n.
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We assume that the errors of U, , given by (14) converge to zero. That
s,

lim [ —U,,|z_4=0, (16)

For {U, ,} given by (15), this is equivalent to assuming that

im | % =B, |5 s=0 (17)

n— oo
since
1S = Upyll gy g =7 1S =By |y  for n>2.

For each weight y, we assume that we have an increasing sequence of
integers

my ,=0<m ,=l<m, , <-.-<m,,, (18)

and define
A V= U ()= Uy (f) for i1, (19)
Observe that X/_, 4, = Umj " and Um”,y(f) converges to <(f) for

every fe 77,

We are ready to consider the multivariate case. Let N“ be the set of vec-
tors i=[1i,, .., i; | with positive integer coefficients i,. To stress their role,
we shall refer to them as multi-indices. By |i| we mean Y¢_, iy.

Let {P, 4} be a sequence of subsets of N such that P, , consists of n
multi-indices, P, ;< P, 4and (U, P, ,=N<. Each set P, ; may depend
on all weights y,, for k=1,2, .., d.

By the weighted tensor product (WTP) algorithm we mean the sequence
of algorithms

azan= 3 él By, ) 1) (20)

ieP, ; k=

The WTP algorithm depends on a number of parameters. First of all, it
depends on the sequence of weights y,,, the sequence of cardinalities
Mg, . as well as the sequence of sets P, ,. It also depends on one-dimen-
sional algorithms U, Yo By varying these parameters we obtain the class
of WTP algorithms.
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Since lim, , , >7_, Ami’y(f) = 9f for every fe #7, we have

d
Gf= T (@ A, ) (1 Ve @1)

k=1

This yields

1Saf =5 aOllg,=| X @ 4;,,(f)

ieNd\P, ; k=1 2
d
< Y @40

ieNni\p, ;, k=1 9,
Therefore the error of 4 ; is bounded by
d

e(A,’i d> <%1) < z ® Aik’ Yd, k
ieNi\P, , k=1 Ty 9,
d
= Z 1—[ ‘|Aik,7d,k|‘e77k,d*>{ﬁ' (22)

ieNG\P, , k=1

This formula suggests that a good choice for P, ; is the set of » multi-
indices i which correspond to the n largest norms of ®%_, 4 b 7ax°

We now discuss the special case when & is a continuos linear functional.
Of course, then ¥ =%, =R and %, is also a continuous linear functional.
Since the case of 4 =A% is now trivial, we consider only A =A%, When
& is a functional, some properties of the WTP algorithm can be
strengthened under the following additional assumptions. We assume that
the algorithms U, , are defined by (15), ie., in terms of algorithms B
Assume also that the information used by the algorithms B, is nested, i.e.,
the evaluation points used by the information for B, are contained in the
set of evaluation points used by the information for B, for all n>1.
Finally, assume that the algorithms B, are central, i.e., they minimize the
error for all information values. For more explanation and illustration of
these assumptions we refer to [14]. The following result can easily be
derived using a proof technique from Lemma 6 in [ 14]. Namely, under the
three assumptions mentioned above, the worst case error of A, for
approximating a linear functional % satisfies the equality

ne

d
VLR D S | [ PP S

ieNG\P, ;, k=1

d
=Sl as— Y T 14y s (23)

ieP, ; k=1
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We end this section by the following remark.

Remark 1. In [11], Smolyak proposed an algorithm for approximating
tensor product problems. Specifically, he considered unweighted problems,
ie, y4r=7. The main emphasis was to obtain asymptotic results for a
fixed d. Early tests of Smolyak’s algorithm were usually done only for d = 2.

Smolyak’s algorithm uses scalar algorithms U, with m,= @(2’) function
evaluations. Moreover, given an integer ¢ >d, the algorithm equals the
sum of tensor products & ,_, 4, with [i| <g. That is, the set P, ;s

Py a= {1 i <qj (24)

and its cardinality n = (%). Hence, n =n(q) varies only through the changes
of ¢. For large d, the sequence n(q) has huge gaps, and the Smolyak algo-
rithm is only useful for a few initial ¢ =d, d+ 1, .... For example, consider
multivariate integration with d =360 which models collateralized mortgage
obligations in finance; see [5, 7, 8]. Then n(360) =1, n(361) =361, n(362) =
65,341, n(363)=7,906,261 and n(364)=719,469,751, and probably only
four initial values of ¢ can be computationally realized. This undesirable
property makes the practicality of the Smolyak algorithm questionable for
large d; see [ 2] where this point is also mentioned.

Furthermore, as shown in [ 14], even though we may use optimal infor-
mation for d=1, the information used for d>2 in the Smolyak algorithm
is not optimal. However, the loss due to the use of nonoptimal information
is not very significant.

Modifications of the Smolyak algorithm have been proposed in the
literature. For instance, in [3] the cardinality m; is independent on the
coordinates, i.e., m; ; is used for the kth coordinate, and the choice of m; ,
is based on error estimates. This decreases the gaps in the cardinalities of
the sets P, ,.

The Smolyak algorithm is also known in the literature as Boolean inter-
polation, discrete blending algorithm, hyperbolic cross points, and sparse
grids algorithm; see, e.g., [2, 14].

The WTP algorithm proposed in this paper not only deals with weighted
tensor products. It also uses a different and much more flexible selection of
multi-indices i in the P, , sets. In particular, as we shall see in Section 4,
the cardinality of the set P, ;, may be equal to n for arbitrary d, so that
there is no gap in the cardinalities of the algorithms A4 ;. Furthermore,
optimality of information is preserved if the parameters of the WTP algo-
rithm are carefully chosen. Hence, the WTP algorithm can be more
efficient than the Smolyak algorithm even for the unweighted case.
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4, CLASS 43!

In this section, we study the WTP algorithm for the class 4™ =Z % of
all continuous linear functionals. We show that with a proper selection of
the parameters, the WTP algorithm is optimal and, hence, is strongly poly-
nomial (or polynomial) iff the problem {.%,} is strongly tractable (or trac-
table). We also find conditions on tractability and strong tractability of
(%)

We specify the form of the WTP algorithm by assuming that the algo-
rithms U, , of (14) have the form

Un,y(f)= Z <ﬁ ”i,y>97y7/i,ys erg,fy’
i=1

where, as in Subsection 2.1, {#,,, 4, ,} is the orthonormal sequence of the
eigenpairs of W, =S S F"— F7.
The sequence m; , of (18) is now defined as

m; =i for i=0,1,.., and for all y.

