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Papillomavirus gene expression is strictly linked to the differentiation state of the infected cell and is
highly regulated at the level of transcription and RNA processing. All papillomaviruses make extensive
use of alternative mRNA polyadenylation and splicing to control gene expression. This chapter contains a
compilation of all known alternatively spliced papillomavirus mRNAs and it summarizes our current
knowledge of viral RNA elements, and viral and cellular factors that control papillomavirus mRNA
processing.

& 2013 Elsevier Inc. All rights reserved.
Introduction

Papillomaviruses are small DNA viruses with a circular double
stranded DNA genome (zur Hausen, 2002). Their genomes typically
encode early and late genes that are expressed in a temporal and
highly regulated manner (Howley and Lowy, 2006). Gene expression
is regulated at the level of transcription (Bernard, 2002; Thierry,
2009) and RNA processing (Graham, 2008; Schwartz, 2008; Zheng
and Baker, 2006) and the papillomavirus proteins are produced from
a myriad of alternatively spliced and polyadenylated mRNAs. Maps of
all known papillomavirus mRNAs are shown in Appendix I.
Advantages of the extensive use of alternative splicing and poly-
adenylation include the ability to express many genes from a
compact genome, as well as the ability to individually regulate
expression of each gene during the viral life cycle. Papillomavirus
gene expression is tightly linked to the differentiation program of
infected epithelial cells. The most obvious example is perhaps the
well-conserved delay in late L1 and L2 gene expression to the
uppermost layers with terminally differentiated cells in the squa-
mous epithelium (Chow et al., 2010; Doorbar, 2005; Moody and
Laimins, 2010). Activation of L1 and L2 expression requires a viral
promoter-switch, a change of polyA signal and derepression of two
alternative splice sites. Merely a promoter switch does not suffice, as
experiments in which the late HPV-16 promoter p670 was replaced
by the constitutively active human cytomegalovirus promoter did not
activate late gene expression (Orru et al., 2012; Zhao et al., 2004).
Therefore, regulation at the level of RNA processing plays an
important role in papillomavirus gene expression. Furthermore,
HIV-1 Rev and RRE that are required for efficient nuclear export of
partially spliced HIV-1 mRNAs (Felber and Pavlakis, 1993), enhance
ll rights reserved.
BPV-1, HPV-1 and HPV-16 late gene expression (Barksdale and Baker,
1995; Tan et al., 1995; Tan and Schwartz, 1995), and adenovirus
E4orf4 that regulates the switch from early to late gene expression in
adenoviruses by dephosphorylating splicing factors (Akusjarvi and
Stevenin, 2003), can induce HPV-16 L1 mRNA production by enhan-
cing viral mRNA splicing (Somberg et al., 2009). Significant effects on
papillomavirus gene expression by relatively subtle mutations at RNA
processing signals in complete papillomavirus genomes of different
types have been reported (Andrew and DiMaio, 1993; Deng et al.,
2003; Hubert and Laimins, 2002; Klumpp et al., 1997; Poppelreuther
et al., 2007; Terhune et al., 2001, 1999). These results underscore the
importance of RNA processing in the papillomavirus gene expression
program. This chapter discusses cis-acting papillomavirus RNA ele-
ments and viral and cellular trans-acting factors that regulate
papillomavirus gene expression.
RNA elements in papillomavirus late and early 3′-UTR
sequences

