Conclusions: We found significant correlations of IVUS-VH determined atherosclerotic plaque components between coronary and carotid arteries in patients with atherosclerosis involving both arterial beds.

TCT-285

Frequency and Type of Neoatherosclerosis Five Years After Drug-Eluting Stent Implantation: an Optical Coherence Tomography Study

Masanori Tanisaki1, Lorenz Räber2, Sandro Baumgartner1, Thomas Pilgrim1, Ari Moenchovič1, Peter Weneresser1, Bernhard Meier1, Stephan Windecker2
1Bern University Hospital, Bern, Switzerland, 2University Hospital Bern, Bern, Switzerland

Background: The frequency, type and extent of neoatherosclerosis within drug-eluting stents (DES) has not been described during very long-term follow-up. Moreover, it is unknown whether DES eluting sirolimus differ from those eluting paclitaxel in the propensity for neoatherosclerosis during long-term follow-up.

Methods: The SIRTAX LATE OCT population was analyzed for evidence of neoatherosclerosis within stented segments five years after DES implantation. Using OCT definitions according to the Consensus Statement of the International Working Group of OCT, we assessed the presence of fibrocalcific plaques, fibroatheromas, macrophage accumulations, microcracks, as well as surface erosions and ruptures in each single frame. Plaques were considered to be present in case of a longitudinal extension of at least 1 mm, and all other findings had to be visualized in at least three consecutive frames.

Results: All segments were independently assessed by two experienced observers. A total of 89 event-free patients with 41 lesions treated with SES (41 patients) and 48 lesions treated with PES (48 patients) were analysed at five years of follow-up. Neoatherosclerotic plaques were observed in 15% of lesions, and fibroatheromas (12.4%) were more common than fibrocalcific plaques (5.6%). While macrophage accumulations were frequently present (32.6%), microcracks (2.2%) and surface erosions (2.2%) were rare, and no plaque rupture was observed. Neoatherosclerotic plaques were more common among lesions treated with PES (25%) than SES (5%); P < 0.011, and differences between stent types applied to both the frequency of fibrocalcific plaques (SES 0%, PES 10.5%, P = 0.041) as well as fibroatheromas (SES 4.9% vs. PES 18.8%, P = 0.046). Similarly, macrophage accumulations were more frequent among lesions treated with PES (47.9%) than SES (14.6%); P < 0.001.

Conclusions: Among event-free patients, neoatherosclerotic plaques were observed in 15% of lesions five years after DES implantation. The frequency, type and extent of neoatherosclerotic changes were importantly influenced by the implanted DES type.

TCT-286

Characteristics of OCT findings for lesions avoiding onset of AMI

Hiroshi Ishimori1, Toshiya Muramatsu2, Reiko Tsukahara1, Yoshiaki Ito1, Keisuke Hirano1, Masata Muka3
1Saiseikai Yokohama-city Eastern Hospital, Yokohama, Japan, 2Saiseikai Yokohama-city Eastern Hospital, Yokohama, Japan, 3Saiseikai Yokohama City Eastern Hospital, Yokohama, Kanagawa

Background: Cavity aperture resulting from plaque rupture is often located in the proximal for STEMI patients and distal for NSTEMI patients. To investigate the characteristics of lesions avoiding onset of AMI through observing lesion cavities in angiography patients.

Methods: Target population consisted of 232 patients (250 lesions) with ischemic heart disease (excluding AMI patients) undergoing OCT prior to therapeutic intervention that presented to our facility from May, 2009 to December, 2011. Of these, OCT findings determined a cavity at stenosed location in 22 patients. A comparative investigation was performed on cavity aperture location: proximal side (Group P: 12 lesions); others (group D: 8 lesions).

Results: OCT findings Distal lumen area (group P: 5.97±1.88, group D: 8.68±2.51, P = 0.045), minimal lumen area (1.95±1.21, 2.68±1.31, cavity area (1.87±1.28, 3.09±1.02, P = 0.05), proximal lumen area (6.76±2.24, 10.72±3.74, P = 0.05) Location of plaque rupture site was: proximal (group P: 66%, group D: 38%); middle (25%, 12%); distal (9%, 30%, P = 0.05). There was no difference distinguished between groups for location of MLA or residual low intensity area. Furthermore, there was a higher tendency for group D to have spotty calcification at lesion location compared to Group P (50%, 88%, respectively).