LYy

This means that (19) becomes

Ai,y(f)=<ﬁ77i,y>977y’7i,y’ vfe'gjy»

whose square norm is |4, , | %,_ , =4, ,. Observe that the elements 4, (/)
and 4; ,(f) are now orthogonal for i # .

For the vectors i= [ila i2a () id]a 1= [yd, 1> Vd, 25 - yd,d]a and x = [xlﬂ
Xy, ey Xg ], denote

n; ,(x)= ”il,yb“(xl) M), y“(xz) ey, yw(xd),

Ai oy =4 A

)
iy oM va " M e

Then
d
® Aik,yd’k(f) = <f; ”i,y>fd’%ni,y
k=1
and

d d
(® Ares ) ® Ay (1)) = Lom P20,
k=1 k=1

%
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with J; ; being zero or one depending on whether i and j are different or
not. This implies that

2

=A.

Uk Vd, k iyt

Fg—> Y,

Clearly, {7, v i Y} is the sequence of the orthonormal eigenpairs of the
operator Wy= 5%y Fy— Fy, and A{’2’s are singular values of %
We order the numbers 4, . That is, we define a sequence of multi-indices

i,=i;(y) such that i, #1i, for j #k, U {i;} =N9 and

i B e 2

i i,vy=

We take for P, ; the sets of n multi-indices i, which correspond to the n
largest eigenvalues /4; . That is,
i,

P, a={i1, iy, iy}

This completes the construction of a WTP algorithm, and we have

AL A=Y Ly D, Sl (25)

Jj=1

This WTP algorithm is the projection of %, to the n dimensional subspace
spanned by eigenelements of the operators #, which corresponds to the n
largest eigenvalues of #;. Clearly, the cost of 4, is n.

The error between %, f and 4 ,(f) is equal to

1S f — A% a5, = < 2 St 0z Wil Z L, 7, y>

=n+1 Jj=n+1

Z A’ij,y<f;77ij,y i«d

i=n+1

This yields

eZ(A;i d> ‘%i) = j‘inﬂ, A

That is, the square of the error of A ;is the (n+ 1)st largest eigenvalue of
;. It is known, see, e.g., [ 13], that this is the smallest possible worst case
error of any algorithm that uses n continuous linear functionals. This
proves the following proposition.
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PropPOSITION 1. The WTP algorithm A}, defined by (25) is optimal
among all algorithms that use n continuous linear functionals.

If we want to compute an ¢-approximation by the WTP algorithm, we
set

n=n(e, d)=min{k: | [, S¢€ HSHngd}.

Then
&/;fd:A;f(e, d),d (26)
has worst case error at most ¢. Optimality of 4, , implies that
comp(e, d) = cost(Z ¥ ;) =n(e, d).

We now check when WTP is a polynomial-time algorithm. Due to its
optimality, this is equivalent to checking when the problem {%,} is trac-
table. As we shall see, tractability will depend on the sequences of weights
{74} and eigenvalues {4} of the operator # =S*9: F' > F'.

We need to define the sum-exponent of an arbitrary sequence {y, ,}
with nonnegative numbers /., (for d=1,2,.., and k=1,2,..,d) such
that Y, 2, ,> -+ 2¥,,20. We say that p, is the sum-exponent of

{Wa e} iff

d
pl,,:inf{oczo:supz lpz,k<oo} (27)

d k=1

with the convention that inf (¥ = co.

Observe that for &, , = ©(k ) with positive # and with constants in the
Theta notation independent of d, we have p. = f~'. On the other hand, for
any sequence {&,,} with p.>0 we have the following. For any a>p.
there exists a nonnegative M = M(«) such that X{_, &%, <M, Vd. Since
&4 x are ordered, k&% <5 &5 <M and &, < MVk~'" Hence, &,
goes to zero as k~* and o can be arbitrarily close to p.. This shows that
the sum-exponent measures how fast {&,,} goes to zero as a function of
k and p, is positive only if {&, .} goes to zero polynomially in k~'. In
this case, p. is the inverse of the largest degree polynomial for which this
happens.

Recall that /4, given by (1) are ordered eigenvalues of the operator
W =9*F. If & is a continuous linear functional then, obviously, 4,=0,
Vi>=2. In this case % is also a continuous linear functionals and the WTP
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algorithm has zero error for all n>1. Hence, the problem is trivially
strongly tractable. In what follows, we therefore assume that the rank of .&
is at least two. This is the same as assuming that

1y >0. (28)

Observe that (28) implies that y,,>0. Indeed, y,,=0 yields that all
74 ;=0 and the space Z,=span{h*} is one-dimensional, where h*(x,,
Xpy e Xg) =[14_, h*(x;). Then all ¥, are linear functionals and 1, =0.

We are ready to present necessary and sufficient conditions on strong
tractability of the problem {.%}.

THEOREM 1. Let p, and p, be, respectively, the sum-exponents of {7, }
and of {4 1} with A4 ;= 7. Let (28) hold and let

B=1S0*| 4. (29)
If p=0 then the problem {¥,} is not tractable.
If >0 then the poblem {%,} is strongly tractable iff p, < oo and p; < .
If the problem {%,;} is strongly tractable then the ¢-exponent
p*=p*({ S}, A™) of strong tractability is
p*=2max{p,,p,}.
The WTP algorithm /¥ ; is then strongly polynomial and

comp(e, d) =cost(/ ;) < Cpe™?, Vp > p*,

with
© yP/Z o
C,=a, 1 <1+"’; Y ,1g/2><oo (30)
j=2 B? W=
and
a,= sup e’min{k>2:7, ,<&p*} <. (31)
ee(0,1]

Proof. Assume first that f=0. Then the eigenvalues of %, are 4, ,= 4,
for i>1, and the eigenvalues of ¥ are

Aijy=7Va Va2 " Va aki iy Ay
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and || %1%, 4, = Va17a2" - V4 a’- Observe that
comp(e, d) = [{i=[i}, . ig] 12 >s I %l\/d_,gdﬂ (32)
Let A} =4,;/4,. Then we can rewrite (32) as
comp(e, d) = [{i=[iy, ., ig] : AF2F--- 23>}

In Theorem 3.1 of [ 16] it is proven that 2§ =1 and A5 > 0 imply that {.%,}
is not tractable.

Assume then that > 0. For this case, the proof is similar to the proof
of Theorem 1 in [17]. Take first d=1. Then ¥ =% : F 741 — 4. The worst
case complexity is now given by

comp(e, 1) = |{k A'k, Yd, 1 > 82/11’ Yd, 1 } |

and due to (3) we have f2<2,, <f?+74:14 <p>+2; with a positive

Va, 1-
Due to (4), we know that

yd,l;“kgflk,ydyléyd,llkfl, Vk=2.

