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Abstract

If X is a Tychonoff spaceC (X) its ring of real-valued continuous functions, aiide C(X),
then the cozeroset of is coz f) = {x € X: f(x) # 0}. If, for every cozeroseV of X, there is a
disjoint cozeroseY’ such that’u V' is dense inX, thenX is said to becozero complementet has
long been known thaX is cozero complemented iff the space MIaX) of minimal prime ideals of
C(X) (in the hull-kernel or Zariski topology) is compact iff the classical ring of fraction§ @X)
is von Neumann regular. While many characteimas of cozero complemented spaces are known,
they seem not to be adequate to answer some natural questions about them raised by R. Levy and
J. Shapiro in an unpublished preprint. These questions concern the relationship between a space being
cozero complemented and certain kinds of subspaces having this property, and between a product of
two spaces being cozero complemented and the factor spaces being cozero complemented. Also,
some conditions are given that guarantee that a space that is locally cozero complemented has this
property globally. In this paper partial answers are given to these questions. Sample resdlts: If
is weakly Lindel6f and dense ifi, thenX is cozero complemented iff is cozero complemented;
if X x Y is weakly Lindel6f and cozero complemented, thérandY are cozero complemented,
but if D is an uncountable discrete space, ti8dh x 8D is not cozero complemented even though
BD is cozero complemented. K is locally cozero complemented and either weakly Lindelof or
paracompact, theK is cozero complemented.
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1. Introductory remarks

A Tychonoff topological space is callembzero complementetifor each cozerosev
of X there is a (not necessarily unique) cozerd8esuch thatVv "W =g andVuU W is
dense inX. This paper is devoted to the study of such spaces.

The motivation for this study ams in part because of the fact th&t is cozero
complemented if and only if the space MitiX) of minimal prime ideals (with the hull-
kernel topology) of the ring@’ (X) (of real valued continuous functions with domain is
compact. We give a brief discussion of the more general algebraic setting below.

There is a large mathematical literature devoted to the study of the space of proper prime
ideals of a commutative ring endowed with the hull-kernel topology (called the Zariski
topology by many commutative algebraists). We will be concerned exclusively with the
subspace Mid of minimal prime ideals ofd, and then only ifA = C(X). The pioneering
papers of this latter sort are [13] and [16]. Many of the results we use or prove are true
in more generality, but will be stated only in this special case. In easeC(X), it is
shown in [13] that MinC (X) is always a 0-dimensional Hausdorff space that is countably
compact but not always compact. Moreover, if MIOX) is compact, then it is basically
disconnected (i.e., the closure of each cozeroset ofd\iK) is compact). No attempt will
be made to survey the many studies of the topology of G4iK). Instead we address
the question of how to determine from the topological propertie¥ @fhen X is cozero
complemented. There is no loss of getligran confining our study to Tychonoff spaces.

The terminology used with rare exception is that of [9,11,13]. and unless the contrary
is mentioned explicitly the word “space” will be used to abbreviate “Tychonoff space”,
Characterizations have been given of thasesuch that MinC (X) is compact in terms of
properties of cozerosets of functionsdh(X), but their usefulness is limited by the fact
that unlike open sets, the family of cozerosets is closed under formation of countable, but
not arbitrary, unions.

This paper is inspired in large part by a preprint written by Levy and Shapiro [19] in
which they study such spaces, and give some interesting examples. They also raise some
guestions that will be answered (in part) below. Among these questions are:

(1) If X is cozero complemented, afddis a subspace oX, under what conditions i¥
cozero complemented?

(2) Let X =Y x Z. What is the relation betweeki being cozero complemented aiid
andZ being cozero complemented?

Next, we make more formal the definitions and terminology used both above and in
what follows.

Throughout X will denote a Tychonoff spaceC(X) the algebra of real-valued
continuous functions o, and A a commutative ring with identity elementlf S C A,
we letS? = {a € A: aS = {0}}, (called theannihilator of S) and if s is a singleton, then
54 = {s}9). Itis well known and easily seen that?: a € C(X)} is closed under countable
intersection. LetT' (A) = {5: a € A,d not a zero divisgr denote the classical ring of
fractions of A. As a special case of results in [12], it is known that foe= C(X), then
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T (A) is a von Neumann regular ring if and only if Mihis compact (if and only ifX is
cozero complemented).

The lemma that follows is well known and is the major tool for recognizing when a
prime ideal is minimal.

1.1. Lemma. A prime ideal P of A is minimal if and only if for eactp € P, there is a

g ¢ P such thatpg is nilpotent Thus a prime idealP of C(X) is minimal if and only

if p e P impliesp? ¢ P. In particular every element of a minimal prime ideal is a zero
divisor.

As usual, if f € C(X), its zerosetf < (0) is denoted byZ( f), its cozerose \ Z(f) by
coz f), Z(X) ={Z(f): f € C(X)}, andCoz X) = {cox f): f € C(X)}.

1.2. Definition. A spaceX is said to becozero complementetifor each f € C(X), there

is ag € C(X) such that the union of their cozerose$ dense and intersection of their
cozerosets is empty. In this case ¢fzand coZg) are calleccomplementargozerosets,
and cl[coz f)] = clx[intx Z(g)].

It is easy to see that any space in which the closure of a cozeroset is a zeroset must be
cozero complemented.

The following equivalences are known, but do not all appear in any one paper, are
sometimes disguised by being stated in défgrterminology, and are often stated in greater
generality.

1.3. Theorem. If X is a Tychonoff space, the following assertions are equivalent

(a) MinC(X) is compact.

(b) X is cozero complemented.

(c) Foreachf € C(X), there is anf’ € C(X) such thatf4¢ = (f)“.

(d) Foreachf € C(X), there is anf’ € C(X) such thatl[int Z( /)] = cl[coz f")].

(e) T[C(X)]is avon Neumann regular ring.

(f) Foreachf e C(X), there is a nonzero divisaf € C(X) such thatfd = f2.

(g) For eachf € C(X), there is anf’ € C(X) such thatff'=0and|f| + |f’| is a
nonzero divisor.

(h) If every element of a prime ide&l of C(X) is a zero divisor, therP is minimal.

As usual,C*(X) will denote the subring of bounded functiongiiiX), andg X denotes
the Stone€ech compactification of. Recall from [11] thatC*(X) and C(8X) are
isomorphic. Recall also that a spa&eis said to beextremally(respectivelybasically)
disconnectedf the closure of every open (respectively cozero) set is open. A subspace
of a spaceX such that the mag — Z NY is a surjection ofZ(X) onto Z(Y) is said to be
z-embeddedh X.

Parts (a), (b), and (c) of the next result appear in [13], and part (d) is shown in [21].
By [24,10.7], every cozeroset and every Lindeldf subspace of a spageearbedded in it.
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1.4. Theorem.

(a) Min(C(X)) is compact if and only iMin(C*(X)) is compact. ThusX is cozero
complemented if and only #X is cozero complemented.

(b) MinC(X) is a countably compact zero-dimensional space that need not be compact.
Indeed, no point oMin C(Bw\w) has a compact neighborhood.

(c) If Min(C (X)) is compact, theMin(C (X)) is basically disconnected.