Late 3′-UTR sequences

Inhibitory sequences in the late untranslated region of papillo-
mavirus mRNA were originally discovered in BPV-1 and in HPV-16
(Furth and Baker, 1991; Kennedy et al., 1990, 1991) and are relatively
well characterized (Graham, 2008). One may speculate that the role
of these sequences in the viral life cycle is either to prevent
premature late gene expression or to serve as landing pads for
cellular RNA binding proteins that activate late gene expression in
response to cellular differentiation. Inhibitory sequences are present
in the late 3′-UTR of all HPVs that have been analyzed, including
HPV-1, HPV-2, HPV-6, HPV-16, HPV-18, HPV-31, HPV-41 and HPV-61
(Cumming et al., 2002; Kennedy et al., 1990, 1991; Tan and Schwartz,
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1995; Zhao et al., 2007b). In general, these sequences are not well
conserved but many are AU- or GU-rich and often contain multiple
copies of the G-U3–5-G sequence which resembles the AUUUA-motif
often found in AU-rich RNA instability elements in the 3′-UTR on
cellular mRNAs (Zhao et al., 2007b). These late UTR elements have an
inhibitory function in mitotic cells including cancer cells that must be
overcome in terminally differentiated cells that are permissive for
late gene expression. Best characterized are the late UTR elements in
BPV-1 (Fig. 1), HPV-1 (Fig. 2) and HPV-16 (Figs. 3 and 4).
Fig. 1. (A) Schematic drawing of the BPV-1 genome. Boxes represent protein coding s
respectively. Early and late polyA signals named pAE and pAL are indicated. A subset of v
each mRNA is indicated to the right. (B) Left: The positions of splicing silencer (red) (E
cellular proteins they interact with are indicated (Zheng and Baker, 2006). See text for d
arrows show the effect of the regulatory RNA elements on the various BPV-1 splice sites
specifically to cellular U1snRNP. This interaction inhibits late mRNA processing. (For inter
web version of this article.)
It is well established that the negative element in the BPV-1
late UTR is a relatively short, 5′-splice site-like sequence that binds
specifically to the U1snRNA part of the cellular U1snRNP complex
(Fig. 1) (Furth et al., 1994). This binding inhibits polyadenylation
of the late BPV-1 mRNAs (Furth et al., 1994; Gunderson et al.,
1998). In contrast, the inhibitory element in the HPV-1 late
UTR is a classical AU-rich RNA instability element (ARE) (Fig. 2)
(Sokolowski et al., 1997; Tan and Schwartz, 1995), similar to those
originally discovered in a subset of short-lived cellular mRNAs,
equences, arrows promoters and black and white triangles, 5′- and 3′-splice sites,
iral mRNAs is shown below the genome and the most likely translation product for
SS1 and ESS2) and splicing enhancer (green) (SE1, SE2 and SE4) elements and the
etails and Table 1 for SR-protein nomenclature (Manley and Krainer, 2010). Colored
. Right: The BPV-1 late UTR encodes a negative regulatory RNA element that binds
pretation of the references to color in this figure legend, the reader is referred to the



Fig. 2. (A) Schematic drawing of the HPV-1 genome. Boxes represent protein coding sequences, the arrow a promoter and black and white triangles, 5′- and 3′-splice sites,
respectively. Early polyA signal pAE and the two late polyA signals pAL1 and pAL2 are indicated. A subset of viral mRNAs is shown below the genome and the most likely
translation product of each mRNA is indicated to the right. (B) Blow up of the HPV-1 late UTR shows the position of the AU-rich inhibitory RNA element (red) (Graham, 2008;
Schwartz, 2008; Zheng and Baker, 2006). The exact sequence and protein-binding partners of the AU-rich element are shown below the schematic drawing of the UTR. See
text for details. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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including interleukin-, interferon- and c-fos-mRNAs (Barreau et al.,
2006). Similarly to the c-fos ARE, the HPV-1 ARE reduces mRNA
stability and inhibits translation (Sokolowski et al., 1997; Wiklund
et al., 2002), and binds specifically to hnRNP C1/C2 and HuR
(Fig. 2) (Sokolowski et al., 1999, 1997; Sokolowski and Schwartz,
2001; Zhao et al., 1996). HuR is a shuttling protein whereas hnRNP
C1/C1 is strictly nuclear. Both proteins regulate the stability,
polyadenylation and nuclear export of cellular mRNAs. HuR binds
specifically to the AUUUA- and AUUUUUA-motifs in the HPV-1
AU-rich RNA element (Sokolowski et al., 1999), while hnRNP C1/C2
binds the penta-U nucleotides(Sokolowski and Schwartz, 2001;
Sokolowski et al., 1997). The inhibitory activity of the HPV-1
AU-rich element is lower in cell lines in which a large fraction of
the HuR protein resides in the cytoplasm (Carlsson and Schwartz,
2000), suggesting that HuR interacts with the HPV-1 AU-rich
element in cells. The HPV-1 AU-rich RNA element also interacts
with polyA-binding protein (PABP) (Fig. 2) (Wiklund et al., 2002),
indicating that the inhibitory effect on translation exerted by the
HPV-1 ARE is caused by binding to PABP.

The HPV-16 negative regulatory RNA element can be divided
into a 5′-half with multiple, weak 5′-splice site-like sequence
motifs that all contribute to the inhibitory activity of this region,
and a GU-rich 3′-half (Figs. 3 and 4). While the former interacts
with U1snRNP (Cumming et al., 2003; Furth et al., 1994), like the
BPV-1 late UTR element (Furth et al., 1994), the 3′-half has
been reported to bind a number of proteins including CUG-BP1
(Goraczniak and Gunderson, 2008), U2AF65 (Cumming et al.,
2009; Koffa et al., 2000; McPhillips et al., 2004), HuR (Cumming
et al., 2009; Koffa et al., 2000), hnRNP A1 (Cheunim et al., 2008),
weakly to CstF-64 (Cumming et al., 2002; Koffa et al., 2000) and
indirectly to ASF/SF2 (McPhillips et al., 2004), now named SRSF1
(Fig. 4B) (see Table 1 for new nomenclature of SR-proteins (Manley
and Krainer, 2010).). The HPV-31 late 3′-UTR can also bind U2AF65,
HuR and CstF-64 (Cumming et al., 2002). With the exception of



Fig. 3. (A) Schematic drawing of the HPV-16 genome. Boxes represent protein coding sequences, arrows promoters and black and white triangles, 5′- and 3′-splice sites,
respectively. Early and late polyA signals named pAE and pAL are indicated. A subset of viral mRNAs is shown below the genome and the most likely translation product for
each mRNA is indicated to the right. (B) Left: Positions of splicing enhancer element (green) at 3′-splice site SA3358 and splicing silencer element (red) at 5′-splice site
SD3632 in the early region of the HPV-16 genome are indicated. Polyadenylation enhancing RNA elements upstream and downstream of the early polyA signal pAE are
indicated in green (Schwartz, 2008; Zheng and Baker, 2006). Arrows show the effect on the regulatory RNA elements on the various HPV-16 splice sites and polyA signals.
See text for details. Right: Splicing enhancer element (green) and splicing silencer element (red) at late 3′-splice site SA5639 are indicated (Schwartz, 2008; Zheng and Baker,
2006). The position of a negative regulatory RNA element in the HPV-16 late UTR is shown (Graham, 2008). See text for details. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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CUG-BP1, specific binding sites for these proteins have not been
identified. Under slightly different experimental conditions,
UGUUUGU- or UGUUU-motifs in the HPV-16 late UTR bind
primarily a 55 kDa nuclear protein that is distinct from U2AF65
(Zhao et al., 2007b) and was identified as CUG-BP1 (Goraczniak
and Gunderson, 2008). The CUG-BP1 acts in synergy with the
upstream 5′-splice site like elements to inhibit polyA site activity,
nuclear mRNA export and translation (Goraczniak and Gunderson,
2008). One may speculate that the HuR protein binds to the
GUUUG-motifs that resemble AUUUA-motifs to which it normally
binds, and therefore competes with CUG-BP1 for the overlapping
UGUUUU-sites, perhaps explaining why HuR interactions with the
HPV-16 late 3′-UTR are not always detected (Goraczniak and
Gunderson, 2008) (Fig. 4B). HuR could potentially affect HPV-16
late mRNA half-life or nuclear export. Overexpression of HuR in
chronically HPV-16 infected keratinocytes induced HPV-16 late
gene expression, and knock-down of HuR reduced late gene
expression (Cumming et al., 2009), but the exact role of HuR in
the HPV-16 infectious cycle remains to be determined.

Early 3′-UTR elements

Less is known about RNA elements in the papillomavirus early
3′-UTR, but it could potentially regulate early mRNA stability,
translation, or polyadenylation. Fip1 is a member of the cellular
polyadenylation complex CPSF and enhances polyadenylation by
binding to U-rich sequences immediately upstream of polyadeny-
lation signals (Kaufmann et al., 2004). Fip1 binds to U-rich
sequences in the HPV-16 early 3′-UTR that has a modest stimula-
tory effect on the early polyadenylation signal pAE (Zhao et al.,
2005b) (Figs. 3 and 4). Polypyrimidine tract binding protein (PTB),
also known as hnRNP I (Han et al., 2010), is a cellular splicing
factor that binds U-rich sequences in the HPV-16 early UTR that
are located between late 5′-splice site SD3632 and the early



Fig. 4. Regulatory RNA elements in the early region (A) or the late regions (B) of the HPV-16 genome and the proteins they interact with (Graham, 2008; Schwartz, 2008;
Zheng and Baker, 2006). Positive elements are shown in green and negative elements in red. The early UTR (eUTR) and its AU-rich 5′-half and U-rich 3′-half is indicated.
hnRNP C1, PTB and hFip1 binds directly to the U-rich region of the eUTR (Zhao et al., 2005b). Arrows indicate that the listed factors have been shown to interact with the RNA
elements, but the effect and/or exact binding sites are unknown. See text for details and Table 1 for SR-protein nomenclature (Manley and Krainer, 2010). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Nomenclature of SR proteins (Manley and Krainer, 2010).

New name Old name

SRSF1 ASF, SF2, SRp30a
SRSF2 SC35, SRp30b
SRSF3 SRp20
SRSF4 SRp75
SRSF5 SRp40
SRSF6 SRp55
SRSF7 9G8
SRSF8 SRp46
SRSF9 SRp30c
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polyadenylation signal pAE (Zhao et al., 2005b) (Fig. 4A). Over-
expression of PTB also induces HPV-16 late gene expression from
subgenomic HPV-16 expression plasmids (Somberg et al., 2008),
indicating that PTB either inhibits pAE, and/or activates SD3632.
The cellular HuR protein can induce HPV-16 late gene expression
from subgenomic HPV-16 plasmids that lack the HPV-16 late
3′-UTR (Johansson et al., 2012), demonstrating that HuR can act
on other HPV-16 sequences than the late 3′-UTR as described
above. As HuR induced primarily L2 mRNAs as apposed to spliced
L1 mRNAs, it is likely to inhibit polyadenylation at pAE, perhaps
by binding to the U-rich early 3′-UTR (Johansson et al., 2012).
hnRNP C1 and C2 are two related, strictly nuclear proteins that
affect cellular mRNA polyadenylation, stability and transport
(Han et al., 2010). They bind directly to U-rich sequences in the
early UTR of HPV-16 and may also regulate pAE (Zhao et al.,
2005b) (Fig. 4A). The HPV-16 early 3′-UTR contains cytoplasmic
polyadenylation elements (CPEs) that interact with cytoplasmic
polyadenylation element binding protein (CPEB) (Glahder et al.,
2010; Vinther et al., 2005), suggesting that cytoplasmic polyade-
nylation machinery may be involved in HPV-16 gene expression.
In addition, the HPV-16 eUTR can reduce the half-life of early
HPV-16 mRNAs under certain conditions (Jeon et al., 1995; Jeon
and Lambert, 1995), while it does not under other conditions
(Häfner et al., 2008; Zhao et al., 1996). The role of each viral 3′-UTR
element and its cognate trans-acting factor in the viral life cycle
remains to be determined.
Splicing regulatory elements

BPV-1 mRNA splicing

BPV-1 encodes numerous splice sites, like most papilloma-
viruses. The regulation of three splice sites (SA3225, SA3605 and
SD3764) located in the central portion of the genome has been
studied in detail (Jia and Zheng, 2009). SA3225 is used for
production of many early BPV-1 mRNAs and one of the two
potential L2 mRNAs termed L2L (Fig. 1A). It is a suboptimal
3′-splice site (Zheng et al., 2000a) and splicing is stimulated by
two purine rich splicing enhancers (SE1 and SE2) (Zheng et al.,
1996) that interact with multiple splicing factors of the SR-protein
family (SRSF1, SRSF4, SRSF5 and SRSF6) (Zheng et al., 1997) (Fig. 1)
(see Table 1 for SR protein nomenclature (Manley and Krainer,
2010)). These factors are known to enhance splicing of cellular
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mRNAs, but may also have a splicing inhibitory role. SRSF1 appears
to stimulate splicing to SA3225 (Liu et al., 2003). In addition,
SA3225 is under control of a pyrimidine rich splicing silencer
(ESS1) that counteracts the enhancers (Zheng et al., 1996, 1999).
ESS1 interacts with PTB, U2AF65 and SR proteins, but only SR
proteins appear to contribute to its splicing-inhibitory function
(Zheng et al., 1998) (Fig. 1). Production of BPV-1 L1 mRNAs is
dependent on an alternative 3′-splice site named SA3605 that is
located downstream of SA3225 (Fig. 1). Splicing to SA3605 results
in further splicing between SD3764 and SA5609, two splice sites
that are used exclusively to produce L1 mRNAs. This creates a
small exon in between SA3605 and SD3764 that harbors splicing
enhancer and silencer elements (SE4 and ESS2) that regulate
SA3605, and perhaps SD3764 (Zheng et al., 2000b) (Fig. 1). Cellular
factors that bind SE4 to stimulate splicing to SA3605 have not been
identified, but binding of SRSF3 (Table 1) (Manley and Krainer,
2010) to SE4 enhances splicing to SA3225 while simultaneously
inhibiting SA3605 (Jia et al., 2010, 2009) (Fig. 1). High levels of
SRSF3 therefore promote production of BPV-1 early mRNAs and
one of the potential L2 mRNAs (L2L), while inhibiting production
of L1 and L2S mRNAs. As the L2S mRNA is the best candidate L2
mRNA since it contains fewer ORFs upstream of L2 than the L2L
mRNA, it appears that SRSF3 acts to promote BPV-1 early gene
expression.