Hence, comp(e, 1)=0(¢77) iff I, = O(k=2P) iff 1,=O0(k=%r) iff
P, <p/2. This proves that p, < oo is a necessary condition for tractability
and that the e-exponent is at least 2p;.

Consider the case d > 1. Take vectors i with (d— 1) components equal to
1 and the remaining component equal to 2. That is, for some k we have
ir=2and i;=1 for all j#k. Since 4, , €[ p% p>+7y4,] and 4, , >4, for all
i=2 due to (3) and (4), we have

l. y/dellz n )1 4

j#k

Since 4, is positive and ||.%; d il,yd]_, (32) yields

H/d"gd Jj=1
comp(e, d) = [{k: pq x> (S + 74 11)/72} .

For ¢2< A,/4,, we have

comp(e, d) = [{k: pg 1> */(1y— &A1)} .
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Hence, comp(e, d) < Ce™ for all d and all ¢€(0,1] holds iff y,,=
O(k—2P) iff p, <p/2. This proves that p,< oo is a necessary condition for
strong tractability and that the e-exponent is at least 2p,.

Assume then that both p, and p, are finite. Take p>2 max{p,,p,}.
Since 4, = O(k "), there exists a constant o, such that

min{k>2: 2, ,<&f?*} <a,e™?,  Vee(0,1].
This proves (31). For d=1 we have
comp(e, d) =min{k —1: 2, <&k, |
Since ll,ym?ﬂz and Ay, <Va 141 <Ak_1, We have
comp(e, 1) <min{k>2: 2, ,<&’f?} <a,e”.

We now show that C, of (30) is finite. First of all, notice that p/2>p,
implies that the series a=3Y7°_, A2 is finite. Hence, it is enough to prove
that the product [ ,(1 p/zoc/[)"’ is finite. This product is finite iff
2,757 is finite. This holds since p/2 > p,. Hence, C, is finite.

Forj > 1, define

Comp(8,j): |{i: [ila i29 . ] }'11 7[11/112 Yd, 2 "/lz'j,yij

2 b
>é /11,7,1,1/“1,7,1,2.“)“1,}'4,]-}|

as the worst case complexity of computing an g-approximation to

J J J
=R LR F->9=R 9.
k=1 k=1 k=1

We are interested in estimating comp(e, d).

Assume inductively that 'comp(s, J)<B;e~? for some ;. For j=1 we
have comp(e, 1)< f,e7? with f;=a,. Observe that comp(e, j) can be
rewritten as

D18

comp(e, j) =

A; A; A
. . . . LM Ya Li—1>7d,j—1 2 1, Vd, j
{12[11,12,..., lj*l]' e >¢

j’1,)’,11 il!ydj_l )Lk,)’dj

k=1

I
T8

Xk \P/2
comp(e(4 lyd]/ kyd])l/zej_l)< 18 T Z (ﬂ)
lyd~

1 k=1

b (1n 5 (2)°)
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Due to (3) and (4) we obtain

yé’/z ©
me&ﬂ<Apﬂfp< JZA¢”>

As already remarked, the last series is finite since p/2 > p,. Thus we can set

5= ﬁlo+f§§ﬂ%>

; Vﬁ/? &
=511 <1 Z /11’/2><Cp< 0.
1=2

This proves that

comp(e, d) < Cpe?.

p

Hence, the problem {.%} is strongly tractable and since p can be
arbitrarily close to p*=2max{p,,p,}, the e-exponent of strong trac-
tability is at most p*. From the first part of the proof we know that the
g-exponent is at least p*. Therefore p* is the ¢-exponent. This completes the
proof. |

The first part of Theorem 1 states that &A* =0 implies intractability for
all ¥ of rank 2. In this case, the weights y, ; do not play any role since
they are multipliers in the sequence of singular values of %, and they cancel
when we consider the reduction of the initial error. The problem then
becomes “unweighted”. We add that tractability issues for unweighted
problems with .% of rank 1 in the class A% are quite complicated and rich
in possibility, see [4, 14].

The second part of Theorem 1 states necessary and sufficient conditions
on strong tractability and provides the e-exponent of strong tractability.
Strong tractability is equivalent to the fact that the sum-exponents of the
two sequences are finite. The first sequence is the sequence of weights.
Hence, the weights must go polynomially to zero and the speed of their
convergence affects the e-exponent of strong tractability. The second
sequence is the sequence of one dimensional singular values of the
operator. Clearly, they must go polynomially to zero to even guarantee
that the one dimensional problem is tractable.

The e-exponent of strong tractability is p* =2 max{ p,, p, }. Observe that
2p, measures the speed of convergence for the one dimensional case, and
p* =2p, simply states that there is no way to beat the complexity for the
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one dimensional case. If p, <p, then the affect of arbitrary dimension is
negligible and the complexity for arbitrary dimension d behaves essentially
as for d=1. If, however, p,>p, then we still have strong tractability but
the multivariate complexity is larger than the one dimensional complexity.

For example, consider A, = @(k~%) which corresponds to many prac-
tical problems defined over spaces with r times differentiable functions.
Then 2p,=1/r is the usual exponent of the one dimensional complexity.
Consider now the weights y, , = @(k ~>") with the constants in the Theta
notation independent of d and k. Then 2p, = 1/m and p* =max{r~', m~'}.
Hence, for m > r the effect of dimension is negligible.

We also remark that the ¢-exponent p* may be equal to 0. This happens
if both weights and singular values tend to zero faster than polynomial. For
instance, this is the case for exponential weights and singular values, i.e.,
sequences of the form p* with pe [0, 1).

We now discuss tractability of the problem {.%,}. As already mentioned
in the proof of Theorem 1, p, < oo is also a necessary condition for trac-
tability. However, the problem {.%} may be tractable for p, = co. It may
happen even for an operator & of rank two. Indeed, assume for simplicity
that *%h* =h*, ie, f=1, and that the eigenvalues of #" in (1) are
Ai=72,=1 and 4,=0 for all i>3. For a positive ¢, define the following
sequence of weights

1 if k=1,2,..,Tqlog,d7,
Ve k= {0 otherwise.

Observe that p,= oo and therefore strong tractability does not hold. It is

easy to see that the operator ., has exactly 27!°%297 eigenvalues equal to

one, and the rest of them equal to zero. Therefore for all ¢ <1 we have

comp(e, d)=2"1"°291=447  forsome ae(l,2].

Hence, the problem is tractable with the d-exponent equal to ¢, and the
g-exponent equal to zero.