(d) If Y is dense and-embedded irX, thenMin (C(Y)) andMin(C (X)) are homeomor-
phic, and soY is cozero complemented if and onlyXfis cozero complemented. In
particular, a dense cozeros&tof a spaceX is cozero complemented if and onlyxif
is cozero complemented.

Next we give some examples of spaces that are cozero complemented as well as some
that are not. The following lemma is usefulrfthis purpose. Its last part generalizes
Lemma 3.1 of [19].

1.5. Lemma.

(@) If VeCozX)andW € CozV), thenW € Coz X).

(b) Cozero subspaces of cozero complemented spaces are cozero complemented.

(c) A free union of cozero complementgzhces is cozero complemented.

(d) If L is a Lindelof space that contains an uncountable denséset isolated points,
and if D contains a countable subs€tfor which L\D c cl(C), thenL is not cozero
complemented.

Proof. (a) Thisis [5, 1.2].

(b) LetV € Coz(X) andW € CozV). By (a), W € Coz X), so by hypothesis, there is a
U € Coz(X) that is a cozero complement @f in X. As V is open inX, it follows easily
thatV N U is a cozero complement &¥ in V. The result follows.

(c) This is straightforward.

(d) Because&” is a countable union of clopen sets, it is a cozerosdt.df V were a
cozero complement of in L, thenV = D\C sinceL\D C cl(C). Because cozerosets
are F,-sets andV is uncountable, there would be an uncountable closed subsétl
contained inV. ThenA is Lindel6f sinceL is. But A is uncountable and discrete, which is
a contradiction. S@ has no cozero complement, which concludes the proof of (d).

1.6. Examples of cozero complemented spaces. (a) Recall that a space in which every
closed set is a zeroset is said tofmrfectly normalnd that every metrizable space has
this property. Clearly, every perfecthormal space is cozero complemented.

(b) Recall from [3] that a space in which every regular closed set is a zeroset is called
an Oz -spaceln this paper, R. Blair showed that a space iganspace if and only if each
of its open sets ig-embedded. It follows that eveiy z-space is cozero complemented.

(c) By (b) and the remarks preceding Theorem 1.4, every basically disconnected space is
cozero complemented. Notesalthat every extremally disconnected space is both basically
disconnected and afiz-space.
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(d) Recall that a space in which every cotiea of pairwise disjoint open sets is
countable is called acc-spacer is said to haveountable cellularityor is said to satisfy
the countable chain conditianAny separable space is a ccc-space, but the olg®
and the generalized Cantor spg6e1}® are ccc for any cardinat, and they both fail to
be separable if the exponantexceeds 2. In fact, continuous images of dense subspaces
of ccc-spaces are ccc. See 2N(6) and 3RST of [22].

If X is a ccc-space and € CozX), then by Zorn’s lemmax\ cly C contains as a
dense subset the uniaff of a (necessarily countable) maximal collection of pairwise
disjoint cozerosets. Clearl§’ is a cozero complement @f, and we conclude that every
cce-space is cozero complemented.

In [14], Hager and Martinez study a class of spaces cdibattion-densevhich could
be defined as those spaces such that®{iX) is compact and extremally disconnected.
These authors characterize such spacesiag fi@ose such that each regular closed set is
the closure of a cozeroset. It follows from this that every fraction-dense space is cozero
complemented, and that evef}z-space is fraction-dense.

(e) A subsetS of a spaceX is called aP-set (respectivelyalmost P-se) of X if,
wheneverS ¢ Z(f) for somef € C(X), it follows thatS C intxy Z(f) (respectivelyS C
clyinty Z(f)). If p € X and{p} is a P-set (respectively almogt-set), thenp is called
a P-point (respectivelyalmost P-point). If every point ofX is a P-point (respectively al-
most P-point), thenX is called aP-space(respectivelyalmostP-spacg. It is well known
and easy to see every cozeroset df-apace is clopen, so eveB-space is cozero com-
plemented. Note that an almaBtpoint of a cozero complemented spaxeds a P-point
because by 1.3(gM, is a minimal prime ideal. FOK compact, this is noted in [14].

(f) Every ordinal (spacej (with the interval topology) is cozero complemented. For if
not, letép denote the smallest ordinal that is not cozero complemented. Clé&anhyst be
an uncountable limit ordinal. There are two cases.

Suppose first tha8y has countable cofinality, and lét,),<, be an (increasing)
countable cofinal subset 6§ such thatxg = 0 andw,, is not a limit ordinal ifz > 0. Then

So= | Jlan + 1. anyal.
n<w
where we use standard interval notation. Each summand is a clopen sufisg@bdfhence
of the ordinal space;, 1. By the minimality ofsg, eachw,+1 + 1 is cozero complemented
as is its clopen subspage, + 1, o, +1). Thuség is a free union of cozero complemented
spaces and hence is cozero coempénted by Lemma 1.5(a), (lyhich is a contradiction.
Now suppose thaip has uncountable cofinality. Arguing almost exactly as in [11], we
see that iff € C(8p), then there exista < g such thatf is constant o, §p). Thus if
V € Cozdp), then there existay < §g such that eitheV C [0, ay) or else[ay, 8g) C V.
By the minimality of o, the ordinal spacey is cozero complemented, 36N [0, ay)
has a cozero complemetitin ay. One easily checks that eith&rU [ay, 8o) (in the first
case) ol (in the second case) is a cozero complement af §o. Thuség is again cozero
complemented, in contradiction to its choice. The result follows.

1.7. Examples of spacesthat are not cozero complemented. (a) As noted in 1.6(e), no
space with an almogt-point that is not aP-point can be cozero complemented; e.g., the
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one-point compactification of an uncountable discrete space is not cozero complemented.
It is shown in [10] that ifX is locally compact ath realcompact, thegd X\ X is an infinite
compact almosP-space; such a subspace cannot be cozero complemented because not all
of its points areP-points.

(b) The Alexandroff doubleX of a compact metric spack without isolated points
is compact first countable space and a compactification of a discrete space of power 2
that satisfies the hypotheses of 1.5(d). As a Xets the union of two copied/(0) and
M (1) of M, where each point o# (1) isolated, the relative topology @i (0) is that of
M, and a neighborhood of a point &f (0) is the union of the corresponding neighborhood
in M and the deleted neighborhoodMi(1). ThenX becomes a compact (Hausdorff) first
countable space in which a copy of a countable dense sub6pafc#/ contained inM (1)
is a cozeroset o that is not complemented. See [23] or [9, 3.1.26] for details about
Alexandroff doubles. Hence by 1.5(d¥,is an example of a compact first countable space
that is not cozero complemented.

(c) Leta D = D U{p} denote the one-point compactification of an uncountable discrete
spaceD, and letg € Bw\w, and consider the spadeobtained from the free union ofD
and Bw by attachingp andg and imposing the quotient topology. The point obtained by
identifying p andg is an almostP-point of Y that is not aP-point. SoY is not cozero
complemented by 1.6(e).