HPV-16 mRNA splicing

In contrast to BPV-1, HPV-16 has only one major 3′-splice site in
the central portion of the genome (SA3358) (Fig. 3) that is used for
production of both early and late mRNAs, with the exception of E1
and E2 mRNAs (Fig. 3). Splice site SA3358, is the most commonly
used splice site on the HPV-16 genome (Schmitt et al., 2010).
Splicing to the corresponding splice site in HPV-31 (SA3295) is
detected as early as 8 h post infection (Ozbun, 2002). Mutational
inactivation of SA3295 in HPV-31 activated a cryptic splice site
three nucleotides further down (Klumpp et al., 1997), strongly
suggesting that this splice site is under control of splicing
enhancer elements. Indeed, the corresponding splice site in HPV-
16, SA3358, is suboptimal and totally dependent on a downstream
splicing enhancer (Rush et al., 2005) (Fig. 3). This enhancer
coincides with a number of predicted binding sites for the SR
protein SRSF1 (Somberg and Schwartz, 2010) (Fig. 4) (Table 1)
(Manley and Krainer, 2010). Mutational inactivation of all pre-
dicted SRSF1 binding sites destroyed the splicing enhancer
(Somberg and Schwartz, 2010). However, the exact binding site
for SRSF1 needs to be determined. Interestingly, inactivation of the
SA3358 splicing enhancer also shuts down the polyA signal pAE,
demonstrating that the splicing enhancer at SA3358 is very
efficient and that splicing to SA3358 enhances polyadenylation at
pAE (Rush et al., 2005) (Fig. 3). However, overexpression of SRSF1
can induce HPV-16 late gene expression, suggesting that it may
act on other splice sites on the HPV-16 genome, or that SA3358
activity is dependent on the exact concentration of SRSF1
(Somberg and Schwartz, 2010). Similarly, overexpression of SRSF9
(Table 1) (Manley and Krainer, 2010), which is the closest relative
of SRSF1 in the SR protein family, causes skipping of the exon
between SA3358 and SD3632 in HPV-16 and redirects splicing to
SA5639 (Somberg et al., 2011). Binding of SRSF9 to the enhancer at
SA3358 may negatively interfere with its function. Alternatively,
SRSF9 stimulates splicing to SA5639 by another mechanism. In
addition, a 28-nucleotide sequence overlapping predicted SRSF1
binding sites number 5 and 6 of the SA3358 enhancer was found
to bind SRSF3, SRSF4, SRSF6, “SRp30s” (possibly including SRSF1,
SRSF2 and/or SRSF9) and YB-1 (Jia et al., 2009) (see Table 1 for new
SR protein nomenclature (Manley and Krainer, 2010)). Mutational
inactivation of the SRSF3 binding sites or knock down of SRSF3
also enhanced HPV-16 late gene expression, suggesting that SRSF3
affects SA3358 (Jia et al., 2009). However, the exact binding site for
SRSF3 needs to be determined. The role of the remaining factors
remain unclear. In conclusion, at least three SR proteins bind to the
enhancer region downstream of SA3358 and could regulate HPV-
16 late gene expression: SRSF1 (Somberg and Schwartz, 2010),
SRSF3 (Jia et al., 2009) and SRSF9 (Jia et al., 2009; Somberg et al.,
2011) (Table 1) (Manley and Krainer, 2010).

mRNAs that are spliced to HPV-16 SA3358 can either be poly-
adenylated at pAE to generate mRNAs encoding E6, E7, E4 or E5, or
polyadenylated at pAL to produce L2 mRNAs (Fig. 3). Alternatively,
the 5′-splice site SD3632 that is located between SA3358 and pAE is
active and generates L1 mRNAs by splicing to SA5639. SD3632 and
pAE are utilized in a mutually exclusive manner and therefore
compete with each other (Fig. 3). Consequently, SD3632 is sup-
pressed during the early stage of the HPV-16 life cycle in which the
majority of the HPV-16 mRNAs are polyadenylated at pAE. The small
exon between SA3358 and SD3632 encodes a splicing silencer that
efficiently inhibits SD3632 (Rush et al., 2005) (Figs. 3 and 4). Proteins
binding to this silencer are likely to regulate L1 expression in a
differentiation-dependent manner, but remains to be identified.