The essence of the example above is that the weights y, , depend essen-
tially on d and k. As we shall see in the next theorem, for weights depend-
ing essentially only on k a quite different result holds. In what follows, we
assume that there exist two positive numbers f; and f,, and a sequence 7,
with 7, =>#%,> --- =0, such that

B <yar<Pomi, for d=1,2,., k=12, .,d. (33)

THEOREM 2. Let the sequence {y, .} satisfy (33), and let 7.,>0. Then
the problem {%,} is tractable iff it is strongly tractable.
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Proof. It is enough to prove that tractability implies strong tractability.
This means that we only need to show that p, < co. Due to (33), we have
P, =D, Assume that comp(e, d) < Cd% ™" for some nonnegative C, p and
¢, where comp(e, d) is given by (32).

Take d> g+ 1. Choose vectors i with (d —g — 1) components equal to 1
and with ¢+ 1 components equal to 2. We have (,,)=6(d’*") such

vectors. Let f=|.%h*|,. Then (3), (4) and (33) yield

A‘l’yd,l vl’Vd,d ﬁ +)\,1 ﬁ +ll

Take & =0.5(; A214/( f*+ 4,)) T2 Then all vectors i belong to the set
in (32). Hence,

@(d“l):(qd

N 1> <comp(e, d) < Cd¥%™".

Substituting ¢ we get
Na= O(d—Z/(p(q+ 1)).

This means that p, < oo, and completes the proof. ||

5. ARBITRARY CLASS 4

In this section we study a WTP algorithm whose information about f'is
not necessarily given by the values of inner-products with the eigenelements
of #,,. We also assume that the algorithms U,, , which are used in the WTP
algorithm are given by (15). Hence, the information used by the WTP
algorithm is the same as the information used by the algorithms B, which
may be from the class 4! or 4%, Of course, the more interesting case is
when B, uses information from the class 4% since then the results of the
previous section do not apply. The analysis of the WTP algorithm will now
be different than in the previous section, that is, it will be not based on the
spectrum of .

We assume that we know a sequence {B,}, B, =0, of algorithms such
that B, is of the form (14) and satisfies (17). We stress that the cost of B,
is n. We also assume that there exists a sequence

m0=0<m1=1<---<mk<... (34)
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such that

—B

1B moy1l g <CD'U|Sh* |4, Viz2, (35)

m;—1
and

m,DU=Vr L1, Viz2, (36)
for some D € (0, 1) and some nonnegative C and p. To satisfy (35) for non-
trivial problems, we need to assume that [ %h*||,>0. This condition is
necessary for tractability for all operators . of rank at least 2, see
Theorem 1. As will be explained at the end of Section 6, the conditions
(35) and (36) hold with p=1/r whenever the nth minimal error e(n)=
e(n; &, 7 ) is bounded by

e(n; ¥, F)=0(n"").
Recall that by the definition,
e(n; &, 7 )=inf{e(4, S): A uses n function evaluations}.

Let U, , be given by (15) and 4, , by (19). Since neither U, , nor 4, ,
depend on y, we shall denote them in this section by U, and A,, respec-
tively. Then 4,(f)=U,(f)=f(0)%h*, its cost is 1, and (2) yields
141 o= 1Sh* g < 1Ll 27 4 (37)

For i>2, we have 4,(f)= (B, _1— B, _,_1)(f—f(0)h*). Since
If = FO)Vh* || g =/ 1 f 115 = £2(0) < || f1| 5, We obtain

140l 50 6=/ 1Bun1 = Buy_ —1l 5 </7 CD'= 1 | Sh* |1, (38)

due to (35). Once more (2) yields
14l 5 S/7 CD' N S | g ViZ2, (39)
Note that the information used by 4, is f(0) and the information used
by B, _, and B,  _,. For i=2, the cost of 4, is at most m, since
B, —1=B,=0. For i>3, the cost of 4, is at most m;+m;_; —1<2m;.

For nested information, the algorithm B,, _; reuses the information used
by B,  —1 and therefore the cost of 4; is at most m;.
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As in (21) we have

=2 ®A
ieNd k=1
where
d
® Aik = H ‘|A1k|‘§”dk—>g<b( )H%Hyd_,gd
k=1 Fy=G, k=1
and
: it i=1
= ; h )
b(d, i) l;[ (k, i) with  b(k, i) {\/;CD”C 1 it >0,
(40)

To finish the construction of the WTP algorithm we need to define the
sets P(n, d) of multi-indices i. A good idea would be to select i’s which
correspond to the largest numbers b(d, i). It turns out that we can do better
by selecting the largest “weighted” b(d,i). This is done as follows. Let
Es1=1, and let {&, .} >, be a sequence of positive numbers. Define

d
= [ ¢ain (41)
k=1

with 6, , being the Kronecker delta. That is, if i, =1 the corresponding
component of &(d, i) is 1 whereas for i, >2 we have ¢, ,. Hence, if all i,
are at least 2 then &(d, i) =T1¢{_, ux-

Consider the sequence {b(d, 1)/&(d,1)}. Note that

12\1-6,
—D"' d < Vd, > _
H édk

From this it follows that b(d, i)/&(d, i) goes to zeros as [i| goes to infinity.
Therefore we can order the elements of {b(d, 1)/&(d,1)}. That is, we define
the sequence i; such that

~
—
-
S
~
~
—
O
N
S
=~
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The set P(n, d) is now given as
P(l’l, d) = {ils i2a eeey in}a

and the corresponding WTP algorithm takes the form

4= T ® 4, (42)

ieP(n,d) k=1

To guarantee that the WTP algorithm computes an ¢-approximation,
£€(0, 1), we need to set

n(e, d) = |{i: b(d, i) > &(d, )(e/Cy (d, )" ="}, (43)

where 7€ (0, 1) and

1 d ) " - Dsq 1/s
C,(d,n) 0D k]l <1 F(Cou W)™ 0" 1—DS’7>
with
2 if & is a functional and B,, are central
s= algorithms that use nested information, (44)
1 otherwise.

Observe that n(e,d)>1. Indeed, for 1=[1,1,..,1] we have b(d, 1)=
&(d,1)=1 and C,(d, n) = 1. Therefore the multi-index 1 belongs to the set
of (43) and n(e, d) > 1.

Note that

P(n(s, d), d) = {i: b(d, i) > &(d, 1)(&/Cy (d, )" =7}

and we can define

d
&{:d:A;k(e,d),d: Z ® Aik' (45)

ie P(n(e,d),d) k=1

We are ready to estimate the error and cost of .7 ;.
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TuEOREM 3. Let n€(0,1). Then the WTP algorithm /%, defined by
(45) reduces the initial error by ¢,

oAk 00 S) < 1Sl 5, (46)

and its cost is bounded by

1\ 2/ —=n)
cost(/F,) < C(d, ¢) <> , (47)
&
where
<ocl"[k 2 (L+ o CPyER/ER ) g(k, &)
C(d, ¢e)= x(1+C* sdn/lféfi(lk n) Dsn/ 1_Dsf7)))p/(S(lff7))
(1 —D?)(1 _DS)p/(S(lfn)) ’
<1n(Cy“2 (Eq (1 =D=M TTE, (1+ Cs”y;t’ézéfifﬂ‘”)>
glk.e)= X (D)(1 = D)) (1)t = :

InD!

+

with o= 1 if nested information is used by {B,}, and a =2, otherwise. (By
Lx_, we mean max{0, x}.)

Proof. We first estimate the error. For a technical reason, we also need
to consider the case ¢>1. For such ¢ we formally set .o/ ,=0. Then
S — s’dH‘/d”gd/H%H*/d"gd_l' .Frorn this, and (22), (23), as well as
(40), the worst case error of o/}, is bounded by

;(&/: > Ya) <ed(d g):= zi:b(d, i) <&(d, i) a(d, &) b*(d, i) if e<l,
1%l . 4, BRE if e>1,

where
a(d, &) = (¢/Cy(d, n))V =),

For j=1,2, .., d, we also define

s N Zi;l?(j,i)sé(j,i)a(j,e)b_s(jai) if e<l
e(“)‘_{l it ex1,
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where

8(1 _Ds)l/s 1/(1—n)
OZ(], 8)=< j ST, S s(1— Ky 57 S> :
foa (L CmyREL D™ )(1 = D)V

Clearly, é°(d, ) =e°(d, s).

431

We show by induction on j that é°(j, ¢) <& for all positive &. For j=1,

it is trivially true for ¢ > 1. For ¢ <1, denote
k*=|{i:b(1,i)>da(1,e)}|.

Observe that k* > 1. Then we have

k*s

és(l, 8) — Z Csyfi/,Zle(ifl) — Csysd/,zl D <
i=k*+1

a(l,e) \°
<o) <

Hence, é(1,¢) <e, Ye>0. For j>2 assume inductively that e(j—1, ¢) <,

Ve > 0. Note that we have

b(j, i) =b(j—1,i)b(j, i),
Eji)=E(j—Li) el

Then for e <1,

&), &)=

18

¢=1 i:b(j—1, 1) <& —1,1) B,(j. &)

where

Z bs(‘]il’i) bs(j’/)a
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with a = (1 + C7y28 =" D*/(1 — D*)) =", Therefore

I °o ol Ear \17
e(je)=2e(j—1,ae)+ Y C32D~Ve* <J— 1, < az
22 b(j, )

[e’e] éd X s(1—mn)
<a’e’ <1 +C2 Y, DY <” > >
2

= b(]af)

oo
=asgs<1 +CmpmREfL-m Y DW—U)
-2

=a'e* [ 1 + Corysn2Esii=m b7 =g
dj=dj 1— D .

This proves (46).

We now analyze the cost of /% ,. Let ri1;, =1, and for i>2, let m;=m,;
for nested information, and 2, = 2m, otherwise. Then 1, is an upper bound
on the cost of 4,. The cost of @¢_, 4, is thus bounded by [T{_, 17, .
Therefore

4 - )
< . _ . n; if e<l1

cost( ¥ ) <cld ¢):= i b > c(driy ot o) [liem M ) ’
> 0 if ex>1,

where o(d, ¢) is defined as before.
For j=1,2, ..., d, we define

i i i :
aj, &)= {Zi: 50,0y > &G e L =1 M5 %f e<l,
0 if ex>1,

where b, &, and « are defined as before. Clearly, ¢(d, ¢) = c(d, ¢).
For d=1, we use k* defined before and for e<1 we have ¢(1,¢)=
k* ;. Due to (36),

ke~ . D=k _1 D?
(1 <1 D—(l—l)pg <
é(1,¢) +oci§2 O S% T

Dk,

Since D** =V > (1, &), we conclude

_ a _ 1\2/(A=m
al,e)< I _Dpoc(l —&)P=:C, <s>
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with

o
(1 —Dp)(l _DS)p/(S(lfn))’

C1:

Hence, &(1,e) < C e 2/0=7, Ve > 0.
For j>2, assume inductively that & j—1,¢)<C;_,;e ?' =" for some
C;_, and all ¢>0. Then

J

=1 ib(j—1,i)>&—1,1) fr(j. &)

PaD) Ea 1—n
—e(j—1 e =1 (e
aj—1,ae)+ ), m,)c<] ’<Cy;{2ijl> a8>

=2

1 >p/(ln) < g*( ) prg/l_
=C._,|— 1+ m,D¢—Dp __&J ,
/=1 <a8 2:2 ‘ ér

d j
where f8,(j, ¢) and a are defined as before. Here, g*(j, ¢) is defined as the

largest index i for which the second sum has at least one term. That is,
g*(J, ¢) 1s the largest integer solution of the equation

Cyads D1 >&, 0l )

and

o) +{IH(CVZ2,-/(5(6I,])Of(j,E)))J
& 8= InD! n

Note that g*(j,¢)=1+g(/J, ¢), where g is defined in Theorem 3.
From (36) we conclude

1 \2/(=m C?y 5/]2'
o< (o) (1+a 2 gtre )= o
d,j

D3 p/(s(1 —n))
)

J prp/2
C,=C, <1 +o— 4K gk, g)> <1 + Comys2gsi=m
2
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Since C,= C(d, ¢), we proved that c¢(d, ¢) =c(d, &) < C(d, ¢)e~?, as claimed.
This completes the proof. |

Theorem 3 presents an explicit bound on the cost of the WTP algorithm
that computes an ¢-approximation. We first comment on the cost bound
(47) for arbitrary weights y, , and &, , as a function of &. Observe that the
function g depends logarithmically on ¢~'. This implies that C(d,e¢)
depends on (In e ~')¢~!. Furthermore, we can claim such a dependence for
an arbitrary 7 € (0, 1). This proves the following corollary.

COROLLARY 1. For every positive § there exists a positive ¢(d, &) such
that the cost of the WTP algorithm </ ¥ ; defined by (45) is bounded by

p+o
cost(A ¥ ;) <c(d, ) <i> . (48)

The exponent p in Corollary 1 satisfies (36) which measures the behavior
for the one dimensional case. Clearly, p >2p, with p, defined in the pre-
vious section as the sum-exponent of the squares of the singular values of
the operator .. Hence, Corollary 1 states that we essentially preserve the
same dependence on ¢! for all dimensions d, however, the factor ¢(d, &)
may depend on d.

