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We extend to arbitrary finite radical extensions the results of Barrera-Mora and
Velez (J. Algebra 162 (1993), 295�301) concerning simple radical extensions and we
obtain in terms of crossed homomorphisms new characterizations of Kneser exten-
sions and 2-Cogalois extensions introduced by Albu and Nicolae (J. Number
Theory 52 (1995), 299�318). � 1996 Academic Press, Inc.

INTRODUCTION

The aim of this paper is twofold: firstly, to extend all the main results of
[4], established for simple radical extensions, to arbitrary finite radical
extensions, and secondly to provide new characterizations of Kneser exten-
sions and 2-Cogalois extensions introduced in [1], in terms of crossed
homomorphisms.

0. PRELIMINARIES

Throughout this paper F denotes a fixed field, Char(F ) its characteristic,
and 0 a fixed algebraically closed field containing F as a subfield. Any
algebraic extension of F is supposed to be a subfield of 0.
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For an arbitrary nonempty subset S of 0 and a natural number n�1 we
shall use the following notation:

S*=S"[0],

S n=[xn | x # S],

+n(S)=[x # S | xn=1],

+(S)=[x # S | xk=1 for some x # N*].

By a primitive n-th root of unity we mean any generator of the cyclic
group +n(0); `n will always denote such an element.

For an arbitrary multiplicative group G the notation H�G means that
H is a subgroup of G. The lattice of all subgroups of G will be denoted by
Subgroups(G). For any subset M of G, (M) will denote the subgroup of
G generated by M. The order of an element g # G will be denoted by
ord(g). If Gk=[e] for some k # N*, then the exponent exp(G) of G is the
least n # N* such that Gn=[e], where e is the identity element of G.

For a field extension E�F we shall denote by Subextensions(E�F ) the lat-
tice of all subextensions K�F of E�F, by [E : F] its degree, and if E�F is
Galois by Gal(E�F ) its Galois group. For any subgroup H of Gal(E�F ),
Fix(H) will denote the fixed field of H. We shall also use the following
notation:

T(E�F )=[x # E* | xn # F* for some n # N*].

The quotient group T(E�F )�F* is called in [5] the Cogalois group of the
extension E�F and is denoted by Cog(E�F ).

For every positive integer n�1 we shall denote

Tn(E�F )=[x # E* | xn # F*] and Cogn(E�F )=Tn(E�F )�F*.

If x # 0*, then x̂ will denote throughout this paper the coset xF* in the
quotient group 0*�F*.

Let E�F be a field extension with Galois group G and M�E* such that
_(M)�M for any _ # G. A crossed homomorphism or an 1-cocycle of G
with coefficients in M is a function f: G � M satisfying the condition:
f (_{)=f (_) _( f ({)) for all _, { # G. The set of all crossed homomorphisms
of G with coefficients in M is an abelian group which will be denoted by
Z1(G, M). For any : # E* we shall denote by f: the 1-coboundary
f: : G � M defined as follows: f:(_)=_(:) } :&1, _ # G. The set B1(G, M)=
[ f: | : # E*] is a subgroup of Z1(G, M), and the quotient group
Z1(G, M)�B1(G, M) is called the first cohomology group of G with coef-
ficients in M, and is denoted by H1(G, M). The famous Hilbert's
Theorem 90 asserts that if E�F is a Galois extension, then H 1(G, E*)=1.
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Recall now some definitions from [1]. Let E�F be a field extension; this
extension is said to be a radical extension if there exists a subset
A�T(E�F ) such that E=F(A), or equivalently, if E=F(T(E�F )). If
E=F(a) for a single element a # T(E�F ), we say that E�F is a simple radical
extension. The extension E�F is called n-pure for some positive integer n if
for any p, p | n, p odd prime or 4, one has +p(E)�F. Now let 2 be a group.
The extension E�F is said to be 2-radical if F*�2�T(E�F ) and E=F(2).
The extension E�F is said to be 2-Kneser if it is a finite 2-radical extension
such that |2�F*|�[E : F], or equivalently, if |2�F*|=[E : F]. The exten-
sion E�F is called Kneser if it is 2-Kneser for some group 2. The class of
Kneser extensions include the class of Cogalois extensions defined in [5]:
the extension E�F is a Cogalois extension if and only if it is T(E�F)-Kneser.

Now consider an arbitrary 2-radical extension E�F. Let

E=[L | F�L, L subfield of E]

denote the lattice of all subextensions of the extension E�F, and

D=[1�F* | F*�1�2],

denote the lattice of all subgroups of the quotient group 2�F*.
The mappings

.: E � D, .(L)=(L & 2)�F*,

�: D � E, �(1�F*)=F(1 )

arise in a very natural way, and one can ask: when are . and �
isomorphisms of lattices, inverse to one another? We were able to answer
this question in [1] for separable 2-Kneser extensions:

Theorem 0.1 [1, Theorem 3.7]. The following assertions are equivalent
for a finite separable 2-radical extension F�E with 2�F* finite and
n=exp(2�F*):

(1) E�F is 2-Kneser, and the mappings . and � are isomorphisms of
lattices, inverse to one another.

(2) E�F is n-pure.

A field extension E�F as in 0.1 is called 2-Cogalois. By [1;
Corollary 3.12], the group 2 is uniquely determined, i.e., if E�F is
2-Cogalois an also 1-Cogalois, then necessarily 2=1; in this case, the
quotient group 2�F* will be denoted by Kne(E�F ) and will be called the
Kneser group of the 2-Cogalois extension E�F. Note that Kne(E�F ) is a
subgroup of Cog(E�F ).
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The class of 2-Cogalois extensions is fairly large, including the classical
Kummer extensions, the Kummer extensions with few roots of unity, as
well as Cogalois extensions and neat presentations considered in [5] (see
[1; Section 5]).

1. GALOIS EXTENSIONS AND CROSSED HOMOMORPHISMS

The aim of this section is to establish a slight modification of a result
mainly due to Dummit (see [3; Theorem 7]) giving a nice description of
the Cogalois group of a finite Galois extension by means of crossed
homomorphisms. Using a result from [2], this provides a description of
the Kneser group of a Galois 2-Cogalois extension in terms of crossed
homomorphisms, which extends a result from [5] established for neat
presentations.

For a Galois extension E�F consider the following mapping

f: Gal(E�F )_Cog(E�F) � +(E),

f (_, :̂)=f:(_)=_(:) } :&1.

Note that f is well-defined. Clearly, for every integer n�1, the restriction
of f to Cogn(E�F ) induces a mapping:

fn : Gal(E�F )_Cogn(E�F ) � +n(E).

For any fixed _ # Gal(E�F ), the partial mapping f (_, &) is clearly multi-
plicative on Cog(E�F ), and for any fixed :̂, the partial mapping f (&, :̂), is
precisely the 1-coboundary f: # Z1(Gal(E�F ), +(E)), so f and fn induce
morphisms of groups

�: Cog(E�F ) � Z1(Gal(E�F ), +(E)), �(:̂)(_)=f (_, :̂)

and

�n : Cogn(E�F) � Z1(Gal(E�F ), +n(E)), �n(:̂)(_)=fn(_, :̂).

Proposition 1.1. Let E�F be a Galois extension and n�1 a natural
number. Then, the morphism

�n : Cogn(E�F) � Z1(Gal(E�F ), +n(E))

defined above is a monomorphism. If E�F is a finite Galois extension, then �n

is an isomorphism.
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Proof. (1) Denote by G the group Gal(E�F ), and let : # Tn(E�F ). We
have

:̂ # Ker(�n) � f:(_)=1, \_ # G � _(:)=:,

\_ # G � : # Fix(G)=F,

and consequently �n is a monomorphism.

(2) Suppose that E�F is a finite Galois extension. We have to show
that �n is surjective. Let f # Z1(G, +n(E)). Since clearly f # Z1(G, E*), by
Hilbert's Theorem 90, there exists : # E* such that f=f: . It follows that
_(:)�: # +n(E), so (_(:)�:)n=1 for every _ # G. We deduce that _(:n)=:n

for every _ # G, and consequently :n # F*, that is, : # Tn(E�F ). Hence
f=�n(:̂). K

The next result is a special case of [3; Theorem 7].

Corollary 1.2. Let E�F be a finite Galois extension with Galois group G.
Then Cog(E�F )&Z1(G, +(E)).

Proof. Clearly, for any n�1, the restriction of the morphism

�: Cog(E�F ) � Z1(Gal(E�F ), +(E))

to Cogn(E�F ) is �n . On the other hand, because G is finite, Z1(G, +(E)) is
the union of all Z1(G, +n(E)), n�1, and because any �n is surjective by 1.1,
we deduce that � is surjective. K

Remark 1.3. If E�F is an infinite Galois extension then the group
Cog(E�F ) is isomorphic to the group of all continuous crossed homomor-
phisms of the compact topological group Gal(E�F ) (endowed with the Krull
topology) with coefficients in the discrete group +(E), cf. [3; Theorem 7].

Corollary 1.4. If E�F is a finite Galois extension with Galois group G,
then the mapping

.: [2 | F*�2�T(E�F )] � [U | U�Z1(G, +(E))]

.(2)=[ f: # Z1(G, +(E)) | : # 2],

is a lattice isomorphism, which induces a canonical lattice isomorphism.

Subgroups(Cog(E�F ))&Subgroups(Z1(G, +(E))).