The HPV-16 late 3′-splice site SA5639 is used exclusively to
produce late L1 mRNAs and is under control of a splicing enhancer
within the first 17 nucleotides immediately downstream of
SA5639 (Zhao et al., 2007a) (Figs. 3 and 4). However, multiple
splicing silencers located downstream of the enhancer override
the enhancer and suppress SA5639 (Zhao et al., 2004, 2007a).
These splicing silencers interact with hnRNP A1 in a sequence-
specific manner (Zhao et al., 2004, 2007a; Zhao and Schwartz,
2008). hnRNP A1 is a pleiotropic cellular protein that shuttles
between nucleus and cytoplasm and has among all, been shown to
bind cellular splicing silencers to inhibit splicing of cellular mRNAs
(Han et al., 2010). Mutational inactivation of the hnRNP A1 binding
sites alleviates inhibition of SA5639 (Zhao et al., 2004, 2007a; Zhao
and Schwartz, 2008). hnRNP A1 is highly expressed in the lower to
mid layers of the epithelium, but is undetectable in terminally
differentiated keratinocytes that are permissive for papillomavirus
late gene expression, lending support to the idea that hnRNP A1
inhibits HPV-16 late gene expression in a cell-differentiation
dependent manner (Fay et al., 2009; Zhao et al., 2007a).

Utilization of splice sites SD226, SA409, SA526 and SA742,
upstream of SD880 in HPV-16 gives rise to alternatively spliced
mRNAs expressing various forms of the HPV-16 E6 oncoprotein
and E7, but little is known about cis-acting RNA elements that
regulate these splicing events. However, the branch site used in
some of these splicing events was mapped to AACAAAC with the
actual branch point at A385 in the HPV-16R genome (Ajiro et al.,
2012). Sequence polymorphism in this region of the genome has
been shown to give rise to variations in splicing efficiency between
various HPV-16 genomes, thereby affecting expression levels of
the viral oncogenes (Lopez-Urrutia et al., 2012). Mapping of
splicing regulatory elements in this region of the HPV-16 genome
is therefore of interest.

Splicing between SD226 and SA409 generates mRNAs that are
translated to E6nI and E7 proteins by leaky scanning (Stacey et al.,
1995), by a ribosomal shunting mechanism (Remm et al., 1999)
or by a translation-reinitiation mechanism (Tang et al., 2006),
whereas mRNAs that remain unspliced between SD226 and SA409
produce full-length E6. However, the latter mRNAs are rare since
splicing between SD226 and SA409 is very efficient. Splicing
between SD226 and SA409 was stimulated by hnRNP A1 and
hnRNP A2, but binding sites for these two proteins on the HPV-16
E6/E7 mRNAs have not been identified (Rosenberger et al., 2010).
hnRNP A1 and hnRNP A2 are two closely related splicing factors
that often inhibit mRNA splicing (Han et al., 2010). For example,
hnRNP A1 binds to splicing silencers that inhibit HPV-16 late L1
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mRNA splicing as described above (Zhao et al., 2004, 2007a; Zhao
and Schwartz, 2008) (Fig. 4B). High levels of hnRNP A1 would
therefore inhibit L1 production and promote E6nI and E7 produc-
tion. Indeed, HPV-16 containing cervical cancer cells are charac-
terised by high hnRNP A1 levels (Fay et al., 2009) and efficient
splicing between SD226 and SA409 (Cornelissen et al., 1990;
Smotkin et al., 1989), but little L1 mRNA production.

The effect of individual splicing factors on papillomavirus gene
expression is complex and difficult to predict as illustrated by the
following example: Multiple SRSF1 sites downstream of HPV-16
3′-splice site SA3358 enhance splicing to SA3358 (Somberg and
Schwartz, 2010). In an intracellular environment in which pre-
ferably the early p97 promoter is used, SRSF1 would primarily
stimulate expression E6nI and E7, as the most abundant HPV-16
mRNAs encoding these proteins are spliced to SA3358 (Fig. 3).
However, when the late promoter p670 is activated and domi-
nates, SRSF1 would enhance E4 and presumably E5 production
(Fig. 3). At later stages of the infection when read-through at pAE
into the late region commences, enhancement of SA3358 by SRSF1
would instead promote production of L2 mRNAs, and in case of
simultaneous de-repression of late splice sites SD3632 and SA5639
and activation of L1 mRNA splicing, SRSF1 would stimulate L1
expression (Fig. 3). The same line of reasoning applies to many of
the cellular and viral factors that regulate HPV gene expression.