We now address the dependence of the cost bound (47) on d. Obviously,
this crucially depends on the weights y,, and &, ;.

THEOREM 4. Assume that

LAY &L (AT
sup{ > <> .Y éf,,k<’> }<M<oo. (49)
éik édk

d k=2 k=2

Then the WTP algorithm o/} ,; defined by (45) is strongly polynomial and its
e-exponent p*({.o/¥ ;}) is bounded by

PUSED ST (50)

That is, for every positive 0 there exists cs such that

1\2/A=m+3é
> ., Vee(0,1) and Vd. (51)

cost(/F ;) <cs <e
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Proof. Let o, ;= (Vl/z [Ca )’ and B =<5 k(Vl/2 /€4)" In what
follows, we use ¢; to denote positive constants that do not depend on ¢ and
d. We first estimate g(k, ¢). From Theorem 3 we have

d
glk,e)<c <l +lne '+ ) In(l +c2[)’d,k)>.

k=2

Using In(1+x)<x and the fact that >¢_, B, <M we easily conclude
that

gk, e)<cy(cs+Ine™t).

We now estimate C(d, ¢). We have
d d
Cd,e)<c ]_[ (1+csog o (L+Ine™)) [T (14cg Bas)?O—m,
= k=

Observe that

d

H (1+ ceBux p/(s(ln»:exp<

’ ,
LR )

d
< exp <C7 Y ﬁd,k> <exp(c, M) =cs.
2

k=

We now estimate the first product in the estimate of C(d, ¢). Without loss
of generality, we may assume that «, , are nonincreasing, i.€., & ;=% ;4 1,
Vj. Since ¢ _, 0., <M for all d, there exists k*=£k*(d) such that

S w1 % x <O/(2¢5). Then

d
[T (I+esoy, (1+Ine™h))

k=k*+1

d
=exp< Y In(1+csay,(1+1n 8_1))>
k=k*+1

d

<exp<c5 Y ad,k(1+lnsl)><8"/2e‘s/2.

k=k*+1
Clearly, we also have
k*

[T (I +ecsag (l+Inet)) <coe 2

k=1
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This proves that
C(d, &) < cgege°.

The proof is complete by applying (47).

Theorem 4 states the sufficient condition (49) under which the WTP
algorithm is strongly polynomial. This condition is expressed in terms of
the weight sequences y, . and &, , as well as the parameter #. The sequence
¢4 and the parameter x# are at out disposal. It is therefore natural to
define them such that the WTP algorithm is strongly polynomial and its
g-exponent is minimized.

To find out when the WTP algorithm is strongly polynomial, we recall
Theorem 1 where it is proved that a necessary condition for strong trac-
tability for all operators of rank at least 2 is that the sum-exponent p, is
finite. Hence, we assume that p, < oo. As we shall see in the next theorem,
we will need to assume that p, is sufficiently small. The sum-exponent p,
is defined by (27). For simplicity we assume that

d
sup ) i< . (52)

d k=2
If (52) does not hold then it is enough to increase p, by an arbitrarily small

number.
We will be using the WTP algorithm with*

id, k= yg;hy/p)/zj k= 2:39 ey

(53)
2
| —p<1 —py> it p<2p,/(1—2p,Js),
n= 2p, s
0 otherwise,
where ¢ is an arbitrary positive number.
THEOREM 5. Assume that
S
<3 (54)

41t can be proven that among sequences Cax= @(ygk) the choice f=(1-2p,/p)/2, as in
(53), is optimal.
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Then the WTP algorithm </ ¥ ; defined by (45) and (53) is strongly polyno-
mial and its e-exponent p*({.o/¥ ;}) is bounded by

*({ of * P2,
p ({&/e,d})gmax{l_é,1_2py/s}. (55)

Proof. For &, given by (53) we have

i\

— 8 — yP

O(d,k_ f _yd,yk
d, k

and the series Y.{_, a, , is uniformly bounded in d. Hence, the first part of
(49) holds.
Assume now that p <2p, /(1 —2p,/s). Then

1/2

s y o S — RY »
ﬂd)k = fd’k <é:’;]’z> = @(Vd(,lk 2p,/p)/2+ ripy/p) = @(ys)/k)’

due to the definition of 7 in (53). Hence, the series 3¢ _, . is also
uniformly bounded in d. Therefore (49) holds, and Theorem 4 states that
the WTP is strongly polynomial with the ¢-exponent at most

p
l—n 1-2p,/s

as claimed in (55).
Assume that p >2p, /(1 —2p,/s). Then 1 —2p,/p>2p,/s and

Bar= @(yZ,k),

where

a=s(1-2p,/p)/2+snp,/p>p,, Yo > 0.

Therefore 3¢ _, B, , is uniformly bounded in d, (49) holds, and Theorem 4
completes the proof. ||

We now comment on the assumption (54) that p, <s/2. Recall that s is
defined by (44) and s=2 for the functional case, and s =1 for the general
case.
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For the functional case, we thus assume that p, <1. It seems to us that
a slightly relaxed inequality p, <1 is needed. Indeed, observe that in the
analysis of the WTP algorithm we only use its global error properties
represented by the parameters p, D and the weights y, .. The structure of
the spaces %, did not play any role. Hence, in particular, we may use the
weighted Sobolev spaces and multivariate integration as in [10]. In [10]
it is proved that p,<1 is a necessary and sufficient condition for quasi-
Monte Carlo algorithms to be strongly polynomial. Although quasi-Monte
Carlo algorithms are not optimal (central) algorithms it is widely believed
that they are optimal modulo a multiplicative factor. If so, the condition
p, <1 is needed for strong tractability. It is, therefore, maybe not surprising
that we need to assume that p, <1 for the WTP algorithm to be strongly
polynomial.

The discrepancy between the two inequalities p,<1 and p,<1 is
probably caused by the presence of the parameter # in (43) which makes
the analysis of the WTP algorithm much easier. We believe that a more
refined analysis may allow to take # =0 with the same conclusion that
p, <1 implies that the WTP algorithm is strongly polynomial.

For the general case, we need to assume that p, <1/2. We do not know
if this condition may be relaxed in general. If the condition p, < 1/2 cannot
be relaxed then this may indicate a shortcoming of the WTP algorithm
defined by (45) and (53).

We now discuss the bound (55) on the ¢-exponent of the WTP algo-
rithm. Sine J can be arbitrarily small, the bound (55) roughly states that
we can achieve the g-exponent

Zpy
max {p, 7 —Zpy/s}’

As already remarked, the one-dimensional exponent p must be at least 2p,.
Hence,

p¥({ Ak ) =p*=2max{p,,p,}

and this agrees with Theorem 1 which states that p* is the e-exponent of
strong tractability of { %} for all & of rank at least two in the class 4"

Observe that for small p,, the e-exponent of the WTP algorithm may be
arbitrarily close to p. If, in turn, p =2p,, then the e-exponent of the WTP
algorithm may be arbitrarily close to p*. We summarize this property in
the corollary.
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COROLLARY 2. If p=2p, and

. )8 D
py<mm{2’ 1 +2pl/s}

then the e-exponent of the WTP algorithm defined by (45) and (53) with
small J is

P*({&/:d})zzpz

which is minimal even in the class A*".

6. APPLICATIONS

In this section, we illustrate the general results by applying them to the
integration and function approximation problems discussed in the Example
from previous sections. We will also use two different families of sequences
y. Recall that in the Example, we consider functions of regularity r=1. At
the end of the section, we will briefly show how these results extend for the
class of functions with higher regularity r. Although r=1 is a special case
of r = 1, we present the case r =1 separately since it is simpler and the algo-
rithms and their error formulas are more explicit.

Recall that the Example deals with functions from the following class &

F={f10,11->R:f(0)=0, fis abs.cont., | f'[,<1}

with | g5 =g g%(x) dx. We also have S(f)= [ f(x) dx for the integration
problem, and S(f)=fe%=L,([0,1]) for the approximation problem.
Since A* =1, we have |Sh*|,=1.

For the approximation problem, it is well known that the eigenvalues of
" given by (1) satisfy 1, = @(i~2). Hence, the sum-exponent, see (27), is

p,=05. (56)
We begin with the approximation problem. Consider m;=1 and

m;=1+2""2for i>2, and the following algorithms B,,_1. We have B, =0
and with

Bmi—l(f)(x)zf(xj, ) ifxe{j,i

X == and [ ,=[x;,—27"" x, ,+27"""), VO<,/j<2772 Vi 2,
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Observe that B, _, uses function values at x; ; for j=1, 2, ..., 27 2=m,— 1
since f(x, ;) = f(0) is always zero.
We now estimate | B —B,, _ilg_qfori=2 Fori=2, we have

m;—1

1
Boas )= By a (D= 1B = || 720 d

1

1 1/t 2 1
3= ([ rmar) <5113y

The last bound is sharp since we have equality for f(x) = x. Therefore,

1By, 1 (f) = By 1 (N5 o g =1/2.

Let now i>3. Since B,, _,(f)(x)=B,,  _(f)(x) for xel;; with even
values of j, we have

()= By 1(f) =By, 1 (NG

i
2i—3

=Y [ 1) = By ()0 .

k=1 "Dy_1,i

Note that B,,  _(f)(x) equals f(x,_y;_,) or f(x, ;) depending on
whether x is in the 1st or 2nd half of 7,, _; ;. Hence,

272 Xok—1,i 5
=3 (77 i )P ds
k=1 \Yxy_ ;—27i*1
Xop_q, 27! )
o1 — fe )] dx)
Xk —1, i
21’—3

=270 (I o) = S DPH L (i 1) = (X1, )1P)
k=1

el )

Xk—1,i—1
. 273 . Xok—1,i . . Xk, i—1 X
<271+1 Z <21+2 J |f/(l)|2 dt+271+2J‘ |f’(l)|2 dl>

k=1 Xk—1,i—1 Xok—1,i

:2—2(i—1)2 Hfr H§<2_2(i_1)2‘

X2k -1, i f'(l‘) di jxk,i—l f/(t) di

Xok—1,i

2
+
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Actually, for f(x)=x we have equality and therefore

1By 1 =B illpag=2"""12,  Viz2.

Hence, for the approximation problem, (35) is satisfied with C=ﬂ and
D =1/2, whereas (36) holds with p=1.

We now consider the integration problem. Let m;, x;;, and I, ; be as
before. The corresponding algorithms B, _,(f) are obtained as the
integrals of the previous approximation algorithms. That is, B,, _;(/f)=0

and

15%,,1,._1(f)=2,.1 <f(1) Zif ,,> Viz2.

Hence, they are equal to the trapezoid rules (recall that f(0) =0). This also
means that they are equal to integrals of piecewise linear functions inter-
polating £ at 0, 1/2:=2 2/2=2, 1, and thus are central.

Note that [B,, _;(f)|=1/(1)/2] <1/2. As before, we have equality for
S(x)=x, ie, [|B,,—1llz_4=1/2. For i=3 we have

B, 1(f) =By, —1(f)

=272 N flxg1 ) =272 Y flxy ) =277
P k=1

2i=2

=271 Z ) (foy, ) = S0 0)
Since

12
(1) dz)

ij.i

Xi—1,i

and since Zk—lak<\/m, we conclude that |Bm_1(f)
B, ,_1l<27 H1) £, <27* 1 Thus,

|f(xj,i) _f(xjfl,i)| =

S(1) dl‘ <2~ =22 <ij.i

Xi—1,i

1By =B 1l pg<27,  Wiz2.

m;—1

As with the approximation problem, one can prove that we have equality
above.
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Hence, (35) and (36) now hold with C=1, D=1/2, and p=1.
We now discuss two families of sequences 7.

Family 1. Let p, =y, be independent of 4 and
=0k,  Vkx=1 (57)

for some parameter z>0. Of course, the sum-exponent equals p,=1/z.
Therefore, for 4 = A", the e-exponent of strong tractability for the function
approximation problem equals

2
p*(A?Y) = max {1, }
z

Note that the approximation problem is strongly tractable for every z > 0;
however, the exponent p*(A2!) converges to infinity with z — 0.

Consider now 4= A9 For the function approximation problem we
need to assume additionally that z> 2 since otherwise the results of Sec-
tion 5 are not applicable. For the same reason, we need to assume z > 1 for
the integration problem. Then, from Theorem 5, we conclude that

1 2
max {1_5, 2_2} for approximation,

PHA™) <p*(, 4) < (58)

max L 2 for integration
16 z—1 or ttegration.

We do not know the e-exponent p*(A%*9) for all values of z. In particular,
we do not know if the integration and approximation problems remain
tractable when z <2 or z <1, respectively.

