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Abstract

If X is a Tychonoff space,C(X) its ring of real-valued continuous functions, andf ∈ C(X),
then the cozeroset off is coz(f ) = {x ∈ X: f (x) �= 0}. If, for every cozerosetV of X, there is a
disjoint cozerosetV ′ such thatV ∪ V ′ is dense inX, thenX is said to becozero complemented. It has
long been known thatX is cozero complemented iff the space MinC(X) of minimal prime ideals of
C(X) (in the hull-kernel or Zariski topology) is compact iff the classical ring of fractions ofC(X)

is von Neumann regular. While many characterizations of cozero complemented spaces are kno
they seem not to be adequate to answer some natural questions about them raised by R. L
J. Shapiro in an unpublished preprint. These questions concern the relationship between a spa
cozero complemented and certain kinds of subspaces having this property, and between a pr
two spaces being cozero complemented and the factor spaces being cozero complemente
some conditions are given that guarantee that a space that is locally cozero complemented
property globally. In this paper partial answers are given to these questions. Sample resulX

is weakly Lindelöf and dense inT , thenX is cozero complemented iffT is cozero complemented
if X × Y is weakly Lindelöf and cozero complemented, thenX andY are cozero complemente
but if D is an uncountable discrete space, thenβD × βD is not cozero complemented even thou
βD is cozero complemented. IfX is locally cozero complemented and either weakly Lindelö
paracompact, thenX is cozero complemented.
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1. Introductory remarks
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A Tychonoff topological space is calledcozero complementedif for each cozerosetV
of X there is a (not necessarily unique) cozerosetW such thatV ∩ W = ∅ andV ∪ W is
dense inX. This paper is devoted to the study of such spaces.

The motivation for this study arises in part because of the fact thatX is cozero
complemented if and only if the space MinC(X) of minimal prime ideals (with the hull
kernel topology) of the ringC(X) (of real valued continuous functions with domainX) is
compact. We give a brief discussion of the more general algebraic setting below.

There is a large mathematical literature devoted to the study of the space of prope
ideals of a commutative ringA endowed with the hull-kernel topology (called the Zari
topology by many commutative algebraists). We will be concerned exclusively wit
subspace MinA of minimal prime ideals ofA, and then only ifA = C(X). The pioneering
papers of this latter sort are [13] and [16]. Many of the results we use or prove ar
in more generality, but will be stated only in this special case. In caseA = C(X), it is
shown in [13] that MinC(X) is always a 0-dimensional Hausdorff space that is count
compact but not always compact. Moreover, if MinC(X) is compact, then it is basicall
disconnected (i.e., the closure of each cozeroset of MinC(X) is compact). No attempt wil
be made to survey the many studies of the topology of MinC(X). Instead we addres
the question of how to determine from the topological properties ofX whenX is cozero
complemented. There is no loss of generality in confining our study to Tychonoff space
The terminology used with rare exception is that of [9,11,13]. and unless the co
is mentioned explicitly the word “space” will be used to abbreviate “Tychonoff spa
Characterizations have been given of thoseX such that MinC(X) is compact in terms o
properties of cozerosets of functions inC(X), but their usefulness is limited by the fa
that unlike open sets, the family of cozerosets is closed under formation of countab
not arbitrary, unions.

This paper is inspired in large part by a preprint written by Levy and Shapiro [1
which they study such spaces, and give some interesting examples. They also rais
questions that will be answered (in part) below. Among these questions are:

(1) If X is cozero complemented, andT is a subspace ofX, under what conditions isT
cozero complemented?

(2) Let X = Y × Z. What is the relation betweenX being cozero complemented andY

andZ being cozero complemented?

Next, we make more formal the definitions and terminology used both above a
what follows.

ThroughoutX will denote a Tychonoff space,C(X) the algebra of real-value
continuous functions onX, andA a commutative ring with identity element 1. If S ⊂ A,

we letSd = {a ∈ A: aS = {0}}, (called theannihilator of S) and if s is a singleton, then
sd = {s}d). It is well known and easily seen that{ad : a ∈ C(X)} is closed under countab
intersection. LetT (A) = { a

d
: a ∈ A,d not a zero divisor} denote the classical ring o

fractions ofA. As a special case of results in [12], it is known that forA = C(X), then
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T (A) is a von Neumann regular ring if and only if MinA is compact (if and only ifX is
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cozero complemented).
The lemma that follows is well known and is the major tool for recognizing whe

prime ideal is minimal.