For any cyclic subgroup C of Z1(G, +(E)) there exists : # T(E�F ) such
that .(F*(:) )=(f:) =C. Moreover, if .(2)=U, then 2�F*&U.
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Theorem 1.5. Let E�F be a Galois 2-Cogalois extension with
n=exp(2�F*). Then

Kne(E�F )&Z1(Gal(E�F ), +n(E)).

Proof. Denote by G the Galois group of E�F. By 1.1, we have
Cogn(E�F )&Z1(G, +n(E)). Let : # Tn(E�F ). According to [2; Proposi-
tion 3.2], it follows that : # 2, so 2=Tn(E�F ), and consequently

Cogn(E�F )=Tn(E�F )�F*=2�F*=Kne(E�F ). K

Remark 1.6. As mentioned in the last part of Section 0, the neat
presentations are very particular cases of 2-Cogalois extensions. When E�F
is a neat presentation, then Theorem 1.5 gives an intermediate result of
[5; p. 267] which has been proved there using a sophisticated technique,
including the Lyndon�Hochschild spectral sequence.

For any Galois 2-Cogalois extension E�F with n=exp(2�F*), the
mapping

f : Gal(E�F )_Cog(E�F ) � +(E),

considered at the beginning of this section yields by restriction the mapping

g: Gal(E�F )_Kne(E�F ) � +n(E), g(_, :̂)=f:(_)=_(:) } :&1.

For any H�Gal(E�F ) and W�Kne(E�F ) let

H==[c # Kne(E�F ) | g(_, c)=1, \_ # H],

W==[_ # Gal(E�F ) | g(_, c)=1, \c # W].

Proposition 1.7. For any Galois 2-Cogalois extension E�F, the
assignments (&)= define mutually inverse antiisomorphisms between the
lattices Subgroups(Gal(E�F )) and Subgroups(Kne(E�F )).

Proof. For simplicity, denote by G the group Gal(E�F ), by G the lattice
of all subgroups of G, by D the lattice of all subgroups of 2�F*=
Kne(E�F ), and by E the lattice of all subextensions of the Galois extension
E�F.

Because E�F is a 2-Cogalois extension, the mappings

E � D, L [ (L & 2)�F* and D � E, 1�F* [ F(1)
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are isomorphisms of lattices, inverse to one another, and because E�F is a
finite Galois extension, the mappings

G � E, H [ Fix(H) and E � G, L [ Gal(E�L)

are antiisomorphisms of lattices, inverse to one another.
If H�G and W=1�F*�2�F*, where F*�1�2, then it is easily

proved that

H==[:̂ # 2�F* | _(:)=:, \_ # H]=(Fix(H) & 2)�F*

and

W==[_ # G | _(#)=#, \# # 1]=Gal(E�F(1)).

It follows that each of the composed mappings

D � E � G and G � E � D

of the canonical bijections considered above gives rise to the mappings
(&)= between D and G, which finishes the proof. K

Remark 1.8. If E�F is a Galois Cogalois extension, then Proposition 1.7
gives [5; Theorem 2.2], and if E�F is a neat presentation, then Proposi-
tion 1.7 gives an equivalent, but more complete form of [5; Theorem 2.3].

2. RADICAL EXTENSIONS, KNESER EXTENSIONS, COGALOIS
EXTENSIONS, AND CROSSED HOMOMORPHISMS

The main purpose of this section is to extend Theorems 2.1, 2.2, 2.3 and
2.4 from [4], established for simple radical extensions, to arbitrary finite
radical extensions. Using the setting of crossed homomorphisms, we obtain
new characterisations of Kneser and 2-Cogalois extensions. We will follow
in our proofs some of the ideas of [4].

Let E�F be a finite Galois extension with Galois group G. Then, by 1.2,
there exists a canonical isomorphism Cog(E�F )&Z1(G, +(E)), hence the
canonical mapping

f : Gal(E�F )_Cog(E�F ) � +(E), f (_, :̂)=_(:) } :&1,

considered in Section 1 produces, by replacing Cog(E�F ) with its
isomorphic copy Z1(G, +(E)), precisely the evaluation mapping:

( &, &): G_Z1(G, +(E)) � +(E), (_, f )= f (_).
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For any H�G, U�Z1(G, +(E)) and / # Z1(G, +(E)) denote

H==[ f # Z1(G, +(E)) | (H, f )=1],

U==[_ # G | (_, U) =1], /==[_ # G | /(_)=1].

One verifies that H= and U= are again subgroups, and /==(/) =. Note
that in the previous section we have also used the notation (&)=, but with
a different meaning.

Theorem 2.1. Let E�F be a finite Galois extension with Galois group G,
and K a subfield of E containing F. Then K�F is a radical extension (resp. a
simple radical extension) if and only if there exists U�Z1(G, +(E)) (resp.
/ # Z1(G, +(E))) with Gal(E�K)=U= (resp. Gal(E�K)=/=).

Proof. Suppose that K�F is a radical extension, so there exists
F*�2�T(E�F ) with 2�K* finite and K=F(2). Let U :=[ f: | : # 2]�
Z1(G, +(E)). We have

U==[_ # G | f:(_)=1, \: # 2]=[_ # G | _(:)=:, \: # 2]

=[_ # G | _(x)=x, \x # F(2)=K]=Gal(E�K).

Conversely, suppose that there exists U�Z1(G, +(E)) with Gal(E�K)=
U=. Let 2=[: # E* | f: # U]�T(E�F ) be the group of radicals associated
to U by 1.4. If _ # G, then we have

_ # U = � f:(_)=1, \: # 2 � _(:)=:, \: # 2 � _(x)=x, \x # F(2).

It follows that U ==Gal(E�F(2)), and so, Gal(E�K)=Gal(E�F(2)), hence
by Galois Theory we obtain K=F(2), which shows that K�F is a radical
extension. The case of simple radical extensions now follows from 1.4. K

Remarks 2.2. (1) Theorem 2.1 shows that the study of radical sub-
extensions K�F of E�F is equivalent to the study of subgroups of G which
have the form U =, for U�Z1(G, +(E)).

(2) For a cyclic subgroup U=(/)�Z1(G, +(E)) we get [4;
Theorem 2.1].

(3) Denote by Radical(E�F ) the set of all subextensions K�F of E�F
which are radical. With the notation and hypotheses of 2.1, the mapping

Radical(E�F ) � Subgroups(Z1(G, +(E))),

F(2)�F [ [ f: | : # 2], F*�2�T(E�F),
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is injective, but in general not surjective. Indeed, if [ f: | : # 2]=
[ f: | : # 2$], then 2�F*=2$�F* by 1.4, hence 2=2$, and so F(2)=F(2$),
which shows that this mapping is injective.

If we take F=Q and E=Q(`3), then Z1(G, +(E))&Cog(E�F )&Z6 (see
e.g. [2; Proposition 2.2(c)]) and |Radical(E�F)|=2, hence the above con-
sidered mapping cannot be surjective.

The result below provides characterizations, in terms of crossed
homomorphisms, of Kneser and 2-Cogalois subextensions of finite Galois
extensions:

Corollary 2.3. Let E�F be a finite Galois extension with Galois group
G, and let K�F be a finite 2-radical subextension of E�F, with 2�F* a finite
group. Denote U=[ f: | : # 2]�Z1(G, +(E)). Then:

(1) The extension K�F is 2-Kneser iff (G : U =)=|U|.

(2) Suppose that the extension K�F is 2-Kneser. Then K�F is
2-Cogalois if and only if the mapping

[V | V�U] � [S | U=�S�G], V [ V=

is bijective, or equivalently, an antiisomorphism of lattices.

Proof. (1) The extension K�F is 2-Kneser if and only if
[K : F]=|2�F*|. If we denote H=Gal(E�K), then [K : F]=(G : H) by
Galois Theory, and 2�F*&U, so |2�F*|=|U|, by 1.4. On the other hand,
H=U= according to 2.1. Summing up, we obtain [K : F]=|2�F*| if and
only if (G : H)=|U| if and only if (G : U=)=|U|.

(2) Suppose that the extension K�F is 2-Kneser. By [1;
Theorem 3.7], the extension K=F(2) is 2-Cogalois if and only if the
mapping

[1 | F*�1�2] � [L | F�L, L subfield of K], 1 [ f (1 )

is a lattice isomorphism. Since U&2�F*, the lattice [1 | F*�1�2] is
canonically isomorphic by 1.4 to the lattice [V | V�U] via the
isomorphism 1 [ V, where V&1�F* is the subgroup of crossed
homomorphisms associated to 1 by 1.4. By Galois Theory, the lattices
[L | F�L, L subfield of K] and [S | H�S�G] are antiisomorphic via
the mapping L [ S=Gal(E�L). Summing up and using 2.1, we obtain that
K=F(2) is 2-Cogalois if and only if the mapping

[V | V�U] � [S | U=�S�G], V [ V=

is a lattice antiisomorphism. K
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Let E�F be a finite Galois extension with Galois group G and L�F a finite
extension such that L & E=F. Then, by Galois Theory, the mappings

=: Subextensions(E�F ) � Subextensions(LE�L), K�F [ LK�L

and

*: Subextensions(LE�L) � Subextensions(E�F ), K1 �L [ K1 & E�F

are isomorphisms of lattices, inverse to one another.
Recall that for any field extension E�F we have denoted by Radical(E�F )

the set of all subextensions K�F of E�F which are radical. If now
K�F # Radical(E�F ) then there exists a 2, not necessarily unique, such that
F*�2�T(E�F ), 2�F* is a finite group and K=F(2), hence LK=L(21),
L*�21�T(LE�L), and 21�L&2�F, where 21=2L*. It follows that
.(K�F ) # Radical(LE�L), and consequently the restriction of = to radical
extensions gives rise to the injective mapping

\: Radical(E�F ) � Radical(LE�L), F(2)�F [ L(2L*)�L,

F*�2�T(E�F ),

which is not necessarily bijective.

Theorem 2.4. Let E�F be a finite Galois extension with Galois group G
and L�F a finite extension such that L & E=F. If +(LE)=+(E), then the
following hold:

(1) 2L* & E*=2 for any 2 with F*�2�T(E�F ).

(2) 21=(21 & E*)L* for any 21 with L*�21�T(LE�L).

(3) The mapping

\: Radical(E�F ) � Radical(LE�L), F(2)�F [ L(2L*)�L,

F*�2�T(E�F )

is bijective, and the mapping

Radical(LE�L) � Radical(E�F ), L(21)�L [ F(21 & E*)�F,

L*�21�T(LE�L)

is its inverse.
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Proof. (1) The equality is clear.

(2) Denote G1=Gal(LE�L). The mapping

G1 � G, _ [ _ | E

is an isomorphism of groups. Since +(LE)=+(E), this isomorphism
induces the group isomorphism:

v: Z1(G, +(E)) � Z1(G1 , +(LE)),

v( f )(_)=f (_ | E), f # Z1(G, +(E)), _ # G1 .

Let 21 with L*�21�T(LE�L). The inclusion (21 & E*)L*�21 is
obvious. Now let :1 # 21 . Then f:1

# Z1(G1 , +(LE)), hence, because the
above defined mapping

v: Z1(G, +(E)) � Z1(G1 , +(LE)),

is an isomorphism, there exists : # E* such that f:1
=v( f:), i.e.,

f:1
(_1)=f:(_1 |E) for all _1 # G1 . It follows that _1(:1)�:1=_1(:)�: for

all _1 # G1 , i.e., _1(:1 �:)=:1 �: for all _1 # G1 , hence :1 �: #
Fix(Gal(LE�L))=L. We deduce that :1=:y for some y # L*. Thus
:=:1y&1 # 21 & E, which proves the inclusion 21 �(21 & E*)L*.

(3) To prove that \ is a surjective mapping, let K1 �L #
Radical(LE�L). Then K1=L(21) for some 21 with L*�21�T(LE�L),
hence, if we denote 2=21 & E*, we have F(2) # Radical(E�F ), and

\(F(2))=L(F(2))=L(F(21 & E*))=L(21 & E*)

=L((21 & E*) L*)=L(21)=K1 ,

which shows that \ is surjective, hence bijective, and its inverse mapping
is that described in the statement of the theorem. K

Remark 2.5. (1) If in 2.4 we consider the restriction of \ to simple
radical subextensions of E�F we obtain a more precise form of [4;
Theorem 2.2].

(2) The isomorphism v defined in the proof of 2.4 induces the
isomorphism of lattices:

[U | U�Z1(G, +(E))] � [U1 | U1�Z1(G1 , +(LE))], (V)

U [ U1=v(U).
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By 1.4, there exist lattice isomorphisms:

[U | U�Z1(G, +(E))] � [2 | F*�2�T(E�F)],

U [ 2=[: # E* | f: # U]

and

[U1 | U1�Z1(G1 , +(LE))] � [21 | L*�21�T((LE)�L)],

U1 [ 21=[:1 # (LE)* | f:1
# U1].

Now using ( V ) we obtain an isomorphism of lattices:

&: [2 | F*�2�T(E�F )] � [21 | L*�21�T((LE)�L)],

2 [ 21=[:1 # (LE)* | f:1
# v([ f: | : # 2])].

We assert that &(2)=2L* for any 2 with F*�2�T(E�F ). Indeed, if
21=&(2), then it is easily seen by the above considerations that for an
:1 # (LE)* one has

:1 # 21 � _: # 2, \_1 # G1 , f:1
(_1)= f:(_1 |E)

� _: # 2, \_1 # G1 , _1(:1)�:1=_1(:)�:

� _: # 2, \_1 # G1 , _1(:1 �:)=:1 �:

� :1 �: # Fix(Gal(LE�L))=L.

Hence 21=&(2)=2L*. From 2.4 (1) we deduce that the inverse &&1 of &
can be described explicitly as follows: &&1(21)=21 & E*, L*�21�
T(LE�L).

(3) Another argument for the surjectivity of \, due to the
referee, is the following one: If K1 �L # Radical(LE�L), then by 2.1 there
exists U1 � Z1(Gal(LE�L), +(LE)) so that Gal(LE�K1) = U =

1 . Let
v:Z1(G, +(E))�Z1(G1 , +(LE)) be the isomorphism considered in the proof
of 2.4, and denote U=v&1(U1). Then it is easily verified that
Gal(E�K1 & E)=U=. Again by 2.1, we deduce that K1 & E�F # Radical(E�F ),
and by Galois Theory we have \(K1 & E�F )=K1 �L.