(d) TheMichael lineM = (R, w) is the real line with the topology generated from the
usual topology by making each member of the Bebf irrational numbers an isolated
point. See [9, 5.1.22 and 5.1.32]. LEtdenote a countable subset Bfthat is dense in
the usual topology oR. ThenC € CozM), andQ =R\ P C cly, C. Clearly, any cozero
complementW of C in M would have to beM\(C U Q). As cozerosets aré, -sets, it
follows that

M\(CU Q)= T

n<w

where eaclf;, is closed inM. If QO Nclg T,, = @ for eachn, then
{{x}: xeCuU Q} U{clr T;: n < w}

is a countable family of closed nowhere dense subsef® whose union isR, which
contradicts the Baire Category Theorem. Hence theré is @ for which Q Nclg Ty # @.
But

B+0NClrRTy=0NCcly Ty =0 NTg,

which contradicts the choice @f,. ThusM\(C U Q) ¢ Coz(M) and soM is not cozero
complemented. Thus the Michael line is an example of a first countable hereditarily
paracompact space that is not cozero complemented.

We close this section by outlining the contents of the rest of this paper.

Section 2 is devoted to studying when a subspace of a cozero complemented space is
cozero complemented.

Section 3 is concerned with the relatibigs between the product of two spaces being
cozero complemented and the individual €astbeing cozero complemented, and to a
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lesser extent, what kinds of continuous mappings preserve being cozero complemented
either directly or inversely. We know only about rather special mappings that do the latter.

In Section 4, spaces such that each of rttesitensions is cozero complemented are
studied. Our nicest result of this kind is that all cozero complemented weakly Lindel6f
spaces have this property (see 2.9) whilacgs that are not pseudocompact have this
property only if they are weakly Lindel6f (set.6). Some instructive examples of spaces
with cozerosets that fail to be cozero coemlented in any extension are also given.

In Section 5, we study when being locally cozero complemented is enough to guarantee
that this property holds globally. This is tkase for spaces that are either weakly Lindel6f
or paracompact, but there is an example of a space that is both locally weakly Lindel&6f and
locally cozero complemented without being cozero complemented.

While we answer some of the questions posed by Levy and Shapiro, many remain open
and we raise some of our own in a brief final Section 6.

2. Subspaces of cozero complemented spaces

In[19] it is asked whether every (a) dense (b) open or (c) dense and open subspace of a
cozero complemented spaceshbe cozero complemented.

In this section we continue our study of which kinds of subspaces of cozero
complemented spaces must be cozero complésdemn 1.5(b), we showed that cozerosets
of cozero complemented spaces are cozeomplemented, and in 3.11 below, we
answer (c), and hence (a) and (b) in the negative.

If X is z-embedded irT", then the zerosets of are completely dermined by those
of T. Because every element of a minimal prirdedl is a zero divisor, information about
zerosets of elements of minimal prime ideal€@# ) depends only on zerosets of elements
of Z(T) with nonempty interior. Zerosets of this kind were studied in [15] from which we
recall the following definitions.

2.1. Definitions. SupposeX andT are (Tychonoff) spaces

(@) LetZ#(T) = {cl(intZ(f)): f e C(T)}.

(b) A subspace& of a space’” such that for eaclf € C(X) there is g € C(T) such that
cly(inty Z(f)) = X N cly(inty Z(g)) is said to beZ*-embedded iry.

Remark. In [15, 3.1], the concept a#-embedding is defined only for dense subspaces,
a restriction we do not impose in what follows.

Frequent use will be made of the next well-known lemma which is recorded in [11,
0.12].

2.2.Lemma. If X is dense irf” andV is open inT, thencl;y(V N X) =cly V.

Recall that if every open cover of a spaceontains a countable subfamily whose union
is dense inX, then X is called a weakl\Lindel6f spaceEvery Lindel6f space and every
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ccc-space is weakly Lindel6f, while an uncourleatliscrete space is not weakly Lindel6f.
It is shown in 12 of [8] that regular closed subse&nd cozerosets of weakly Lindelof
spaces are weakly Lindelof. The next thleenmas and the theorem that follows them
illustrates the importance a*#-embedding for detrmining which subspaces of a cozero
complemented space are cozero complemented.

2.3. Lemma. If X is a subspace df that is either dense or open, then the following are
equivalent

(@) X is Z#-embedded irT.
(b) If C € CozX), thereis aV € CozT) such thattly C=X Ncly V.

Proof. (a) implies (b). By (a), there is ¥ € CozT) such that
cly inty (X\C) = X Nclyinty (T\V).
Taking complements iX yields
intycly C=XnNintrcly V.
Because” C inty cly C C cly C, we have:
cly C =cly(inty cly C) =clp (X Ninty cly V). 0]
If X is dense irT, we have
clz (X Ninty cly V) =cly(intr (cly V) =cly V.
So (i) becomes
clrC=clr V.
Intersecting withX yields
clxC=XnclrV,

and (b) holds in this case.
Next assume is open inT, and intersect each side of (i) with to obtain:

cly C =clxy(X nintycly V). (i)

Now supposep € cly (X Nintr cly V), and letU denote an open neighborhood pf
in T. Then

(UNX)Nintycly V #¢.

Becausd/ N X is openinT, it follows thatU N X NV #£@. ThusU NV # @ and so
peXncly V. Thus:

cly(X Nintzcly V) c XnNclp V. (iii)

Conversely, supposee X Ncly V, and letU denote an open neighborhoodfn 7.
ThenU N X and hencd/ N X NV are nonempty. BUX NV C inty cly V becaus&X NV
is openinT, so(U N X)Ncly(X Ninty cly V) #@. Thus,p € clx (X Ninty cly V), so:

XNclp V cclx(X Nnintycly V). (iv)
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Combining (ii), (iii) and (iv) yields that (b) holds in this case as well.
(b) implies (a). Suppose (b) holds. Taking complements iyields

inty(X\C) =X\cly C=XN(T\cly V)= X nNninty(X\V).
Thus
cly intx (X\C) = clx (X Nnintz (T\V)). (v)
If we assume thaX is dense irT, then by 2.2, this latter is equal to
X Nclyintp(T\V),
so (a) holds in this case.
Next we assume th& is open inT. By (v), we obtain:
cly intx (X\C) = X Ncly (X Ninty(T\V)) C X Nclyinty (T\V). (vi)

Now assume next that € X Nclrintr (T \ V) and letp € U, whereU is open inT.
ThenU N X is open inT and is a neighborhood ¢f. ThusU N X Ninty(T\V) # ¥, and
sop e XNclp (X Nintp(T\V)). Thus by (vi),p e clx intx (X \ C) and the reverse of the
inclusion in (vi) holds.

Combining this with (v) completes the proof that (b) implies (aXifs open inT. O

2.4. Lemma. If X is a weakly Lindel6df subspace that is either dense or open in a space
thenX is Z#-embedded ifT.

Proof. The proof whenX is dense inl" appears in 3.7(b) of [15]. IK is open inT and
C e CozX), thenC is open inT and hence is the union of a collectighof cozerosets of
T. By 1.2 of [8], sinceX is weakly Lindelof, so is its cozerosé€t So there is a countable
subcollection of4 whose unionV is dense inC. ThenV € CozT) and ck V =cly C.
Thusck C = X Ncly V, soby 2.3.X is Z#-embedded if. O

2.5. Lemma. SupposeX is either dense or open as well as beigd-embedded in a
spacer . If T is cozero complemented, then sXis

Proof. If C € CozX), then by 2.4 there is & € CozT) suchthatgt C =X nNcly V.
By assumption, there is a cozero complem@&hof V in 7. ThenW N X € Coz(X) and
becauséV Ncly V=@, we haveCN (W N X) =4@.
Supposep € X andU is a neighborhood op in T. BecauseW U V is dense inT, it
follows thatU N (W U V) #£@.
Suppose first thaX is dense ifl’. Then
UNn(WuvVvV)YnX=#£0, so
UNX)N[WNX)UVNX)]#0.

Since ¢k C = X Ncly V, it follows that
UnNX)N[(WNX)uc]#0

and soW N X is a cozero complement @f in X.
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Suppose next thal is open inT. ThenU N X is openinT, and sinceéW U V is dense
in T, we conclude again that/ N X) N (W U V) #£ @. The rest of the argument proceeds
as above. O

2.6. Theorem. If SN W is a weakly Lindelof space, whefeas a dense subspace amid is
an open subspace of a cozero complemented spaiteenS N W is cozero complemented.

Proof. Clearly SN W is dense inW, so sinceSN W is weakly Lindelof, so is¥. Because
W is open inT, it is Z#-embedded irf" by 2.4. ThusW is cozero complemented. But
SNW is dense iV, so by 2.45N W is Z*-embedded if¥. Then by 2.5, the conclusion
holds. O

2.7. Remarks. (a) Not every weakly Lindel6f subsge of a cozero complemented space
need be cozero complemented. For examiple compact extremally disconnected space
Bw is cozero complemented by 1.6(byt by 1.7(b), its compact subspage\w is not
cozero complemented.

(b) In 3.12 an example will be given of a dense open subspace of a cozero complemented
space that is not cozero complemented. Thus, “weakly Lindel6f” cannot be dropped from
the hypothesis of 2.6.

The result that follows is proved in 1.3 of [19] and 7.6 of [21] under the stronger
hypothesis thak is z-embedded and dense Th Theorem 2.8 follows also from results
in [7] from which can be inferred that ik is Z#-embedded and dense 1h thenC(X)
is rigidly embedded (see [7] for a definition) @(7), and from this latter, it follows
that MinC(T) and MinC(X) are homeomorphic. Clearly, any space containing a dense
Lindel6f subspace is weakly Lindel6f.

2.8. Theorem. Suppos€ is Z#-embedded and denselh Then

(a) X is cozero complemented if and onlyifis cozero complemented.
(b) If T is cozero complemented, thitin C(7) andMin C(X) are homeomorphic.

Proof. (a) If T is cozero complemented, then soXsby 1.5. SupposeX is cozero
complemented and € CozT). ThenC N X € Coz(X), so there isW € Coz(X) such that
wn({CnNX)=gandW U (CNX)isdenseinX. By 2.3, thereis & € CozT) such that
cly W = X Nncly V. We will show thatV is a cozero complement &f in 7.

To see this, suppose first thétN C # @. SinceX is dense inl’, C N (V N X) # @, so
CNncly (VNX)#@.Butby 2.2, cf(VNX)=clyr W,soCnNcly W and hence&C N W
are nonempty, as i& N (C N X), contrary to the choice d¥. Thus,V N C =@.

It remains to show tha U C is dense irT'. To see this, we will show that £{V U C)
contains the dense subspakeof 7. With this end in mind, recall first that by 2.2,
cx(CnX)=Xnclpy(CNX)=XnNcly C, so

XNnclp(VulO)=Xnclp VYU(Xnclp 0)
=cly WUclxy(CNX)=clx[WU(CNX)|=X.
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ThusT is cozero complemented.

(b) Recall from [13] that for any commutative rirdy, the hull-kernel topology on the
space MirA of minimal prime ideal ofA has as a base for its closed sptga): a € A},
whereh(a) = {P € Min A: a € A}, and that MinA is always a zero-dimensional Hausdorff
space. IfX is Z#-embedded densely ifi, letp : C(T) — C(X) be given byp(f) = flx,
and for eachP e Min C(T), let ®[P] = {¢(f): f € C(T)}. Then®[P] is a prime ideal
and since every element &f is a divisor of 0, the same is true [ P]. Since each of
these spaces of minimal priméeals is compact, and since is dense in7, it follows
from 1.3(g) that® is a one—one map of Mifi(T") onto MinC (X). It follows also that for
eachf € C(T), @[h(f)] = h(f]|x), SO both® and its inverse are closed maps. Tluss
the desired homeomorphismo

Combining 2.4 and 2.8, we obtain:

2.9. Coroallary. If X is weakly Lindel6f and dense i, then

(a) X is cozero complemented if and onlyifis cozero complemented.
(b) If T is cozero complemented, thitin C(7T) andMin C(X) are homeomorphic.

2.10. Remarks.

(a) Clearly any space containing a derisadel6f space is weakly Lindelof. If the
converse of the latter held, then 2.9 would say nothing beyond the previously known
result for Lindelof subspaces. The converse does not hold; see, for example, 2.2
of [4] where a first countable ccc-spageis given whose only Lindelof subspaces
are nowhere dense. (Becausés ccc, it is weakly Lindelof; see 3P(3) of [22].)

(b) Corollary 2.9 relates to 7.6 of [21], where it is shown tha&f ils dense ang-embedded
in T, thenX andT have homeomorphic spacesSminimal prime ideals.

3. Productsand mappings of cozero complemented spaces

The purpose of this section is to investigate the preservation of cozero complementation
under the formation of products and various sorts of continuous images.

3.1. Questions.

(a) If X andY are cozero complemented, mustx Y be cozero complemented?
(b) If X x Y is cozero complemented, mustandY be cozero complemented?

3.2. Questions. Supposef : X — Y is a continuous surjection.

(a) If X is cozero complemented, what conditions piguarantee that is cozero com-
plemented?
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(b) If Y is cozero complemented, what conditions piguarantee thak is cozero com-
plemented?

These questions are related by the projection maps of a product space onto its factors
and complicated by fact that cozerosets e preserved by projection maps. While we
have partial answers to all of them, they have no clear pattern. In fact, 3.1(a) has a negative
answer even iX =Y is compact. While the answer to 8a} is affirmative in many special
cases, the general situation remains open.

We begin with two easy cases. The projection maj of Y onto X is denoted byry.

3.3. Lemma.

(d) If X x Y is cozero complemented aril has an isolated point, thei is cozero
complemented.

(b) If Y has a countable dense getof isolated points, theX x Y is cozero complemented
if and only if X is cozero complemented.

Proof. (a) follows from 1.5.
(b) The necessity is immediate from (a). Conversely, suppbse cozero comple-
mented,V € Coz(X x Y), andd € D. Then

mx[V N (X x {d})] € CozxX).

SinceX is cozero complemented, thigtier set has a cozero compleméfitin X, and
it is easy to see that){U; x {d}: d € D} is a cozero complementéfin X x Y. O

Itis sometimes possible to describe the cozerosets of a product of two spaces in terms of
the cozerosets of each factor, and we invokéamal from [6] for this purpose. The product
of a cozeroset oK and a cozeroset f is called acozero-rectangle ofX x Y. If these
cozerosets are clopen, then the resulting cozero-rectangle is catlieghen-rectangle
A countable union of cozero-rectangles. is calleg-gectangle

The next result is proved in 1.1 and 1.4 of [6].