1.1. Lemma. A prime idealP of A is minimal if and only if for eachp ∈ P , there is a
q /∈ P such thatpq is nilpotent. Thus a prime idealP of C(X) is minimal if and only
if p ∈ P impliespd � P. In particular every element of a minimal prime ideal is a ze
divisor.

As usual, iff ∈ C(X), its zerosetf ←(0) is denoted byZ(f ), its cozerosetX\Z(f ) by
coz(f ), Z(X) = {Z(f ): f ∈ C(X)}, andCoz(X) = {coz(f ): f ∈ C(X)}.

1.2. Definition. A spaceX is said to becozero complementedif for eachf ∈ C(X), there
is a g ∈ C(X) such that the union of their cozerosets is dense and intersection of the
cozerosets is empty. In this case coz(f ) and coz(g) are calledcomplementarycozerosets
and clX[coz(f )] = clX[intX Z(g)].

It is easy to see that any space in which the closure of a cozeroset is a zeroset m
cozero complemented.

The following equivalences are known, but do not all appear in any one pape
sometimes disguised by being stated in different terminology, and are often stated in grea
generality.

1.3. Theorem. If X is a Tychonoff space, the following assertions are equivalent:

(a) MinC(X) is compact.
(b) X is cozero complemented.
(c) For eachf ∈ C(X), there is anf ′ ∈ C(X) such thatf dd = (f ′)d .
(d) For eachf ∈ C(X), there is anf ′ ∈ C(X) such thatcl[intZ(f )] = cl[coz(f ′)].
(e) T [C(X)] is a von Neumann regular ring.
(f) For eachf ∈ C(X), there is a nonzero divisord ∈ C(X) such thatf d = f 2.
(g) For eachf ∈ C(X), there is anf ′ ∈ C(X) such thatff ′ = 0 and |f | + |f ′| is a

nonzero divisor.
(h) If every element of a prime idealP of C(X) is a zero divisor, thenP is minimal.

As usual,C∗(X) will denote the subring of bounded functions inC(X), andβX denotes
the Stone–̌Cech compactification ofX. Recall from [11] thatC∗(X) and C(βX) are
isomorphic. Recall also that a spaceX is said to beextremally(respectivelybasically)
disconnectedif the closure of every open (respectively cozero) set is open. A subspaY

of a spaceX such that the mapZ → Z ∩Y is a surjection ofZ(X) ontoZ(Y ) is said to be
z-embeddedin X.

Parts (a), (b), and (c) of the next result appear in [13], and part (d) is shown in
By [24, 10.7], every cozeroset and every Lindelöf subspace of a space arez-embedded in it
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(a) Min(C(X)) is compact if and only ifMin(C∗(X)) is compact. ThusX is cozero
complemented if and only ifβX is cozero complemented.

(b) MinC(X) is a countably compact zero-dimensional space that need not be com
Indeed, no point ofMin C(βω\ω) has a compact neighborhood.

(c) If Min(C(X)) is compact, thenMin(C(X)) is basically disconnected.
(d) If Y is dense andz-embedded inX, thenMin(C(Y )) andMin(C(X)) are homeomor

phic, and soY is cozero complemented if and only ifX is cozero complemented.
particular, a dense cozerosetY of a spaceX is cozero complemented if and only ifX

is cozero complemented.

Next we give some examples of spaces that are cozero complemented as well a
that are not. The following lemma is useful for this purpose. Its last part generaliz
Lemma 3.1 of [19].

1.5. Lemma.

(a) If V ∈ Coz(X) andW ∈ Coz(V ), thenW ∈ Coz(X).

(b) Cozero subspaces of cozero complemented spaces are cozero complemented.
(c) A free union of cozero complementedspaces is cozero complemented.
(d) If L is a Lindelöf space that contains an uncountable dense setD of isolated points

and if D contains a countable subsetC for whichL\D ⊂ cl(C), thenL is not cozero
complemented.

Proof. (a) This is [5, 1.2].
(b) LetV ∈ Coz(X) andW ∈ Coz(V ). By (a),W ∈ Coz(X), so by hypothesis, there is

U ∈ Coz(X) that is a cozero complement ofW in X. As V is open inX, it follows easily
thatV ∩ U is a cozero complement ofW in V. The result follows.

(c) This is straightforward.
(d) BecauseC is a countable union of clopen sets, it is a cozeroset ofL. If V were a

cozero complement ofC in L, thenV = D\C sinceL\D ⊂ cl(C). Because cozerose
areFσ -sets andV is uncountable, there would be an uncountable closed subsetA of L

contained inV. ThenA is Lindelöf sinceL is. ButA is uncountable and discrete, which
a contradiction. SoC has no cozero complement, which concludes the proof of (d).�
1.6. Examples of cozero complemented spaces. (a) Recall that a space in which eve
closed set is a zeroset is said to beperfectly normaland that every metrizable space h
this property. Clearly, every perfectlynormal space is cozero complemented.

(b) Recall from [3] that a space in which every regular closed set is a zeroset is
anOz -space.In this paper, R. Blair showed that a space is anOz-space if and only if each
of its open sets isz-embedded. It follows that everyOz-space is cozero complemented.

(c) By (b) and the remarks preceding Theorem 1.4, every basically disconnected s
cozero complemented. Note also that every extremally disconnected space is both basi
disconnected and anOz-space.
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(d) Recall that a space in which every collection of pairwise disjoint open sets is
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countable is called accc-spaceor is said to havecountable cellularityor is said to satisfy
the countable chain condition. Any separable space is a ccc -space, but the cube[0,1]ℵ
and the generalized Cantor space{0,1}ℵ are ccc for any cardinalℵ, and they both fail to
be separable if the exponentℵ exceeds 2ω. In fact, continuous images of dense subspa
of ccc-spaces are ccc. See 2N(6) and 3RST of [22].

If X is a ccc-space andC ∈ Coz(X), then by Zorn’s lemma,X\clX C contains as a
dense subset the unionC′ of a (necessarily countable) maximal collection of pairw
disjoint cozerosets. ClearlyC′ is a cozero complement ofC, and we conclude that eve
ccc-space is cozero complemented.

In [14], Hager and Martinez study a class of spaces calledfraction-densewhich could
be defined as those spaces such that MinC(X) is compact and extremally disconnecte
These authors characterize such spaces as being those such that each regular closed se
the closure of a cozeroset. It follows from this that every fraction-dense space is c
complemented, and that everyOz-space is fraction-dense.

(e) A subsetS of a spaceX is called aP -set (respectivelyalmostP -set) of X if,
wheneverS ⊂ Z(f ) for somef ∈ C(X), it follows thatS ⊂ intX Z(f ) (respectivelyS ⊂
clX intX Z(f )). If p ∈ X and{p} is a P -set (respectively almostP -set), thenp is called
a P -point (respectivelyalmostP -point). If every point ofX is aP -point (respectively al-
mostP -point), thenX is called aP -space(respectivelyalmostP -space). It is well known
and easy to see every cozeroset of aP -space is clopen, so everyP -space is cozero com
plemented. Note that an almostP -point of a cozero complemented spaceX is aP -point
because by 1.3(g),Mp is a minimal prime ideal. ForX compact, this is noted in [14].

(f) Every ordinal (space)δ (with the interval topology) is cozero complemented. Fo
not, letδ0 denote the smallest ordinal that is not cozero complemented. Clearly,δ0 must be
an uncountable limit ordinal. There are two cases.

Suppose first thatδ0 has countable cofinality, and let(αn)n<ω be an (increasing
countable cofinal subset ofδ0 such thatα0 = 0 andαn is not a limit ordinal ifn > 0. Then

δ0 =
⋃
n<ω

[αn + 1, αn+1],

where we use standard interval notation. Each summand is a clopen subset ofδ0 and hence
of the ordinal spaceαn+1. By the minimality ofδ0, eachαn+1 + 1 is cozero complemente
as is its clopen subspace[αn + 1, αn+1). Thusδ0 is a free union of cozero complement
spaces and hence is cozero complemented by Lemma 1.5(a), (b), which is a contradiction

Now suppose thatδ0 has uncountable cofinality. Arguing almost exactly as in [11],
see that iff ∈ C(δ0), then there existsα < δ0 such thatf is constant on[α, δ0). Thus if
V ∈ Coz(δ0), then there existsαV < δ0 such that eitherV ⊂ [0, αV ) or else[αV , δ0) ⊂ V.

By the minimality of δ0, the ordinal spaceαV is cozero complemented, soV ∩ [0, αV )

has a cozero complementU in αV . One easily checks that eitherU ∪ [αV , δ0) (in the first
case) orU (in the second case) is a cozero complement ofV in δ0. Thusδ0 is again cozero
complemented, in contradiction to its choice. The result follows.

1.7. Examples of spaces that are not cozero complemented. (a) As noted in 1.6(e), no
space with an almostP -point that is not aP -point can be cozero complemented; e.g.,
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one-point compactification of an uncountable discrete space is not cozero complemented.
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It is shown in [10] that ifX is locally compact and realcompact, thenβX\X is an infinite
compact almostP -space; such a subspace cannot be cozero complemented becaus
of its points areP -points.

(b) The Alexandroff doubleX of a compact metric spaceM without isolated points
is compact first countable space and a compactification of a discrete space of poω

that satisfies the hypotheses of 1.5(d). As a set,X is the union of two copiesM(0) and
M(1) of M, where each point ofM(1) isolated, the relative topology ofM(0) is that of
M, and a neighborhood of a point ofM(0) is the union of the corresponding neighborho
in M and the deleted neighborhood inM(1). ThenX becomes a compact (Hausdorff) fir
countable space in which a copy of a countable dense subspaceC of M contained inM(1)

is a cozeroset ofX that is not complemented. See [23] or [9, 3.1.26] for details ab
Alexandroff doubles. Hence by 1.5(d),X is an example of a compact first countable sp
that is not cozero complemented.

(c) LetαD = D ∪{p} denote the one-point compactification of an uncountable dis
spaceD, and letq ∈ βω\ω, and consider the spaceY obtained from the free union ofαD

andβω by attachingp andq and imposing the quotient topology. The point obtained
identifying p andq is an almostP -point of Y that is not aP -point. SoY is not cozero
complemented by 1.6(e).

(d) TheMichael lineM = (R,µ) is the real line with the topology generated from t
usual topology by making each member of the setP of irrational numbers an isolate
point. See [9, 5.1.22 and 5.1.32]. LetC denote a countable subset ofP that is dense in
the usual topology ofR. ThenC ∈ Coz(M), andQ = R\P ⊂ clM C. Clearly, any cozero
complementW of C in M would have to beM\(C ∪ Q). As cozerosets areFσ -sets, it
follows that

M\(C ∪ Q) =
⋃
n<ω

Tn,

where eachTn is closed inM. If Q ∩ clR Tn = ∅ for eachn, then{{x}: x ∈ C ∪ Q
} ∪ {clR Tn: n < ω}

is a countable family of closed nowhere dense subsets ofR whose union isR, which
contradicts the Baire Category Theorem. Hence there is ak < ω for whichQ∩ clR Tk �= ∅.

But

∅ �= Q ∩ clR Tk = Q ∩ clM Tk = Q ∩ Tk,

which contradicts the choice ofTk . ThusM\(C ∪ Q) /∈ Coz(M) and soM is not cozero
complemented. Thus the Michael line is an example of a first countable hered
paracompact space that is not cozero complemented.

We close this section by outlining the contents of the rest of this paper.
Section 2 is devoted to studying when a subspace of a cozero complemented s

cozero complemented.
Section 3 is concerned with the relationship between the product of two spaces be

cozero complemented and the individual factors being cozero complemented, and t
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lesser extent, what kinds of continuous mappings preserve being cozero complemented
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either directly or inversely. We know only about rather special mappings that do the
In Section 4, spaces such that each of their extensions is cozero complemented

studied. Our nicest result of this kind is that all cozero complemented weakly Lin
spaces have this property (see 2.9) while spaces that are not pseudocompact have
property only if they are weakly Lindelöf (see 4.6). Some instructive examples of spa
with cozerosets that fail to be cozero complemented in any extension are also given.

In Section 5, we study when being locally cozero complemented is enough to gua
that this property holds globally. This is thecase for spaces that are either weakly Linde
or paracompact, but there is an example of a space that is both locally weakly Lindel
locally cozero complemented without being cozero complemented.

While we answer some of the questions posed by Levy and Shapiro, many remai
and we raise some of our own in a brief final Section 6.

2. Subspaces of cozero complemented spaces

In [19] it is asked whether every (a) dense (b) open or (c) dense and open subspa
cozero complemented space must be cozero complemented.

In this section we continue our study of which kinds of subspaces of co
complemented spaces must be cozero complemented. In 1.5(b), we showed that cozeros
of cozero complemented spaces are cozero complemented, and in 3.11 below, w
answer (c), and hence (a) and (b) in the negative.

If X is z-embedded inT , then the zerosets ofX are completely determined by those
of T . Because every element of a minimal prime ideal is a zero divisor, information abo
zerosets of elements of minimal prime ideals ofC(X) depends only on zerosets of eleme
of Z(T ) with nonempty interior. Zerosets of this kind were studied in [15] from which
recall the following definitions.

2.1. Definitions. SupposeX andT are (Tychonoff) spaces

(a) LetZ#(T ) = {cl(intZ(f )): f ∈ C(T )}.
(b) A subspaceX of a spaceT such that for eachf ∈ C(X) there is ag ∈ C(T ) such that

clX(intX Z(f )) = X ∩ clT (intT Z(g)) is said to beZ#-embedded inY.

Remark. In [15, 3.1], the concept ofZ#-embedding is defined only for dense subspa
a restriction we do not impose in what follows.

Frequent use will be made of the next well-known lemma which is recorded in
0.12].

2.2. Lemma. If X is dense inT andV is open inT , thenclT (V ∩ X) = clT V .

Recall that if every open cover of a spaceX contains a countable subfamily whose un
is dense inX, thenX is called a weaklyLindelöf space. Every Lindelöf space and eve
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ccc-space is weakly Lindelöf, while an uncountable discrete space is not weakly Lindelöf.
öf
m
ro
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It is shown in 1.2 of [8] that regular closed subsets and cozerosets of weakly Lindel
spaces are weakly Lindelöf. The next threelemmas and the theorem that follows the
illustrates the importance ofZ#-embedding for determining which subspaces of a coze
complemented space are cozero complemented.

2.3. Lemma. If X is a subspace ofT that is either dense or open, then the following a
equivalent:

(a) X is Z#-embedded inT .

(b) If C ∈ Coz(X), there is aV ∈ Coz(T ) such thatclX C = X ∩ clT V .

Proof. (a) implies (b). By (a), there is aV ∈ Coz(T ) such that

clX intX(X\C) = X ∩ clT intT (T \V ).

Taking complements inX yields:
intX clX C = X ∩ intT clT V .

BecauseC ⊂ intX clX C ⊂ clX C, we have:

clT C = clT (intX clX C) = clT (X ∩ intT clT V ). (i)

If X is dense inT , we have

clT (X ∩ intT clT V ) = clT
(
intT (clT V )

) = clT V .

So (i) becomes

clT C = clT V .

Intersecting withX yields

clX C = X ∩ clT V,

and (b) holds in this case.
Next assumeX is open inT , and intersect each side of (i) withX to obtain:

clX C = clX(X ∩ intT clT V ). (ii)

Now supposep ∈ clX(X ∩ intT clT V ), and letU denote an open neighborhood ofp

in T . Then

(U ∩ X) ∩ intT clT V �= ∅.

BecauseU ∩ X is open inT , it follows thatU ∩ X ∩V �= ∅. ThusU ∩ V �= ∅ and so
p ∈ X ∩ clT V . Thus:

clX(X ∩ intT clT V ) ⊂ X ∩ clT V . (iii)

Conversely, supposep ∈ X ∩ clT V, and letU denote an open neighborhood ofp in T .

ThenU ∩ X and henceU ∩ X ∩ V are nonempty. ButX ∩ V ⊂ intT clT V becauseX ∩ V

is open inT , so(U ∩ X) ∩ clX(X ∩ intT clT V ) �= ∅. Thus,p ∈ clX(X ∩ intT clT V ), so:

X ∩ clT V ⊂ clX(X ∩ intT clT V ). (iv)
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Combining (ii), (iii) and (iv) yields that (b) holds in this case as well.
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(b) implies (a). Suppose (b) holds. Taking complements inX yields

intX(X\C) = X\clX C = X ∩ (T \clT V ) = X ∩ intT (X\V ).

Thus

clX intX(X\C) = clX
(
X ∩ intT (T \V )

)
. (v)

If we assume thatX is dense inT , then by 2.2, this latter is equal to

X ∩ clT intT (T \V ),

so (a) holds in this case.
Next we assume thatX is open inT . By (v), we obtain:

clX intX(X\C) = X ∩ clT
(
X ∩ intT (T \V )

) ⊂ X ∩ clT intT (T \V ). (vi)

Now assume next thatp ∈ X ∩ clT intT (T \ V ) and letp ∈ U , whereU is open inT .
ThenU ∩ X is open inT and is a neighborhood ofp. ThusU ∩ X ∩ intT (T \V ) �= ∅, and
sop ∈ X ∩ clT (X ∩ intT (T \V )). Thus by (vi),p ∈ clX intX(X \ C) and the reverse of th
inclusion in (vi) holds.

Combining this with (v) completes the proof that (b) implies (a) ifX is open inT . �
2.4. Lemma. If X is a weakly Lindelöf subspace that is either dense or open in a spaT ,

thenX is Z#-embedded inT .

Proof. The proof whenX is dense inT appears in 3.7(b) of [15]. IfX is open inT and
C ∈ Coz(X), thenC is open inT and hence is the union of a collectionA of cozerosets o
T . By 1.2 of [8], sinceX is weakly Lindelöf, so is its cozerosetC. So there is a countab
subcollection ofA whose unionV is dense inC. ThenV ∈ Coz(T ) and clT V = clT C.

Thus clX C = X ∩ clT V, so by 2.3,X is Z#-embedded inT . �
2.5. Lemma. SupposeX is either dense or open as well as beingZ#-embedded in a
spaceT . If T is cozero complemented, then so isX.

Proof. If C ∈ Coz(X), then by 2.4 there is aV ∈ Coz(T ) such that clX C = X ∩ clT V .

By assumption, there is a cozero complementW of V in T . ThenW ∩ X ∈ Coz(X) and
becauseW ∩ clT V = ∅, we haveC ∩ (W ∩ X) = ∅.

Supposep ∈ X andU is a neighborhood ofp in T . BecauseW ∪ V is dense inT , it
follows thatU ∩ (W ∪ V ) �= ∅.

Suppose first thatX is dense inT . Then

U ∩ (W ∪ V ) ∩ X �= ∅, so

(U ∩ X) ∩ [
(W ∩ X) ∪ (V ∩ X)

] �= ∅.

Since clX C = X ∩ clT V , it follows that

(U ∩ X) ∩ [
(W ∩ X) ∪ C

] �= ∅
and soW ∩ X is a cozero complement ofC in X.
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Suppose next thatX is open inT . ThenU ∩ X is open inT , and sinceW ∪ V is dense
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in T , we conclude again that(U ∩ X) ∩ (W ∪ V ) �= ∅. The rest of the argument procee
as above. �
2.6. Theorem. If S ∩ W is a weakly Lindelöf space, whereS is a dense subspace andW is
an open subspace of a cozero complemented spaceT , thenS ∩W is cozero complemente

Proof. ClearlyS ∩W is dense inW , so sinceS ∩W is weakly Lindelöf, so isW . Because
W is open inT , it is Z#-embedded inT by 2.4. ThusW is cozero complemented. B
S ∩W is dense inW , so by 2.4,S ∩W isZ#-embedded inW . Then by 2.5, the conclusio
holds. �
2.7. Remarks. (a) Not every weakly Lindelöf subspace of a cozero complemented spa
need be cozero complemented. For example, the compact extremally disconnected sp
βω is cozero complemented by 1.6(c),but by 1.7(b), its compact subspaceβω\ω is not
cozero complemented.

(b) In 3.12 an example will be given of a dense open subspace of a cozero complem
space that is not cozero complemented. Thus, “weakly Lindelöf” cannot be dropped
the hypothesis of 2.6.

The result that follows is proved in 1.3 of [19] and 7.6 of [21] under the stro
hypothesis thatX is z-embedded and dense inT . Theorem 2.8 follows also from resul
in [7] from which can be inferred that ifX is Z#-embedded and dense inT , thenC(X)

is rigidly embedded (see [7] for a definition) inC(T ), and from this latter, it follows
that MinC(T ) and MinC(X) are homeomorphic. Clearly, any space containing a d
Lindelöf subspace is weakly Lindelöf.

2.8. Theorem. SupposeX is Z#-embedded and dense inT . Then:

(a) X is cozero complemented if and only ifT is cozero complemented.
(b) If T is cozero complemented, thenMin C(T ) andMin C(X) are homeomorphic.

Proof. (a) If T is cozero complemented, then so isX by 1.5. SupposeX is cozero
complemented andC ∈ Coz(T ). ThenC ∩ X ∈ Coz(X), so there isW ∈ Coz(X) such that
W ∩ (C ∩ X) = ∅ andW ∪ (C ∩ X) is dense inX. By 2.3, there is aV ∈ Coz(T ) such that
clX W = X ∩ clT V . We will show thatV is a cozero complement ofC in T .

To see this, suppose first thatV ∩ C �= ∅. SinceX is dense inT , C ∩ (V ∩ X) �= ∅, so
C ∩ clT (V ∩ X) �= ∅. But by 2.2, clT (V ∩ X) = clT W , soC ∩ clT W and henceC ∩ W

are nonempty, as isW ∩ (C ∩ X), contrary to the choice ofW . Thus,V ∩ C = ∅.
It remains to show thatV ∪ C is dense inT . To see this, we will show that clT (V ∪ C)

contains the dense subspaceX of T . With this end in mind, recall first that by 2.2
clX(C ∩ X) = X ∩ clT (C ∩ X) = X ∩ clT C, so

X ∩ clT (V ∪ C) = (X ∩ clT V ) ∪ (X ∩ clT C)

= clX W ∪ clX(C ∩ X) = clX
[
W ∪ (C ∩ X)

] = X.
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ThusT is cozero complemented.
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(b) Recall from [13] that for any commutative ringA, the hull-kernel topology on th
space MinA of minimal prime ideal ofA has as a base for its closed sets{h(a): a ∈ A},
whereh(a) = {P ∈ Min A: a ∈ A}, and that MinA is always a zero-dimensional Hausdo
space. IfX is Z#-embedded densely inT , let ϕ :C(T ) → C(X) be given byϕ(f ) = f |X ,
and for eachP ∈ Min C(T ), let Φ[P ] = {ϕ(f ): f ∈ C(T )}. ThenΦ[P ] is a prime ideal
and since every element ofP is a divisor of 0, the same is true inΦ[P ]. Since each o
these spaces of minimal primeideals is compact, and sinceX is dense inT , it follows
from 1.3(g) thatΦ is a one–one map of MinC(T ) onto MinC(X). It follows also that for
eachf ∈ C(T ), Φ[h(f )] = h(f |X), so bothΦ and its inverse are closed maps. ThusΦ is
the desired homeomorphism.�

Combining 2.4 and 2.8, we obtain:

2.9. Corollary. If X is weakly Lindelöf and dense inT , then

(a) X is cozero complemented if and only ifT is cozero complemented.
(b) If T is cozero complemented, thenMin C(T ) andMin C(X) are homeomorphic.

2.10. Remarks.

(a) Clearly any space containing a denseLindelöf space is weakly Lindelöf. If th
converse of the latter held, then 2.9 would say nothing beyond the previously k
result for Lindelöf subspaces. The converse does not hold; see, for examp
of [4] where a first countable ccc-spaceX is given whose only Lindelöf subspac
are nowhere dense. (BecauseX is ccc, it is weakly Lindelöf; see 3P(3) of [22].)

(b) Corollary 2.9 relates to 7.6 of [21], where it is shown that ifX is dense andz-embedded
in T , thenX andT have homeomorphic spacesof minimal prime ideals.

3. Products and mappings of cozero complemented spaces

The purpose of this section is to investigate the preservation of cozero compleme
under the formation of products and various sorts of continuous images.

3.1. Questions.

(a) If X andY are cozero complemented, mustX × Y be cozero complemented?
(b) If X × Y is cozero complemented, mustX andY be cozero complemented?

3.2. Questions. Supposef :X → Y is a continuous surjection.

(a) If X is cozero complemented, what conditions onf guarantee thatY is cozero com-
plemented?
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(b) If Y is cozero complemented, what conditions onf guarantee thatX is cozero com-
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These questions are related by the projection maps of a product space onto its
and complicated by fact that cozerosets arenot preserved by projection maps. While w
have partial answers to all of them, they have no clear pattern. In fact, 3.1(a) has a n
answer even ifX = Y is compact. While the answer to 3.1(b) is affirmative in many specia
cases, the general situation remains open.

We begin with two easy cases. The projection map ofX × Y ontoX is denoted byπX.

3.3. Lemma.

(a) If X × Y is cozero complemented andY has an isolated point, thenX is cozero
complemented.

(b) If Y has a countable dense setD of isolated points, thenX×Y is cozero complemente
if and only ifX is cozero complemented.

Proof. (a) follows from 1.5.
(b) The necessity is immediate from (a). Conversely, supposeX is cozero comple

mented,V ∈ Coz(X × