JOURNAL OF ALGEBRA 30, 37-41 (1974)

Localization in Algebraic K-Theory

E. H. CONNELL AND M. K. SIU

Department of Mathematics, University of Miami, Coral Gables, Florida 33124 Communicated by D. Buchsbaum Received February 22, 1973

INTRODUCTION

Throughout this paper the following hypothesis will be assumed.

MAIN HYPOTHESIS. A and B are regular rings, R is a domain of Krull dimension $d(R) \leq d < \infty$, $R \rightarrow A$ and $R \rightarrow B$ are monic ring homomorphisms whose images are contained in the centers of A and B respectively, and h: $A \rightarrow B$ is an epic ring homomorphism with kernel I. Furthermore, the diagram $A \xrightarrow{h} B$ is commutative $\bigtriangledown R \nearrow$

The purpose of this paper is to show:

- (i) The map h may induce isomorphisms $k_*(A) \xrightarrow{\approx} k_*(B)$ but fail to do so after localization at a multiplicative set in R.
- (ii) If $k_*(A_{\bar{\rho}}) \xrightarrow{\approx} k_*(B_{\bar{\rho}})$ is an isomorphism for each prime ideal $\rho \subset R$, then $k_*(A) \xrightarrow{\approx} k_*(B)$ is an isomorphism.

The theorem (ii) above is proved using a Mayer–Vietoris sequence due to Gersten. Gersten also has a proof of this theorem using spectral sequences. The authors express their appreciation to R. Swan for his helpful conversations.

NOTATION AND BACKGROUND

If A is a ring, let $k_*(A)$ represent the Algebraic K-Theory of Karoubi and Villamayor (see [6] and [4]). Thus $k_0(A)$ is the classical $K_0(A)$ (see [1], [7], or [9]) and whenever A is regular, $k_n(A) = k_0(\Omega^n A)$. It is known (see [8]) that for regular A, $k_n(A) \approx K_n(A)$, where $K_n(A)$ represents the theory of Quillen. However, it is necessary to consider the K-theory of the ideal I, and k_* is defined for rings without unity. The phrase "multiplicative set of R" means a multiplicative set which contains 1 but does not contain 0. If $S \subset R$ is a multiplicative set, then I_S denotes the ring I localized at S. If $0 \neq f \in R$, then I_f denotes I_S where S is the multiplicative set $\{1, f, f^2, ...\}$. Several known properties of rings and Algebraic K-Theory will be needed, and they are listed below.

Property 1. The functor k_n commutes with direct limits. Suppose $0 \neq x \in k_n(I)$. Consider all multiplicative sets $T \subset R$ such that the image of x under $k_n(I) \rightarrow k_n(I_T)$ is nonzero. Let $\{S_a\}_{a \in \alpha}$ be a maximal monotonic tower of such T, and $S = \bigcup_{a \in \alpha} S_a$. Then limit $(k_n(I_{S_a})) = k_n(I_S)$. It follows that the image of x under $k_n(I) \rightarrow k_n(I_S)$ is nonzero, but is zero for any larger multiplicative set.

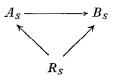
As another example, suppose $S \subseteq R$ is a multiplicative set and $0 \neq x \in k_n(I)$ maps to zero under $k_n(I) \rightarrow k_n(I_S)$. Then there exists an $s \in S$ such that x maps to zero under $k_n(I) \rightarrow k_n(I_S)$.

Property 2. I is called K-regular provided $k_0(I) \xrightarrow{\approx} k_0(I[X])$ is an isomorphism for any set X of variables. If I is K-regular, then the loop rings $\Omega^n I$ are also K-regular. The regular rings A & B are K-regular, and from the short exact sequence of rings $0 \to I \to A \to B \to 0$ it follows that I is K-regular. Furthermore, for any multiplicative set $S \subset R$, the rings A_s , B_s , and I_s are K-regular.

Property 3. Suppose $f, g \in (R - 0)$ satisfy (f, g) = fR + gR = R. Then by [2], there is an exact sequence $\rightarrow k_{n+1}(I_{fg}) \rightarrow^{\partial} k_n(I) \rightarrow k_n(I_f) \oplus k_n(I_g) \rightarrow k_n(I_{fg}) \rightarrow$. Furthermore, if $0 \neq v \in R$ satisfies (f, v) = R, then (f, gv) = Rand the diagram

is commutative.