3.4. Lemma (Blair-Hager) If X x Y is a Lindel6f space, then each cozerosekof Y is
ao-rectangle.

3.5. Definition. For an uncountable discrete spabe let L = D U {p}. Imposing on
L the topology generated by the singletons @fand the sets containing together
with a co-countable subset @ yields a regular Lindel6fP-space calledhe one-point
Lindeldfication of D.

Clearly L is cozero complemented. (See 1.6(e).)
3.6. Theorem. Suppose’ is a Lindelof space and is the one-point Lindel6fication of

an uncountable discrete spaée ThenY is cozero complemented if and onlyLifx Y is
cozero complemented.
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Proof. It follows from 3.3(a) that ifL x Y is cozero complemented, then so ¥s
Conversely supposE is cozero complemented. It isell known and easy to see that
the product of two Lindelof spaces, one of which isPaspace, is Lindel6f. So, if
C € CozL xY),then by Lemma 3.4, there are, for edach w, cozeroset¥; of L andE; of

Y suchthaC = J,;_, Vi x E;. Becausd. is a P-space}; andL\V; are clopen. Moreover,
V; is countable or co-countable accordinggas V; or not. Letl = {i < w: |V;| < w}, let

J =w\I, and let

M:(UV,-)U(L\HV,-).

iel iel
Then the countable subsét of D is clopen inL and
C=[CnM xY)Ju[Cn((L\M) xY)].

As M is discrete, by 1.5(c)M x Y is cozero complemented singeis. Hence there is a
cozero complemenf of CN (M x Y) in M x Y. BecauseM x Y is clopeninL x Y,
SeCozL xY).

If i € J, then

(Vi x Ep) N ((L\M) x Y) = (L\M) x E;
becausd.\M C V;. So
CN[(L\M)x Y]= U(L\M) x Ej = (L\M) x U E;.

ieJ iel
Now | J;., Ei € CozY), so asY is cozero complemented, there i§'a CozY) such
thatT U, Ei isdense i, butT N J,.; Ei = 9. Thus,

(L\M) x T €eCozL x7Y).

It is now easy to see th&tU ((L\M) x T) is a cozero complementafin L x Y. O

Next, we consider product spaces where one factgifor some discrete spade.
Recall that a space in which every polms a separable neighborhood is said to be
locally separable.

3.7. Theorem. If M is a locally separable metric spad@én particular if M is locally
compact and metrjcand D is a discrete space, thel x 8D is cozero complemented.

Proof. It is shown in [1] and noted in 4.4F(c) of [9] that every locally separable metric
space is a free union of separable metgaces. Because by 1.5(c) free unions of cozero
complemented are cozero complemented, it is enough to prove 3.7 infcesseparable,

in which caseM is a dense subspace of a compact metric sgac€learlyM x gD is a
dense Lindelof subspace &f x 8D, so by 2.9(a) above, it suffices to show tikaix gD

is cozero complemented. Becausds compact with a countable base abds discrete,

we conclude thak x D is z-embedded irK x 8D from Theorem 3.2 of [6]. So, by 2.8(a)
we conclude thaK x 8D is cozero complemented, v completes the proof. O
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The spacdJ discussed in 3.11 shows that the hypothesis “metric” cannot be omitted
in 3.7.

In this last argument, essential use was made of the local separability; btit one
might ask:

3.8. Question. If M is a metric space anb is discrete, musM x 8D be cozero comple-
mented?

In the remainder of this sectio®, = D(«) will denote a discrete space of cardinality
andR will denote the real line.
Before presenting a negative answer to 3.1(a), we state a lemma that follows easily from
Lemma 3.4 once one observes that: (iplfs infinite, then a rectanglé x T in 8D x 8D
is clopen if it is of the form ¢fp A x clgp B, whereA and B are subsets oD, and (ii)
(BD x BD)\(D x D) has empty interiorirBD x 8D.

3.9.Lemma. If V andV’ are cozerosets D x 8D, they are complementary if and only
if VN (D x D) andV’' N (D x D) are disjointo -rectangles whose union 8 x D.

3.10. Theorem. BD(x) x BD(x) is cozero complemented if and orl\K w.

Proof. If k < w, thenBD(x) x BD(k) is separable and hence is cozero complemented by
1.6(d).

Let A denote the diagonal db(c)x D(c) and letV = D(c)x D(c)\A. By identifying
the setD(c) with the spaceR with its usual topology and(c) x D(c) with R x R, one
sees how to writd” as a countable unidnJ,_, A» x B, of clopen rectangles with rational
endpoints. Thusl J,_,,(clgp A,) x (clgp B,) is a cozeroseU of BD(c)xBD(c) that
meetsD(c)x D(c) in V. If W were a cozero complement &f in 8D x gD, then by
3.4 W would be as-rectangle of8 D x BD. ThusW N (D x D) would be as-rectangle
of D x D. Now clearlyW N (D x D) = A. But A is not ac-rectangle since any clopen
rectangle ofD(c) x D(c) contained inA is a singleton. So, by Lemma 34D (c)x BD(c)
is not cozero complemented.

Supposew < k < ¢, regardD(x) as a subspace ab(c), and defineA andV as
above. BecausF is ac-rectangle inD(c)x D(c), VN (D(x) x D(x)) is ac-rectangle in
D(x) x D(x) whose complement itb(«) x D(k) is not ac-rectangle inD (k) x D(k).
Hence the conclusion follows in this case as well.

Finally, if « > ¢, theng D(c) x BD(c) is a clopen subspace 6D (k) x 8 D(x). So, if
the former were cozero complemented, so would be the latter, which it is mot.

Observe thapwx Bw is cozero complemented; this follows from its separability as
well as from the last result. But, by 5.8 of [3], this space is@et So, a separable fraction
dense space need not be.

The authors wish to acknowledge a useful conversation with Kenneth Kunen concerning
the proof of 3.10.

The next example answers a question of Levy and Shapiro posed in [19].
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3.11. Example. A compact cozero complementedase with a dense open subspace that
is not cozero complemented.

Let L=DU{p} beasin 3.5, lek = 8L, and letU = K\{p}. Observe thaU is
pseudocompact because each of its countable sets has compact closig® $d/
is pseudocompact. Thus by a well-known theorem of Glicksberg (see 4AG in [22])
B(BD x U) =D x D, whence by Theorems 3.10 and 1.4@) x U is not cozero
complemented. By Theorem 3.8D x L is Lindelof and cozero complemented. Hence
by 2.9,8D x K is cozero complemented. Thy8D x K is the desired compact cozero
complemented space whose dense open subgdaceU is not cozero complemented.

Note that by 3.3(b)8.D x U is locally cozero complemented.
The argument just given depends essentially on the pseudocompactness of thi¢.space
This inspires:

3.12. Question. Must every realcompact dense open subspace of a compact cozero
complemented space be cozero complemented?

We return to the question posed in 3.1(b).

3.13. Theorem. If X x Y is cozero complemented andis separable, therlX is cozero
complemented.

Proof. It follows from 1.6(d) that the hypothesis implies thais cozero complemented.