For z>4 for the approximation problem, and z >3 for the integration
problem the bound (58) is sharp and p*(A*%) ~ p*(.e/ ;) ~ 1 since & can be
arbitrarily small. For other values of z, we do not know if the upper
bounds (58) are sharp.

Family 2. We now take a special class of sequences y suggested by a
problem from economics. There is a well known family of functions studied
by economists, called the Cobb Douglas family, [ 9], which consists of the
functions of the form

d
f(t1s tay oy ]_[ t +a; )™
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where the a,’s are nonnegative and a, >0 with 3¢_, o, =1. We now
estimate the norm of fin the space %,. We have

2 2 a1
(M) 1 &aqp % [ ragnva ]
[0, 17 keuaxk

keu Vdk keuw Vd k0 kéu

Since 2(o, — 1) <0 and (7 + a,)* %~V <aZ%~Y we have

0 > dxk
az
jEO, 170 <k1;[u axk kl;[u Vd, k kl;[u akyd k kljl

Hence,

i< a1+ 1

u#J keu ade k>

It is known, see formula (40) in [10], that

2 ﬂyk=iy,- ﬁ (1+7:) <_i >exp<jzd: yj>,

u# keu j=1  k=j+1

Therefore,

11, f[ 2"‘k<1+2 % ﬁ <1+ fi >> (59)

— ,_1a Vdjk=j+1 aiVa k

We now consider, as an example, two choices of y, , for which | f| #, is not
too large.

(i) Let a=min;q; and b =max;a,. Since 3 ; x;=1 we have

. p2/ 4 o2 1 4 o2
|f|§¢d<b2+az< % ’> exp <2 2 ]>~
J

=174 a ;174

Setting y, ;=; we conclude that
b? 1
13, <0+ e ().

Hence, | f|| #, has a bound which is not too large if @ is not too small, and
b not too large.
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(ii) Assume for simplicity that a;=a for all j. Setting now y, j=ocf
we conclude from (59) that

1 d |
A <1 +5 2 +a—2)d‘f>=a2(1 +a2)
j=1
For a=./d, say, we have
112, <d(1 +d=1)< de.

Hence, || f| # S de which is not too large for reasonable d.
This example from economics suggests to consider the sequence of
weights such that

I DM
s
R
kel
Il
\:—ﬂ
<
QU
WV
\:—ﬂ

for some positive ¢. Note that ¢ =1 and ¢ =1/2 were used in the example
above. For instance, y, ,=1/d" (for all k) or y, =0, are two extreme
examples of such sequences. Depending on the sequence, the sum-exponent
can be any number between 0 and ¢,

0<p,<q

It is ¢ when, e.g., y, . =1/d"4, and is zero when, e.g., 74 =04 «-
From Theorem 1 we conclude that for A4 = A% the function approxima-
tion problem is strongly tractable regardless of the sequence 7. That is,

p¥(A*™) =max{l, 2p,}.

In particular, the exponent never exceeds the value of 24.

Consider now A = A%, We do not know if the function approximation
problem is tractable when p,>1/2. Otherwise, when p,<1/2, we have
strong tractability with

1 2p
*Astd < *&/ < , b .
P <, < max s

The integration problem is strongly tractable for every sequence y with
p,<1 and

1 2
PHA™) < p*(, 4) <max e L
1—0" 1-p,
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As before, the exponent of .</, ,is optimal when p, < 1/4 for the approxima-
tion problem and p,<1/3 for integration problem since then p*(A%) =~
P 4) > 1.

We now turn to more smooth classes of functions. Consider the follow-
ing class &

F={f10,11>R: f90)=0, Vj<r, fC~1 is abs. cont., | f"|,<1}.

As before, S(f 50 x)dx for the integration problem, S(f)=fe¥% =
Ly([0,1]) for the approx1mat10n problem, and A* = 1. Here r is a positive
integer that measures regularity of functions f, and r =1 corresponds to the
Example problem analyzed above.

For the approximation problem, it is well known that the eigenvalues of
" given by (1) satisfy A,= @(i~%). Hence, the sum-exponent, see (27), i
now given by

pi=1/(2r). (60)

For both problems, consider 7, =1 and m;=1+2""2for i >2, and the
following algorithms B,, _,. We have B,=0 and for the approximation
problem, B,, _; is based on interpolation by piecewise polynomials of
degree r—1 at points x; j/2i_2(1 <j<m;—1). For the integration,
B,, _ is given as B, ,l(f = [ 0:(x) dx, where 6,=0,(f) is a spline that
minimizes |6, among all funct10ns from # that interpolate f at the
points x; ; (1 <j<m,;—1). The choice of splines o; guarantees the centrality
of the corresponding integration algorithms.

It is well known that for both the integration and approximation problems
there exists a number Q depending only on r such that | — B, 1| 5_ 4 <
Q(m;—1)""for any i > 2. Since 1Bm,—1 =B, | —1llz e <L =By _1l 7.4

+ % =B, _,~1ll#_ 4, the conditions (35) and (36) are satisfied with
1
C=max{|S|z_ 4+ 0, O(4"+2")}, D=2"", and p==.
Thus, we have the following estimates for the exponents p*:
Family 1. p*(A*™)=max{1/r, 2/z} and
max { ! 2 } for approximation
1-0) (z—2 ’
P <pag < O ET
max {r(l =) =), } for integration.
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Family 2. p*(A*™)=max{1/r,2p,} and

1 2p,
max ,
{r(l—é) (1=2p,)
{ 1 2p,
max ,
(1—0) (1—p,),

} for approximation,
PHA™) <p*(, 4) <

} for integration.

It is clear that similar results can be obtained for more general domains
2, more general spaces & and solution operators .. What is really needed
is the rate of convergence of the minimal errors e(n) after n evaluations. As
long as we know that e(n)=O(rn~") then p<1/r.

For linear functionals (such as integration), we also need nested informa-
tion. The nested information can be obtained by adding the information
already used at previous steps. More precisely, suppose that the optimal
information N, of cardinality, say, 2°~2 is not nested and the error of the
central algorithm using N, is of order 27"~2 for some positive r. To
obtain the nested information we add to N, all the previous information N,
with k <i so that with the evaluation at zero, m, <1+ X% _, 25" 2=2"""1,
Of course, any central algorithm B,, _; that uses this nested information
has error of order m;". By taking D=2""in (35) and (36), we have
p=1/r. Hence, we lose only a multiplicative factor and we have the same
p for optimal and nested information.

We plan to implement the WTP algorithm and we hope that in the pro-
cess of implementation we will learn how to select the parameters of the
WTP algorithm to make it more efficient. We will report on the results of
implementation of the WTP algorithm in the future.
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