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INTRODUCTION 

Throughout this paper the following hypothesis will be assumed. 

1\IIAIN HYPOTHESIS. A and B are regular rings, R is a domain of Krull 
dimension d(R) < d < CO, R + A and R + B are manic ring homomorphbns 
whose images are contained in the centers of A and B respectively, and h: A + B 
is an epic ring homomorphism with kernel I. Furth~more, the diagram A ----f!L B 
is commutative TR/! 

The purpose of this paper is to show: 

(i) The map h may induce isomorphisms k,(A) 2 k,(B) but fail to do 
so after localization at a multiplicative set in R. 

(ii) If k,(A,) 2 k,(BJ . is an isomorphism for each prime ideal p C R, 
then k,(A) 2 k,(B) is an isomorphism. 

The theorem (ii) above is proved using a Mayer-Vietoris sequence due 
to Gersten. Gersten also has a proof of this theorem using spectral sequences. 
The authors express their appreciation to R. Swan for his helpful conversa- 
tions. 

NOTATION AND BACKGROUND 

If A is a ring, let k,(A) represent the Algebraic K-Theory of Karoubi and 
Villamayor (see [6] and [Jj). Thus k,(A) is the classical K,,(A) (see [I], [7]? 
or [9]) and whenever A is regular, k,(A) = k,(LFA). It is known (see [g]) 
that for regular A, k,(A) w K,(A), w h ere J&(,4) represents the theory of 
Quillen. However, it is necessary to consider the K-theory of the ideal 1, 
and k, is defined for rings without unity. The phrase “multiplicative set of R” 
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means a multiplicative set which contains 1 but does not contain 0. If S c R 
is a multiplicative set, then I, denotes the ring I localized at S. If 0 # f E R, 
then If denotes I, where S is the multiplicative set { 1, f, f a,...}, Several known 
properties of rings and Algebraic K-Theory will be needed, and they are 
listed below. 

Property 1. The functor k, commutes with direct limits. Suppose 
0 + x E k,(I). Consider all multiplicative sets T C R such that the image of x 
under k,(I) -+ kn(lT) is nonzero. Let {S,},,, be a maximal monotonic tower 
of such T, and S = UaEE S, . Then limit (k,(lsa)) = k,(l,). It follows that 
the image of x under k,(I) + k,,z(Is) is nonzero, but is zero for any larger 
multiplicative set. 

As another example, suppose S C R is a multiplicative set and 0 # x E k,(I) 
maps to zero under k,(l) + k,(I,). Then there exists an s E S such that ,r: maps 
to zero under R,(I) -+ k,(lJ. 

Property 2. I is called K-regular provided k,(I) 2 k,(I[Xj) is an isomor- 
phism for any set X of variables. If I is K-regular, then the loop rings PI are 
also K-regular. The regular rings A 82. B are K-regular, and from the short 
exact sequence of rings 0 --f I + A -+ B --+ 0 it follows that I is K-regular. 
Furthermore, for any multiplicative set S C R, the rings A, , B, , and 1s 
are K-regular. 

Property 3. Suppose f, g E (R - 0) satisfy (f, g) = fR + gR = R. Then 
by [2], there is an exact sequence + k,+l(lfJ -4 k,(I) - k,(I;) @ k&J - 
kla(Ifs) -+. Furthermore, if 0 # ~1 E R satisfies (f, V) = R, then (f, gv) = R 
and the diagram 

- kn+&J - k,(I) -- WA 0 W,) - 
is commutative. 

Property 4. Assume S C R is a multiplicative set. Then the Krull 
dimension d(R,) < d(R). If J(R) denotes the Jacobson radical of R and 
S n J(R) # (6, then d(R,) < d(R). Assume (as always) the Main Hypothesis. 
Then 

also satisfies the Main Hypothesis. 



LOCALIZ.~TION IN ALGEBRAIC K-THEORY 39 

AN EXAMPLE 

This is the example promised in the Introduction. It exhibits an isomor- 
phism in K-Theory which fails to be an isomorphism after localization. Let 8’ 
be a field and A = F[x, y], R = F[x], I = (x + :I?) F[x, y]. Now R[x] n I = 0, 
so we have the following commutative diagram: 

0 0 

Part 1~ For each n > 0, l~,k,~~(F[x, y]) 2 k,(F[x, y]/x + y”) is an iso- 
morphism. Let 3 = x + y2 and 7 = y. Then F[?c, y] is also a polynomial ring 
over F with variables %c, 7, and h is merely the natural map F[z, 7-j + F[ j], 
which induces an isomorphism in K-theory. 

Part 2. If S = F[x] - 0, then the map k,[(F[x, y])J + k,[(F[x, y]/x f y”)J 
is not an isomorphism because it does not honor units. The ring (F[.x, y& is 
just (F(x))[y] and its units are the nonzero elements of F(x). The ring 
(FE, y]/.x f Y”)~ is ((F(sj)[y]/x + y2), which is a field containing units 
outside of F(x). 

THE MAIN THEO~M 

Throughout this section, the main hypothesis is assumed. 

~EMRU . Suppose n 3 0 and ki(Ifi) = 0 for eack prime ideal p C R and 
each i = 72, n + I,..., n + d. Tken k,(I) = 0. Furthermore, if S C R is a 
multiplicative set, k,(Is) = 0. 

Proof. It is noted in Property 4 that the Main Hypothesis is satisfied by 
.& -+ A, + B, . Note also that ki((I,),) = 0 for each prime ideal p of R, 
and each i = n, n + I,..., ~z + d. Thus the last statement of the lemma 
follows from the first part of the lemma, which we now consider. 

If d(R) = 0, then R is a field and the hypothesis implies trivially that 
k,(I) = 0. Suppose inductively that d(R) < d > 0 and that the lemma holds 
for Krull dimensions smaller than d. 
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Suppose 0 # x E K,(I). From Property 1 it follows that there exists a 
multiplicative set S C R which is maximal with respect to the property that 
the image of x under k,(I) + k,(&) is nonzero. The Main Hypothesis and 
the hypothesis of this lemma are satisfied by the rings A, , B, , Is , and R, . 
Instead of considering the ring I, , we change notation by replacing Is with I, 
Rs with R, etc. This simply means that the following condition holds: 
There exists a nonzero element x E k,(l) such that, if 0 # f E R is a nonunit, 
the image of x under K,(I) + k,&) is zero. 

If R is a local ring with maximal ideal p, then R, = R and the hypothesis 
of the theorem implies that k,(R) = 0. Therefore R is not local, that is, it is 
false that “the sum of nonunits is a nonunit.” Thus there exists nonunits f, 
g E (R - 0) such that (f,g) = R. In the sequence k,+,(l,,) -+ k,(I) -j 
K,(lf) @ k,(&), x lifts to an element 0 # xi E k,+r(&,). Consider the multi- 
plicative set S = (1 + fr: Y E R2>. Now f is in the Jacobson radical of R, , 
and if S, is any multiplicative set containing S and f, then d(Rsl) < d(R). 
By induction, k,+l((IfB)s) = 0. Th us f rom the last statement of Property 1, 
there exists v = 1 + fr such that the image of x1 under k,+,(&,) -+ kn+r(l&,) 
is zero. Now from the commutative diagram 

bz+lvfc7a) - W) 

t 11 
kn+,(If,) - k,(I) 

it follows that 0 = x E k,(I). Q.E.D. 

THEOREM. Suppose that for each prime ideal p C R, h,: ki(-4,J + k,(B,) is 
an isomorphism for i = n, n. + l,..., 
h,: k,(A) z 

n+d,andontofori=n+d+ 1. Then 
k,(B) is an isomorphism. Furthermore, ;f S C R is a multiplicatiwe 

set, then h,: k,(-4,) 2 k,(B,) is an isomorphism. 

Proof. The last statement of the theorem follows immediately from the 
first part of the theorem, just as in the proof of the preceeding lemma. 

The long exact sequence ---f ki+l(BJ + k,(I,) + k&lb) -+, together with 
the hypothesis, implies that ki(I,) = 0 for i = n, n + I,..., n + d, and any 
prime ideal p C R. Therefore, by the preceeding lemma, kn(Is) = 0 for any 
multiplicative set S C R. Thus h,: k,(A) - k,(B) is manic, and it remains 
to show that it is epic. 

Suppose x E k,JB) is not in the image of h, . Let S C R be a multiplicative 
set maximal with respect to the property that xs is not in the image of k,(tz,) -+ 
k,(B,). As in the proof of the lemma, we change notation and now 8, is 
called d, B, is called B, etc. This means that x E k,(B) is not in the image of 
k,(A) --+ k,(B), but if 0 # f E R is a nonunit, xf is in the image of k,(A,) -+ 
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.&(&). If R is local, the conclusion of the theorem is immediate from the 
hypothesis, so assume R is not local. As in the proof of the lemma, there exists 
nonunitsf, g E (R - 0) such that (f, g) = R. Consider 

0 
+ 

Since k,(I,) = 0 for any multiplicative set 5’ C R, it follows that the left 
vertical arrow is epic and the three remaining are manic. The result now 
follows from diagram chasing. The image of x in k,(&) @ k,(B,) comes from 
some y E K,J,+) @ k,(B,J. This y lifts to y1 E k,(A) and y1 maps to some 
element x1 E k,(B). The element x - x1 lifts to x2 f k,,(I&,), which comes 
from some y2 E k,+,(L4f,). Denote the image of y2 in k,(A) by ya . Then 
( y1 + ya) E K,(A) maps to x1 + (x - x1) = x E k,(B). Q.E.D. 
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