If VeCozX),thenV xY € CozX x Y), so by assumption there isd € Coz( X x Y)
suchthatW U (V x Y)isdense inX x Y andW N (V xY)=@. Thusrx[W]NV =0
andrx[W]U YV is dense inX.

By assumption, there is a sequengg}, <., that is dense ir¥. For eachw < w, W N
(X x {y}) € Coz(X x {y,}) and hence there existdg € Coz X) such that

wn (X X {Yn}) = Uy x {yn}.

If U=,-, Un, thenU € Coz(X) and since eacly, is contained imrx[W],UNV =
@.

If U UV failed to be dense i, it would be disjoint from some nonempty open subset
S of X. Now the nonempty se& x ¥ C (X\V) x Y, and becaus® U (V x Y) is dense in
X x Y, itfollows that(S x Y)NW # @. Thusmy[(S x Y) N W] is a nonempty open subset
of Y, which must contain some element of the dense sy, }, <. . It follows that there
is ans € S such that(s, yy) € W, soS N U # @, contrary to our choice of. ThusU UV
is dense inX andU is a cozero complement &f. O

The preceding theorem prompts us to ask:

3.14. Question. Must the product of a cozero complemented spaead a separable space
Y be cozero complemented?

In the special case whepgis alsoo-compact, ifT is a countable dense subspacé of
X x T is a dense Lindeldf subspace of bdthx Y andX x BY, so thatX x Y is weakly
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Lindeldf. It follows from 2.9 thatX x Y is cozero complemented if and onlyXf x gY
is cozero complemented. So in trying to settle Question 3.14 in this special case, we may
assume that is compact as well as separable.

Next, we consider the questions raised in 3.2, not only for their own sake, but as a tool
for answering those raised in 3.1(b). Some of the difficulties involved are illustrated by the
following

3.15. Example. SupposeD is an uncountable discrete spadé,is the compact space
described in Example 3.12, and consider the sequence of spaces and mappings illustrated

by
B(D x D) — BD x BD — BD x K — (D x D)*,

where (D x D)* denotes the one-point compactification of the discrete sgaceD.

Each map in the above sequence is a perfect irreducible surjection thatZfixeD
pointwise. By 1.6 and the remarks precedihgogether with the observation made in
3.10, the first and third spaces in this sequeare cozero complemented. By 3.11 and an
easy exercise, the second and fourth are not. This shows that neither the property of being
cozero complemented nor its negation is preserved under this natural class of mappings.

3.16. Definition. Supposef : X — Y is a continuous surjection.

(@) If f[Z(X)]C Z(Y) thenf is said to bezeroset preserving.
(b) If f[Coz(X)] C CozY) then f is said to becozeroset preserving

Clearly cozeroset preserving maps are open. However zeroset preserving maps and
closed continuous surjections are independmncepts, and not every open continuous
surjection is cozeroset preserving as is shown next.

3.17. Examples. If X is a space ang is a point such thafp} is not a Gs-set, then
{p} ¢ Z(X). If Y = X & {a} is the free union ofX and a one-point set, define a map
/Y — X suchthatf (a) = p and f| X is the identity map. Theyf is a closed continuous
surjection that is not zeroset preserving.

An example of a zeroset preserving continuous surjection that is not closed is given
in [24, 15.17(2)].

Finally, let L = D U {p} be as in 3.5, and leX = D @ L denote the free union ab
andL. Definef : X — L by letting its restriction to its first summarid shift it to its copy
in L, and by letting its restriction té be the identity map. It is clear thgtis a continuous
open surjection that is not cozeroset preserving because the image of its first summand is
not a cozeroset af.

The following definition is given in [20].

3.18. Definition. A space is called-normally separated closed sets and disjoint zerosets
are completely separated.
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This concept was introducéa [25] where it was callegroperty Z Every normal space
is -normally separated, but the converse fails. For example, eRespace and every
countably compact spacedsnormally separated, but there are nonnorapaces and
nonnormal countably compact spaces. For other examplesofmally separated spaces,
see 1R and 5Q in [22].

3.19.Lemma. If V is an open subset of&anormally separated spacé that is a countable
union of zerosets of, thenV is a cozeroset.

Proof. SupposeV = J,_, Z., where eachZ, is a zeroset. By assumption, for each
n < w, there is anf, € C(X) such thatf,[Z,] = {1} and f,[X\V] = {0}. Clearly
X\V =<, ZI ful € Z(X), SOV is a cozeroset. O

The following is 15.14 of [24].
3.20. Lemma. An open perfect surjection is zeroset preserving.
The next result is a step towards answering 3.1(b).

3.21. Theorem. If X is compact,Y is §-normally separated, and x Y is cozero
complemented, then is cozero complemented.

Proof. If W e CozY), thenX x W € Coz(X x Y) and hence by assumption has a cozero
complemen¥ € Coz(X x Y) which is a countable union of zerosets of X x Y. So the
open setry[V] is the countable union of they[Z,], which are zerosets by 3.20. (A&

is compactyry is a perfect map.) It follows then from 3.19 that[V] € Coz[Y] and it is
easy to verify thatry [V] is a cozero complement ¥ in Y. O

Another partial answer to 3.1(b) follows:

3.22. Theorem. If X x Y is weakly Lindelof and cozero complemented, tkesndY are
cozero complemented.

Proof. As X x Y is weakly Lindel6f and dense ifX x BY, it follows by 2.4 thatX x Y

is Z#-embedded iBX x BY. BecauseX x Y is also cozero complementegl¥ x BY is

cozero complemented by 2.9. itan follows from 3.21 that each @gfX andgY is cozero
complemented. S& andY are cozero complemented by 1.4(a)z

As was shown in 3.10, a product of two coagb cozero complemented spaces need not
be cozero complemented. Another question related to the questions in 3.1 is:

3.23. Question. Must the product of @-space and a cozero coraptented space be cozero
complemented?
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The last example of this section is peculiar in that its conclusion does not follow from
any of our general theorems on when a product of cozero complemented spaces is cozero
complemented.

3.24. Products of spaces of ordinals. Let 2 denote the first uncountable ordinal, and
2% (= BS2) its one-point compactification. We will show thae* x £2* is cozero
complemented. Hence singg2 x 2) = 822 x B2, we will know also that2 x 2,
2*x 2, and2 x 2* are cozero complementeddf< w1, let

Ale) =[a+ 1, 01] X [@ + 1, 1],
Bi(a) =[0,a] X [ + 1, w1],
Br(a) =[0,a] x [0,«], and
B3(a) =[a + 1, w1] x [0, a].

Note that each of these four sets is cloperifix £2*.

By 8LM of [11], if V € Coz(2* x §2*), then either:

Casel. p = (w1, w1) € V and there is ar < w1 such thatA(a) C V, or

Case2. p ¢ V and there is arr < w1 such thatV N A(«) = 0.

In case 1, note thaB>(«) is cozero complemented becalilsis a compact metrizable
space. Each oB1(«) and B3(«) contains as a dense subspace the produ€ofind a
countable discrete space. Recall from 1.6(f) tkeat is cozero complemented, so these
latter dense subspaces are cozero complesddyy 1.5, as well as being Lindel6f. So by
1.4(d) or 2.6, each of the spacBs(«) and B3(«) is cozero complemented. It is easy to
verify that the union foi = 1, 2, 3 of a cozero complement &f in V N B;(«) is a cozero
complemented oV in 2* x 2*.

In case 2, one may proceed as in case 1 to éoentozero complements in each of the
rectanglesB; (o) to complete the proof tha* x £2* is cozero complemented.

4. Extensionsand cozer o complementation

First, we consider when being a cozeroset is preserved under extension. A minor
alteration of the proof of 3.15 in [11] yields:

4.1. Lemma. If X is dense inT" and V is a locally compact open subset ¥f thenV is
openinT.

4.2. Lemma. If V is subspace of a spacg, the following are equivalent

(a) V is open, locally compact, ang-compact.
(b) If X is dense in a spack, thenV € CozT).

Proof. (a) implies (b). By 4.1}V is open inT as well as locally compact ard-compact.
Letv =J,_, K(n) where eachK (n) is compact. Sincd" is a Tychonoff space, there

n<w
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is for eachn < w an f, € C(T) such thatf,[K(n)] =1 and f,[T\V] = 0. Clearly
V=U,~,Coz« f,) €CoxT).

(b) implies (a). Note thatX is dense in the compact spa@e= X, so by (b),
V eCoz(8X). SoV is locally compactg-compact, open i X, and hence irk. O

4.3. Corollary. If V is a locally compacto-compact cozeroset oX with no cozero
complement irX, then no extension dof is cozero complemented.

Proof. If T were a cozero complemented extensiorXgfthen by 4.2,V € CozT). So
there existsW € Coz(T) that is a cozero complement &f in 7. BecauseX is dense in
T, W N X is a cozero complement &f in X, which is a contradiction. O

4.4. Examples. (a) Using 4.3, we see that the Michael line of 1.7(d) has no cozero
complemented extension.

(b) Any locally compacts-compact nhoncompact spadé can be embedded as a
cozeroset in a space with no cozero complemented extension. To see this, sWppase
locally compact -compact space that is not compactpet 5V \V, let A denote a cardinal
with uncountable cofinality, and l€t(1) = D U { p} topologized as follows: each point of
D is isolated, and ifp € A € L(%), then A is open inL(%) if and only if |D\A| < A.
Finally, let X (1) be the quotient space obtained from the free unidn {b}) & L()) by
identifying » and p to a point we denote by. Clearly V is open inX (1) and is locally
compact and -compact. So, by 4.2, if is an extension ok (1), thenV € Coz(T).

If V has acozero complemewtin 7,thenVNW =@ andV UW is dense iff’. Then
VN(WNX@®)=PandVU(WNX (X)) is denseirX (1). Because € cly) V, it follows
thatW N X (1) = D, and becaus® N X (1) € CozZ X (1)) is anF,-setinX (1), there is a
sequence of closed subséts,: n < w} of X (1) whose union iS¥ N X (A). Sincex has
uncountable cofinality,Ax| = A for somek < w. But then(D U {r})\ Ax is an open subset
of L(A) that containg and has cardinality, contrary to the way in which the topology
of L(x) was obtained. We conclude that no extensiorX@f) is cozero complemented.
(A special case of this construction appears in 5.7 of [13].) Note thatifk,, thenL ()
is not weakly Lindelof.

The next lemma will be used to characterize a class of spaces such that each of its
extensions is cozero complemented.

45. Lemma. If (i) X is locally compact(ii) X has ao-compact subspacewhose closure
is not compact, andiii) X is not weakly Lindeldf, the has a compactification that is
not cozero complemented.

Proof. By (iii) X has an open covétl no countable subfamily of which has a dense union.
LetV € V. By (i), for eachx € V, there is a compact séf, and a cozeroset, such that
x€Cy C K, CV.ThenC, € CozK,) is o-compact. Thus each memberdis a union
of o-compact cozerosets, So we may assumeWhainsists ob-compact cozerosets.

By (ii), there is a countable subfamity of ¥ whose unionW containsS. ThenW is
a locally compact and -compact cozeroset of. Let T = X U {p} denote the one-point
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compactification ofX. Then by 4.2W e CozT. Now cly S is compact, and by (i) g S
is not compact. As g S ccly S C cly SU{p}, it follows thatp e clz S. Thenp e cly W
becauses c W.

SupposeW has a cozero complemebitin T. BecauseU N W =@ and p € cly W,
we know thatp ¢ U, soU C X. But the cozerosal/ € CozT is o-compact, so there is
a countable subfamilyl of V whose union containg. If W U U were dense irf’, then
C U A would be a countable subfamily &f whose union is dense i, contrary to the
choice ofy. ThusW has no cozero complement, ds not cozero complemented

4.6. Theorem. SupposeX is cozero complemented and not pseudocompact. Then the
following are equivalent

(a) Every compactification of is cozero complemented.
(b) Every extension af is cozero complemented.
(c) X is weakly Lindelof.

Proof. That (c) implies (b) is immediate from Corollary 2.9. That (b) implies (a) is trivial.
We now prove that if (c) fails, then (a) fails. Becausds not pseudocompact, it follows
from 1.21 and 8A1 of [11] thatX contains a closed countable discre&feembedded
subspaceD. ThenK = clgx D\X is a compact subspace giX\X. BecauseX is not
weakly Lindeléf, there is a collectio@ of open subsets gf X whose union coverX
such that no countable subcollection interseXtén a dense subspace af. For each
x € X, find C, € C containingx. Becausex ¢ K ,there is aV, € Coz8X) containingx
and disjoint fromkK Let W, = C, NV, andW = {W,: x € X}. Becausé/V is a refinement
of C, no countable subfamily afV has a union whose intersection withis dense inX.
Consequently the uniok of the members oV is an open and hence locally compact
subset of8 X that is not weakly Lindel6f. Furthermoi€ N'Y = @, soY has as-compact
subsetD whose closure irY is not compact. FinallyX is dense iny.

So, by 4.5 (applied t&), Y has a compactification that is not cozero complemented and
is a compactificationok. O

This leads us to ask:

4.7. Question. Which pseudocompact but not compact spaces have the property that each
of their extensions is cozero complemented?

5. Local versusglobal

The main purpose of this section is to address the question of when a space that s locally
cozero complemented must be cozero comgleted. That this is not always the case will
be shown below. The main results of this section are 5.2 and 5.5.

Recall that every cozeroset is and hencez#-embedded in any space containing it.
Thus by 2.5, ifX is cozero complemented, then every neighborhood of each poixit of
contains a cozero complemented neighborhood.
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5.1. Proposition. If T is a countable union of cozero complemented cozerosetsTth&n
cozero complemented.

Proof. Supposerl’ = J,_,, V»,» Where eachV,, e Coz(T) and is cozero complemented,
and letC € CozT). Because a finite union of cozerosets is a cozeroset, we may assume
thatV, c V,,41 for all n < w. By assumption, for eaoh, there is aW,, € CozV,) such that
(CNVy)NW, =gand(CNV,)UW, isdenseinV,.By 1.5(a@)W =J,,_, Wa € CozxT).

It will be shown thatW is a cozero complement &f in T'; that is (i)C U W is dense i’

and (i) C N W = @. For, if S is a nonempty open subset Bf thenS N V,, # ¥ for some

m < w, and henc& N[(CNV,)UW,]#d,soSN(CUW) =@ and (i) holds. To see that

(ii) holds, note that

(Ucmvn)ﬂ<U(WﬂVj))=U U(CﬁVnﬂWﬂVj)

n<w Jj<w n<w j<w

cNnw

= U U (C 0 Vimin, j5) N Wrinn, jy) = 0. O

n<w j<o

5.2. Theorem. If a spaceX is weakly Lindelf, then it is cozero complemented if and only
if it is locally cozero complemented.

Proof. As noted above, we need only prove the sufficiency.Ulfx) is a cozero
complemented neighborhood efin X, andV (x) is a cozeroset such thate V(x) C
U(x), thenV (x) is cozero complemented by the remk@preceding 5.1. By assumption
the open cove{V(x): x € X} has a countable subfamily whose unidhis dense
in X. Moreover,V is cozero complemented by 5.1. So, by 2.4 and X8s cozero
complemented. O

The example that follows shows that the assumption in 5.2Xhstweakly Lindel6f
may not be dropped altogether.

5.3. Example. A locally cozero complemented ape that is not cozero complemented.

Recall from Example 3.11 that iD is a discrete space of cardinalityy and U =
(U{clgp A: A C D and|A| = w}, thenB D x U fails to be cozero complemented. It is easy
to verify, however, that each point of thépace has a clopen neighborhood homeomorphic
with 8D x Bw, which is cozero complemented by 3.3(b). 8D x U is locally cozero
complemented.

Next, we exhibit another way that a locatpzero complemented is forced to become
cozero complemented.

5.4. Lemma. The unionX of a locally finite family{Y,: « € I'} of cozero complemented
cozerosets is cozero complemented.

Proof. If V € CozX), thenV NY, € CozY,) for all « € I' and hence there is a
Cy € CoZYy) such thatC, N (V NYy,) =@ andCy, U (V NY,) is dense inY,. Clearly,
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C, = cozZ f,) forsomef, > 0in C(Y,). Observe that the local finiteness of the collection
{Yy: @ € I'} enables us to defing: X — R by letting f (x) = Y { fu (x): x € C,} for each

x € X. We claim thatf € C(X). Forif p € X, there is an open neighborhotg of p such
that{a € I": U, N C, # 0} is afinite set. Thus, the restriction gfto U, is continuous. It
follows from 1A(2) of [11] thatf € C(X). Thus,

Vﬂcoz(f):Vﬂ(U{Ca: aeF}):U{VﬂCa: ael}y=g.

If W is open in X, then someY, meets it, soW N (V U C,) # ¥, and hence
WnN((Vucozf)) #@. ThusV Ucoz(f) is dense inX, so coZ f) is a cozero complement
of V. O

5.5. Theorem. A locally cozero complemented paracompact sp&ce cozero comple-
mented.

Proof. BecauseX is locally cozero complemented, it has a cogeronsisting of cozero
complemented cozerosets. Becansés paracompact; has a locally finite partition of
unity @ subordinated to it. Thus for alf € ®,coz(f) c C for someC € C. Since
cozerosets of cozero complementedss are cozero complemented, so ig ¢pzFinally,
because is locally finite,{coz(f): f € @} is a locally finite cover ofX. So by 5.4.X is
cozero complemented.O

Recall from 1.6(d) that every ccc-space dszero complemented. So 5.5 vyields
immediately:

5.6. Corollary. Every paracompact space in which each point has a neighborhood that
satisfies the countable chain conditi@m particular, any paracompact space that is locally
separablgis cozero complemented.

A spaceX is calledhereditarily Lindelofif each of its subspaces is Lindel6f. It is well
known and easy to see that a space is hereditarily Lindel6f if and only if each of its open
subspaces is Lindeldf. As is noted in 3P of [22], this latter condition impliesXhista
ccc-space and hence is cozero complemented.

5.7. Coroallary. Every hereditarily Lindel6f space is cozero complemented.

5.8. Question. Can the hypothesis “paracompact” leplaced by “realcompact” in 5.5?

6. Open questions. products of ccc-spaces

A number of open questions have been stated above. We summarize and add to the more
important questions in what follows.

6.1. SupposeX x Y is cozero complemented. MuXtor Y be cozero complemented? In
this generality, we cannot answer this question evendf Y, but we showed in Section 3
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that both factors are cozero complemented if the product is weakly Lindel6f and that if
has an isolated point, thehis cozero complemented.

Recall from [18] that a space for which oa@d hence all of it€ompactification is
separable is said to lense separabl&uch a space need not be separable but is cozero
complemented. One may deduce easily from this paper tatifY is dense separable,
then bothX andY are cozero complemented.

6.2. Because the space of minimal prime idealsGifX) is determined completely by

this algebra, we may assume without loss of generality that the spases consider

are realcompact. While we find this hypothesis difficult to use, we may ask how many
of the results given above might be improved or changed by adding this hypothesis.
For example, must a dense (or dense or open) realcompact subspace of a (compact)
cozero complemented space be cozero compiged? Recall that the subspace given in
Example 3.11 above is not realcompact.

6.3. Is there a class of mapping between spaceishvpreserve cozero complementation
directly or inversely that makes it possibtedreate new cozero complemented spaces from
old ones?

6.4.1n 1.6(e), itis shown that every almaBtpoint of a cozero complemented space 3-a
point. Note that both the Alexandroff double[@ 1] and the Michael line of Example 1.7,
neither of which is cozero complemediéave nowhere dense closed almBssets that
fail to be P-sets. This leads us to ask if every nowhere dense closed alPasst of a
cozero complemented space must bie-aet—at least if the space is realcompact?

6.5. Characterize those spaces all of whose subspaces are cozero complemented.

It was shown in 1.6(d) that ccc-spaces acezaro complemented; indeed they are
fraction dense. It is known that if Martin’s Axiom and the negation of the continuum
hypothesis (CH), hold then arbitrary products of ccc-spaces are ccc (and hence cozero
complemented). So it consistent with Zermelo—Fraenkel set theory together with the axiom
of choice (ZFC) to believe that an arbitygsroduct of ccc-spaces is cozero complemented.
There are, however, models of set theory in which a product of a ccc-space with itself is
not ccc. More precisely, a totally ordered ccc-space that fails to be separable is called a
Souslin ling and there are models of set theory in which CH holds and Souslin lines exist.
Moreover, ccc fails to hold in any product of a Souslin line with itself, although there are
models for ZFC in which ccc can hold for products of some pairs of Souslin lines. (For
background and definitions of unfamiliar temology in the above, see [2], Chapter Il of
[17], and 3T of [22].)

In a recent communication, Gary Gruenhage announced thias i& connected Souslin
line, thenS x S is cozero complemented. Howeveretinore general question remains.

6.6. Must every finite or infinite product ofcc-spaces be cozero complemented in all
models of ZFC?
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We are indebted to the referee for making a large number of constructive suggestions
for improving the quality of our exposition.

Added March 9, 2004. Gary Gruenhage has announced some results about when a
product of two spaces is cozero complemented. In particular, Question 3.1(b), 3.14, 3.23
and 6.6 above have negative answers, 3.8 has an affirmative answer, and it is shown
that the product of a cozero complemented space and a separable metric space is cozero
complemented.
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