Corollary 2.6. Let E�F be a finite Galois extension and L�F a finite
extension such that L & E=F and +(LE)=+(E). Let 2 be such that
F*�2�T(E�F ), and denote 21=L*2. Then

(1) |2�F*|=|21 �L*| and [F(2) : F]=[L(21) : L].

(2) The extension F(2)�F is 2-Kneser if and only if the extension
L(21)�L is 21 -Kneser.
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(3) The extension F(2)�F is 2-Cogalois if and only if the extension
L(21)�L is 21 -Cogalois.

Proof. (1) Let U :=[ f: | : # 2] be the subgroup of Z1(G, +(E)) which
corresponds via 2.1 to the radical subextension F(2)�F of the Galois exten-
sion E�F, and preserve the notation from the proof of 2.4. If we denote
U1=v(U), then by 1.4, we have 2�F*&U and 21 �L*&U1 . Since
|U1 |=|U| it follows that |2�F*|=|21 �L*|. Now, by 2.1, we have

[F(2) : F]=(G : U=)=(G1 : v(U)=)=(G1 : U1)=[L(21) : L].

(2) Following 2.3 (1), the extension F(2)�F is 2-Kneser if and only
if (G : U=)=|U|, and similarly, the extension L(21)�L is 21-Kneser if and
only if (G1 : U =

1 )=|U1 |. But U1=v(U), so |U1 |=|U|, and consequently,
by the canonical isomorphism G1 &G, we deduce that (G1 : U =

1 )=
(G : U=).

(3) By 2.3 (2), F(2)�F is 2-Cogalois if and only if it is 2-Kneser and
the mapping

[V | V�U] � [S | U=�S�G], V [ V=

is bijective. Using the canonical isomorphism G1 &G, this condition is
equivalent to the fact L(21)�L is a 21 -Kneser extension and the mapping

[V1 | V1=v(V)�v(U)=U1] � [S1 | U =

1 �S1�G1], V1 [ V =

1

is bijective. By 2.3(2), this last condition is equivalent to the fact that
L(21)�L is 21 -Cogalois. K

Corollary 2.7. Let E�F be a finite Galois extension and L�F a finite
extension such that L & E=F. Let K be a subfield of E containing F such
that LK�L is a 21 -radical extension with 21 �L* a finite group of exponent
n.

If `n # E, then K�F is 2-radical and 2�F*&21 �L*, where 2=21 & E.

Proof. Using the fact that L & E=F, we deduce that the restriction
mapping to E gives rise to an isomorphism

G1=Gal(LE�L)[Gal(E�F )=G.

Let U1=[ f:1
| :1 # 21] be the subgroup of Z1(G1 , +(LE)) which

corresponds by 2.1 to the radical subextension L(21)�L of the Galois exten-
sion LE�L. Since :n

1 # L* for any :1 # 21 , it follows that f:1
(_1) # +n(0) for

any _1 # G1 , and consequently U1�Z1(G1 , (`n) ). By 2.1, we have
U=

1 =Gal(LE�L(21)).
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As in the proof of Theorem 2.4, the above considered isomorphism

G1 � G, _ [ _ | E

induces the group isomorphism

v: Z1(G, (`n) ) � Z1(G1 , (`n) ),

v( f )(_)=f (_ | E), f # Z1(G, (`n) ), _ # G1.

Denote U=v&1(U1). Since `n # E one finds U�Z1(G, +(E)). If we
denote 2 = [: # E* | f: # U], then, as in 2.5(2), we deduce that
2=21 & E*, 21=2L*, and so,

L(21) & E=F(2)=LK & E=K.

Finally, by the proof of 2.6 (1) we have 2�F*&21 �L*. K

Corollary 2.8. With the notation and hypotheses from 2.7, the exten-
sion K�F is 2-Kneser (resp. 2-Cogalois) if and only if LK�L is 21 -Kneser
(resp. 21 -Cogalois).

Proof. Adapt the proof of 2.6. K

For the proof of the next theorem we need the following result on
algebraic number fields, which is interesting in its own rights.

Lemma 2.9. Let K be an algebraic number field and n�2 a natural num-
ber which has a decomposition n=n1 } } } } } nr , with r�1, n1 , ..., nr�2. Then
there exist positive rational integers a1 , ..., ar such that ani

i # K*n,
K*n(ai)�K*n

&Z�niZ for each i # [1, ..., r], and

K*n(a1 , ..., ar)�K*n=(K*n(a1)�K*n) _* } } } _* (K*n(ar)�K*n)

(internal direct product), that is, the numbers a1 , ..., ar are independent
modulo K*n: for k1 , ..., kr # N one has

ak1
1 } } } } } akr

r # K*n � ni | ki for all i # [1, ..., r].

Proof. Let $K be the discriminant of K and p1 , ..., pr be distinct prime
numbers which do not divide $K . It follows that p1 , ..., pr are unramified in K.
Denote ai :=pn�ni

i , i=1, ..., r. For every i # [1, ..., r] we choose a prime ideal
Pi of the ring of integers of K which lies over pi and we denote by &Pi the
usual Pi -adic valuation on K. Then &Pi ( pj)=$ij for every 1�i, j�r.
Clearly, ani

i =pn
i # K*n, i=1, ..., r. Suppose that

ak1
1 } } } } } akr

r =xn # K*n,
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for some x # K*. We have

n&Pi (x)=&Pi (x
n)=&Pi (ak1

1 } } } } } akr
r )=ki

n
ni

,

hence ki=ni &Pi (x) is a multiple of ni for each i # [1, ..., r]. K

In order to state the next theorem we need some preparation. Let K�F
be a separable extension of degree n, L=F(`n) and E=K(`n). Suppose
that:

(1) Char(F ) does not divide n,

(2) K & L=F,

(3) E�L is abelian and E�F is Galois.

Then E�L is an abelian extension of exponent dividing n. By Kummer
Theory (see [6; Satz 154, p. 224]), E�L is a Kummer extension, and con-
sequently, by [6; Satz 152, p. 223], there exist r�1, :1 , ..., :r in L*,
and n1 , ..., nr�2 such that n=n1 } } } } } nr , E=L( n

- :1, ..., n
- :r),

[L( n
- :i) : L]=ni=ord( n

- :i
@) for every i, 1�i�r, E*n & L*=

L*n(:1 , ..., :r) , :1 , ..., :r are independent modulo L*n, that is,

:k1
1 } } } } } :kr

r # L*n � ni | ki for every i # [1, ..., r],

and

Gal(E�L)=({1) _* } } } _* ({r),

where

{i (
n

- :i)=`ni
n

- :i and {i (
n

- :j)= n
- :j for every i{j, 1�i, j�r.

Let _ # Gal(L�F). We have _(E*n & L*)�E*n & L*=L*n(:1 , ..., :r).
Since :i # E*n & L* for every i, 1�i�r, it follows that there exist uniquely
determined elements #_

i # L and 0�b_
i1<n1 , ..., 0�b_

ir<nr such that

_(:i)=(#_
i )n :b_

i1
1

} } } :b_
ir

r ,

for all i # [1, ..., r].
Let n�1 be a natural number. We say that a finite field extension K�F

is a radical extension of exponent dividing n if there exist a natural number
s�1 and a1 , ..., as # F* such that K=F( n

- a1, ..., n
- as).

We are now in a position to state the last result of this paper:

Theorem 2.10. Let n�2 be a natural number and K�F a separable
extension of degree n. Suppose that the following conditions are satisfied:
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(1) Char(F ) does not divide n,

(2) K & F(`n)=F.

Then

(a) If K(`n)�F(`n) is abelian, then K(`n)�F is Galois.

(b) K�F is a radical extension of exponent dividing n if and only if
K(`n)�F(`n) is abelian and the following condition is satisfied:

for all _ # Gal(F(`n)�F ) and i, j # [1, ..., r] one has b_
ij=$ij (-)

Proof. (a) Apply [4; Proposition 2.5].

(b) Denote L=F(`n) and E=K(`n). Suppose that K�F is a radical
extension of exponent dividing n. Then, there exists s�1 and a1 , ..., as # F*
such that K=F( n

- a1, ..., n
- as). We deduce that E=L( n

- a1, ..., n
- as), E�L

is an abelian extension and E*n & L*=L*n(a1 , ..., as) according to [6;
Satz 152, p. 223]. But E*n & L*=L*n(:1 , ..., :r). It follows that
:i # L*n(a1 , ..., as) , hence :i=%n

i ci for some %i # L* and ci # (a1 , ..., as) ,
1�i�s. Since [a1 , ..., as]�F, we have _(ci)=ci , so, if we denote
#_

i =_(%i)�%i # L, one obtains

_(:i)=_(%i)
nci=_(%i)

n:i �%n
i =(_(%i)�%i)

n:i=(#_
i )n:i

for every _ # Gal(L�F ) and 1�i�r. This shows that b_
ij=$ij for every

i, j # [1, ..., r].
Conversely, suppose that E�L is abelian and the condition (-) is satisfied.

Let _ # H=Gal(F(`n)�F ), so _(:i)=(#_
i )n :i , #_

i # L, i=1, ..., r. Denote by _�
the unique extension of _ to E=K(`n) with _� | K=1, so _� # H� =Gal(E�K).
For any i # [1, ..., r] one has

(_� ( n
- :i))n=_� (:i)=_(:i)=(#_

i )n :i=(#_
i

n
- :i)

n,

hence, there exists `i_ # (`n) such that

_� ( n
- :i)=#_

i `i_
n

- :i # L( n
- :i).