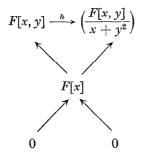
Property 4. Assume $S \subset R$ is a multiplicative set. Then the Krull dimension $d(R_S) \leq d(R)$. If J(R) denotes the Jacobson radical of R and $S \cap J(R) \neq \phi$, then $d(R_S) < d(R)$. Assume (as always) the Main Hypothesis. Then



also satisfies the Main Hypothesis.

AN EXAMPLE

This is the example promised in the Introduction. It exhibits an isomorphism in K-Theory which fails to be an isomorphism after localization. Let F be a field and A = F[x, y], R = F[x], $I = (x + y^2)F[x, y]$. Now $R[x] \cap I = 0$, so we have the following commutative diagram:



Part 1. For each $n \ge 0$, $h_*k_n(F[x, y]) \xrightarrow{\approx} k_n(F[x, y]/x + y^2)$ is an isomorphism. Let $\overline{x} = x + y^2$ and $\overline{y} = y$. Then F[x, y] is also a polynomial ring over F with variables $\overline{x}, \overline{y}$, and h is merely the natural map $F[\overline{x}, \overline{y}] \to F[\overline{y}]$, which induces an isomorphism in K-theory.

Part 2. If S = F[x] - 0, then the map $k_1[(F[x, y])_S] \rightarrow k_1[(F[x, y]/x + y^2)_S]$ is not an isomorphism because it does not honor units. The ring $(F[x, y])_S$ is just (F(x))[y] and its units are the nonzero elements of F(x). The ring $(F[x, y]/x + y^2)_S$ is $((F(x))[y]/x + y^2)$, which is a field containing units outside of F(x).

THE MAIN THEOREM

Throughout this section, the main hypothesis is assumed.

LEMMA. Suppose $n \ge 0$ and $k_i(I_{\tilde{\rho}}) = 0$ for each prime ideal $\rho \subset R$ and each i = n, n + 1, ..., n + d. Then $k_n(I) = 0$. Furthermore, if $S \subset R$ is a multiplicative set, $k_n(I_S) = 0$.

Proof. It is noted in Property 4 that the Main Hypothesis is satisfied by $I_S \rightarrow A_S \rightarrow B_S$. Note also that $k_i((I_S)_{\bar{\rho}}) = 0$ for each prime ideal ρ of R_S and each i = n, n + 1, ..., n + d. Thus the last statement of the lemma follows from the first part of the lemma, which we now consider.

If d(R) = 0, then R is a field and the hypothesis implies trivially that $k_n(I) = 0$. Suppose inductively that $d(R) \leq d > 0$ and that the lemma holds for Krull dimensions smaller than d.

Suppose $0 \neq x \in k_n(I)$. From Property 1 it follows that there exists a multiplicative set $S \subset R$ which is maximal with respect to the property that the image of x under $k_n(I) \rightarrow k_n(I_S)$ is nonzero. The Main Hypothesis and the hypothesis of this lemma are satisfied by the rings A_S , B_S , I_S , and R_S . Instead of considering the ring I_S , we change notation by replacing I_S with I, R_S with R, etc. This simply means that the following condition holds: There exists a nonzero element $x \in k_n(I)$ such that, if $0 \neq f \in R$ is a nonunit, the image of x under $k_n(I) \rightarrow k_n(I_f)$ is zero.

If R is a local ring with maximal ideal ρ , then $R_{\bar{\rho}} = R$ and the hypothesis of the theorem implies that $k_n(R) = 0$. Therefore R is not local, that is, it is false that "the sum of nonunits is a nonunit." Thus there exists nonunits f, $g \in (R-0)$ such that (f,g) = R. In the sequence $k_{n+1}(I_{fg}) \rightarrow k_n(I) \rightarrow k_n(I_f) \oplus k_n(I_g)$, x lifts to an element $0 \neq x_1 \in k_{n+1}(I_{fg})$. Consider the multiplicative set $S = \{1 + fr: r \in R\}$. Now f is in the Jacobson radical of R_s , and if S_1 is any multiplicative set containing S and f, then $d(R_{S_1}) < d(R)$. By induction, $k_{n+1}((I_{fg})_S) = 0$. Thus from the last statement of Property 1, there exists v = 1 + fr such that the image of x_1 under $k_{n+1}(I_{fg}) \rightarrow k_{n+1}(I_{fgv})$ is zero. Now from the commutative diagram

Q.E.D.