In general, the majority of all RNA binding proteins that
have been studied in relation to papillomavirus infection in
cervical epithelium are highly expressed in the lower layers of
the epithelium and are undetectable in the superficial layers of
terminally differentiated keratinocytes (Fay et al., 2009; Mole
et al., 2009a). SR proteins and hnRNPs are often highly expressed
in cervical cancer, as well as in high-grade cervical lesions
(Fay et al., 2009; Mole et al., 2009a). This is probably attributable
to the increased anabolic requirements of dividing cells, which
predicts a greater need for RNA processing factors in cancer cells
than in normal cells. Relative concentrations of splicing factors in
papillomavirus infected cells may be as important as absolute
concentrations.
Viral factors that regulate papillomavirus RNA processing

Expression levels of HPV E2 increases with cell differentiation
(Xue et al., 2010) and recent experiments have shown that E2 from
both mucosal and cutaneous HPV types can induce HPV late gene
expression (Johansson et al., 2012). E2 causes a read-through at
the early polyA signal pAE into the late region of the genome
(Johansson et al., 2012). This activity mapped to the N-terminal
and hinge domains of E2 (Johansson et al., 2012). HPV-16 E2
depletes the polyadenylation complex of cellular factors or
affects its conformation, thereby interfering with polyadenylation
(Johansson et al., 2012). Such factors are likely to include CPSF30,
and/or factors interacting with CPSF30. Polyadenylation at HPV-16
pAE is stimulated by downstream L2 elements interacting with
CstF-64 and hnRNP H (Oberg et al., 2003, 2005), weakly by the
eUTR (Zhao et al., 2005b) and by the upstream-located SRSF1-
binding enhancer at 3′-splice site SA3358 (Rush et al., 2005). SR-
proteins can regulate polyadenylation through interactions with
the 3′-splice site located immediately upstream of a polyA signal
on cellular mRNAs (Valente et al., 2009). HPV-5 and -16 E2
proteins have been shown to interact with SR proteins in vitro
(Bodaghi et al., 2009; Lai et al., 1999), suggesting that E2 could
interfere with SR protein function in HPV infected cells. In vitro
splicing of E6 RNA is inhibited by recombinant E2 and E6 proteins
(Bodaghi et al., 2009), suggesting that high levels of E2 and E6
promote E6 production over E6*I and E7. This effect on splicing
in vitro may be mediated by the interaction of E2 with SR proteins
or by its nucleic acid binding properties. In addition, E2 may
indirectly regulate HPV gene expression as HPV-16 E2 has been
shown to enhance expression of the SRSF1 gene in HPV-16 E2
expressing cells (Mole et al., 2009b). In conclusion, the papillo-
mavirus E2 protein emerges as a regulator of HPV RNA process-
ing, in addition to its well-established role as a transcriptional
regulator.

Similarly to HPV E2, the adenovirus E4orf4 protein binds SR
proteins (Kanopka et al., 1998). Adenovirus E4orf4 induces a
switch from early to late gene expression during the adenovirus
life cycle (Kanopka et al., 1998). Interestingly, adenovirus E4orf4
can also enhance production of HPV-16 L1 mRNAs by enhancing
splicing between late splice sites SD3632 and SA5639 (Somberg
et al., 2009). As E4orf4 was originally discovered to induce
adenovirus late gene expression by dephosphorylating SR proteins
with the help of PP2A (Kanopka et al., 1998), it is reasonable
to suggest that dephosphorylation of SR proteins induces splicing
between SD3632 and SA5639. In vivo, SR proteins are down-
regulated in terminally differentiated keratinocytes (Fay et al.,
2009; Jia et al., 2009; Mole et al., 2009a), which supports the
idea that SR proteins regulate HPV-16 RNA processing in a
differentiation-dependent manner.
Intragenic elements that regulate polyadenylation and
translation

The papillomavirus early polyadenylation signal occupies a
particularly important position on the papillomavirus genome as
it divides the viral genome into early and late genes. As such, it
must be subject to regulation. Mutational inactivation of pAE in
BPV-1, HPV-31 or HPV-16, results in increased read-through
into the late L1 and L2 coding regions, but also causes efficient
activation of multiple cryptic polyadenylation signals located
upstream of pAE (Andrew and DiMaio, 1993; Terhune et al.,
1999, 2001; Zhao et al., 2005b). These results suggest that
papillomavirus pAE is controlled by positive regulatory RNA
elements. Indeed, such elements were identified in the L2 coding
region of HPV-16 (Oberg et al., 2005, 2003) and HPV-31 (Terhune
et al., 1999, 2001). In HPV-16, the L2 RNA elements encode
multiple GGG-motifs that interact with hnRNP H (Oberg et al.,
2005) (Figs. 3 and 4). Mutational inactivation of the hnRNP H
binding sites correlated with reduced polyadenylation efficiency at
pAE, indicating that hnRNP H stimulates polyadenylation at HPV-
16 pAE (Oberg et al., 2005). Cellular polyadenylation factor CstF-64
also binds to the L2 RNA sequences in both HPV-16 and HPV-31
and presumably enhance polyadenylation at pAE (Oberg et al.,
2005; Terhune et al., 2001). Intriguingly, HPV-16 L1 protein binds
to hnRNP H, suggesting that L1 could regulate late gene expression
(Zheng et al., 2012). However, it remains to be seen if hnRNP H and
L1 are expressed in the same cells in the cervical epithelium.
High levels of polyadenylation factors would inhibit late gene
expression. Similarly to many other RNA processing factors, poly-
adenylation factors are down regulated in response to cellular
differentiation.

The HPV-16 L1 and L2 coding region contains multiple RNA
sequences that inhibit gene expression (Collier et al., 2002; Mori
et al., 2006; Oberg et al., 2003; Sokolowski et al., 1998; Tan et al.,
1995). Similar sequences have been described in canine oral
papillomavirus (COPV) (Berg et al., 2005). These sequences are
particularly efficient in HPV-16 L1 and L2 compared to HPV-1 L1
and L2 (Sokolowski et al., 1998). They reduce mRNA levels and/or
inhibit utilization of the mRNA. HPV genomes are relatively AT-
rich compared to most mammalian genomes, and AT-rich
genes are in general poorly expressed compared to GC-rich genes
(Kudla et al., 2006). The presence of rare amino acid codons in the
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BPV and HPV genomes may also contribute to inefficient transla-
tion of L1 and L2 (Gu et al., 2004; Zhao et al., 2005a). Binding of
hnRNP A1 proteins to splicing silencers in the HPV-16 L1 coding
region also inhibits L1 expression. Mutational inactivation of these
hnRNP A1 binding sites in the splicing silencers resulted in a
dramatic increase in L1 production from L1 cDNA expression
plasmids (Collier et al., 2002; Zhao et al., 2004; Zhao and
Schwartz, 2008). These mutant L1 plasmids produced enough L1
to evoke cellular and humoral immune responses when injected
into mice, which was in stark contrast to wild type L1 plasmids
(Rollman et al., 2004). The binding of cellular proteins to L2 RNA
also correlates with poor L2 expression. RNA of the L2 coding
sequence interacts with hnRNP E1 and E2, also known as polyC
binding proteins 1 and 2 (PCBP-1 and -2), and with hnRNP K
(Collier et al., 1998). These proteins inhibit translation of L2 mRNAs
in vitro (Collier et al., 1998).

Finally, to fully appreciate the regulation of papillomavirus
mRNA splicing and how the various splice sites are regulated, it
is imperative to determine what each viral mRNA produces. The
majority of the papillomavirus mRNAs encode multiple proteins
since the viral genes are closely spaced and even overlap, which is
apparent from the various transcript maps (Appendix 1). However,
mRNAs in mammalian cells are normally translated into a single
protein and it is generally the first ORF on the mRNA that is
translated. Exceptions to this rule are rare and include mRNAs
with internal ribosome entry sites or weak Kozak AUGs as they
allow a fraction of the ribosomes to continue scanning the mRNA
until they encounter downstream AUGs where they may initiate
translation (Kozak, 1992). In HPV-16, the E1 AUG is present on
many of the papillomavirus mRNAs and it conforms well to the
Kozak AUG for efficient initiation of translation. It is therefore
predicted to inhibit translation of all downstream ORFs when it is
present on an alternatively spliced mRNA. For example, it would
be present on all mRNAs initiated at the HPV-16 late, differentia-
tion dependent promoter p670 and should therefore negatively
impact production of E5, L2 and L1 (Tomita and Simizu, 1993).
Translation of HPV-16 E5 cannot not be easily understood in these
terms either as the E5 ORF is preceded by no more than 7 AUGs
that are likely to prevent scanning ribosomes from reaching the E5
AUG. E5 could potentially be translated from early mRNAs lacking
the E1 AUG (Johnsen et al., 1995). A better understanding of what
each papillomavirus mRNA actually produces is required for a full
understanding of the viral gene expression program.
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