We know that Gal(K(`n)�F(`n))=Gal(E�L)=({1)_* } } } _* ({s). Therefore
G=Gal(E�F )=([{1 , ..., {r , _� | _ # H]) .

For every _ # H we have clearly _� (`n)=_(`n)=`a_
n , with a_ and n

relatively prime numbers. We claim that

_� {i _� &1={a_
i , i=1, ..., r.
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Indeed, for i{j we have

_� {i_� &1( n
- :j)=_� {i (#_&1

j `j_&1
n

- :j)=_� (#_&1

j `j_&1
n

- :j)

=_� (_� &1( n
- :j))= n

- :j={a_
i ( n

- :j)

and

_� {i_� &1( n
- :i)=_� {i (#_&1

i `i_&1
n

- :i)=_� (#_&1

i `i_&1 {i ( n
- :i))

=_� (#_&1

i `i_&1 `ni
n

- :i)=_� (_� &1( n
- :i)) _� (`ni)

= n
- :i `a_

ni
={a_

i ( n
- :i).

Also

_� {i _� &1(`n)=`n={a_
i (`n).

Consequently

G=([{1 , ..., {r , _� | _� # H� , _� {i_� &1={a_
i , {i (`n)=`n , _� (`n)=`a_

n ,

i=1, ..., r]).

We adapt now the idea from the proof of [4; Theorem 2.4], namely to
realize the group G=Gal(E�F ) as a Galois group of a suitable radical
extension, and then, to apply Theorem 2.1 to conclude that K�F is a radical
extension. As known, the Galois group of the Galois extension Q(`n)�Q is
isomorphic to the multiplicative group of units of the ring Z�nZ, and
H=Gal(F(`n)�F ) can be viewed as a subgroup of this Galois group via the
embedding _ [ congruence class modulo n of a_ . Denote the F1 the fixed
field of H in Q(`n).

If we apply Lemma 2.9 to the algebraic number field Q(`n), we find
positive rational numbers a1 , ..., ar with the properties of 2.9. Denote
K1=F1( n

- a1 , ..., n
- ar). Then K1(`n)=Q(`n)( n

- a1 , ..., n
- ar), and therefore

K1(`n)�Q(`n) is a Kummer extension with the Galois group
(\1)_* } } } _* (\r), where

\i (
n

- ai)=`ni
n

- ai and \i (
n

- aj)= n
- aj , 1�i{j�r.

We claim that the fields K1=F1( n
- a1, ..., n

- ar) and Q(`n) are linearly
disjoint over F1 . Indeed, the polynomials Xni&ai # Q[X], i=1, ..., r are
irreducible over Q(`n), hence also over F1 since F1 is a subfield of Q(`n).
But the fields Q(`n)( n

- ai), i=1, ..., r are linearly disjoint over Q(`n). We
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deduce that the fields F1(
n

- ai), i=1, ..., r are linearly disjoint over F1 . It
follows that

[F1(
n

- a1, ..., n
- ar) : F1]

=[F1( n
- a1) : F1] } } } } } [F1(

n
- ar) : F1]

=n1 } } } } } nr=n=[F1( n
- a1, ..., n

- ar) } Q(`n) : Q(`n)].

If we denote H� 1=Gal(K1(`n)�K1) and G1=Gal(K1(`n)�F1), then

G1=([\1 , ..., \r , _� | _� # H� 1 , _� \i _� &1=\a_
i , \i (`n)=`n , _� (`n)=`a_

n ,

i=1, ..., r]).

Indeed, one has

H=Gal(F(`n)�F )=Gal(Q(`n)�F1)&Gal(K1(`n)�K1)=H� 1 ,

and for any _� # H� 1 and i # [1, ..., r] one has (_� ( n
- ai))n=ai=( n

- ai)
n, and

so, _� ( n
- ai)=`i_�

n
- ai for some `i_� # (`n). The relations _� \i _� &1=\a_

i ,
i # [1, ..., r] follow now immediately, in a similar way to that used in the
proof of the relations _� {i _� &1={a_

i .
Moreover, ({i) &(\i) &Z�ni Z for any i # [1, ..., r], and consequently

G and G1 are isomorphic groups.
Since K1 �F1 is a radical extension of exponent dividing n, we deduce

from Theorem 2.1 that there exists U1�Z1(G1 , (`n) ) with U =

1 =H� 1 in G1 .
But G and G1 are isomorphic, and their actions on (`n) are identical,
hence the subgroup U1 can be realized on G as a subgroup
U�Z1(G, (`n) ) with U==H� in G, and consequently K�F is a radical
extension of exponent dividing n. K
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