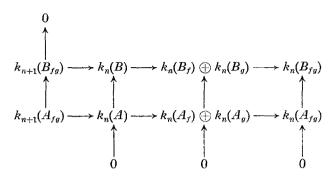
it follows that $0 = x \in k_n(I)$.

THEOREM. Suppose that for each prime ideal $\rho \subset R$, $h_*: k_i(A_{\tilde{\rho}}) \to k_i(B_{\tilde{\rho}})$ is an isomorphism for i = n, n + 1, ..., n + d, and onto for i = n + d + 1. Then $h_*: k_n(A) \xrightarrow{\cong} k_n(B)$ is an isomorphism. Furthermore, if $S \subset R$ is a multiplicative set, then $h_*: k_n(A_S) \xrightarrow{\cong} k_n(B_S)$ is an isomorphism.

Proof. The last statement of the theorem follows immediately from the first part of the theorem, just as in the proof of the preceeding lemma.

The long exact sequence $\rightarrow k_{i+1}(B_{\bar{\rho}}) \rightarrow k_i(I_{\bar{\rho}}) \rightarrow k_i(A_{\bar{\rho}}) \rightarrow$, together with the hypothesis, implies that $k_i(I_{\bar{\rho}}) = 0$ for i = n, n + 1, ..., n + d, and any prime ideal $\rho \subset R$. Therefore, by the preceeding lemma, $k_n(I_S) = 0$ for any multiplicative set $S \subset R$. Thus $h_*: k_n(A) \rightarrow k_n(B)$ is monic, and it remains to show that it is epic.

Suppose $x \in k_n(B)$ is not in the image of h_* . Let $S \subset R$ be a multiplicative set maximal with respect to the property that x_S is not in the image of $k_n(A_S) \rightarrow k_n(B_S)$. As in the proof of the lemma, we change notation and now A_S is called A, B_S is called B, etc. This means that $x \in k_n(B)$ is not in the image of $k_n(A) \rightarrow k_n(B)$, but if $0 \neq f \in R$ is a nonunit, x_f is in the image of $k_n(A_f) \rightarrow k_n(B)$. $k_n(B_f)$. If R is local, the conclusion of the theorem is immediate from the hypothesis, so assume R is not local. As in the proof of the lemma, there exists nonunits $f, g \in (R - 0)$ such that (f, g) = R. Consider



Since $k_n(I_S) = 0$ for any multiplicative set $S \subset R$, it follows that the left vertical arrow is epic and the three remaining are monic. The result now follows from diagram chasing. The image of x in $k_n(B_f) \bigoplus k_n(B_g)$ comes from some $y \in k_n(A_f) \bigoplus k_n(B_g)$. This y lifts to $y_1 \in k_n(A)$ and y_1 maps to some element $x_1 \in k_n(B)$. The element $x - x_1$ lifts to $x_2 \in k_{n+1}(B_{fg})$, which comes from some $y_2 \in k_{n+1}(A_{fg})$. Denote the image of y_2 in $k_n(A)$ by y_3 . Then $(y_1 + y_3) \in k_n(A)$ maps to $x_1 + (x - x_1) = x \in k_n(B)$. Q.E.D.

References

- 1. H. Bass, "Algebraic K-Theory," Benjamin, New York, 1968.
- 2. S. GERSTEN, A Mayer-Vietoris sequence in the K-theory of localizations, to appear.
- 3. S. GERSTEN, Homotopy theory of rings, J. Algebra 19 (1971), 396-415.
- 4. S. GERSTEN, On Mayer-Vietoris functors and algebraic K-theory, J. Algebra 18 (1971), 51-88.
- 5. I. KAPLANSKY, "Commutative Rings," Allyn and Bacon, New York, 1970.
- M. KAROUBI AND VILLAMAYOR, Foncteurs Kⁿ en algèbre et en topologie, C. R. Acad. Sci. Paris 269 (1969), 416-419.
- 7. J. MILNOR, "Algebraic K-Theory," Annals of Math Studies 72, Princeton University Press, Princeton, NJ, 1971.
- 8. D. QUILLEN, "Higher K-Theory for Categories With Exact Sequences," New Developments in Topology, Oxford, June 1972.
- 9. R. SWAN, "Algebraic K-Theory," Springer Lecture Notes 76, Springer-Verlag, Berlin/New York, 1968.