Conclusions: In comparison to those patients with proximal cavity aperture, distal cavity aperture patients had larger vessel diameter, larger plaque volume and plaque disruption distal to lesion location.

TCT-287

Abstract Withdrawn

TCT-288

Impact of the Prevalence of Diabetes Mellitus on Coronary Plaque Vulnerability Assessed by Integrated Backscatter Intravascular Ultrasound

Atsushi Iwata1, Saku Keijiro2
1Fukuoka university School of medicine, Fukuoka, Japan, 2Fukuoka university school of medicine, Fukuoka, Japan

Background: Diabetes mellitus (DM) is a well-established risk factor for coronary artery disease (CAD). However, little is known about relationship of the prevalence of DM and coronary plaque vulnerability assessed by integrated backscatter intravascular ultrasound (IB-I VUS).

Methods: One hundred sixteen consecutive patients with stable CAD who underwent percutaneous coronary intervention were enrolled. Nonculprit coronary lesions with mild to moderate stenoses were measured by IB-I VUS. A total of 20 IB-I VUS images were recorded at an interval of 0.5 mm for 10 mm length in each plaque. Patients were divided into two groups: the DM group and the non-DM group. We assessed the relations among DM and coronary plaque instability using IB-I VUS.

Results: Plaque volume (PV) and percentage of PV (%PV, 100 × PV/Vessel Volume) in the DM group were significantly higher than those in the non-DM group (66.0 ± 27.2 mm3 vs. 56.8 ± 21.2 mm3, P = 0.0278 and 42.5 ± 9.7% vs. 39.0 ± 8.8%, P = 0.0453, respectively). Lipid volume (LV) and percentage of LV (%LV, 100 × LV/PV) in the DM group were significantly higher than those in the non-DM group (28.9 ± 15.5 mm3 vs. 22.2 ± 13.0 mm3, P = 0.0130 and 42.1 ± 12.4% vs. 37.3 ± 12.2%, P = 0.0400, respectively). Furthermore, multiple regression analysis revealed that the prevalence of DM was independently associated with PV (P = 0.0351), LV (P = 0.0164) and %LV (P = 0.0304) among IVUS parameters in addition to other metabolic factors.

Conclusions: Nonculprit coronary lesions in patients with DM are associated with more lipid-rich plaque content and a greater PV, suggesting that DM patients increased plaque vulnerability.

TCT-289

Clinical Feasibility of Higher-Frequency IVUS for Quantitative Measurements of Native Coronary Lesions: First-in-Human Experience with 60MHz versus 40MHz IVUS Imaging

Ching-Chung Huang1, Kenji Sakamoto1, Kaori Nakagawa1, Paul Yock2, Adrian Eberer1, Peter Fitzgerald1, Fumiaki Ikemoto1, Yasuhiro Honda1
1Stanford University, Stanford, CA, 2Italian Hospital, Asuncion, Paraguay

Background: Despite the technical advantage of improved image resolutions, higher-frequency IVUS imaging may theoretically be susceptible to impaired lumen and vessel border detection due to higher blood scattering and lower signal penetration within the tissue. This first-in-human study aimed to evaluate the feasibility of 60MHz IVUS imaging with a novel multi-frequency IVUS system in vivo quantitative assessment of native coronary lesions.

Methods: A total of 121 matched cross-sections were imaged and compared at 40MHz and 60MHz. Voltages of lumen and vessel borders were classified into 3 grades (good: entire circumference visible, fair: ≥75% visible, and poor: <75% visible). Quantitative evaluation included area and minimum diameter measurements of lumen (LA; MLD) and vessel (VA; MVD).

Results: Good visualization of lumen border was achieved in 87.6% with 60MHz compared to 79.3% with 40MHz (P = 0.08), while the rates of good vessel border detection were similar between the 2 frequency imagerings (P = 0.79). Overall, the 40MHz and 60MHz imageings showed comparable visibilities of lumen and vessel borders. All quantitative measurements significantly correlated with good agreements (LA: r2 = 0.97; MLD: r2 = 0.95; VA: r2 = 0.97; MVD: r2 = 0.93, P < 0.001 for all) between the 2 frequency imagerings.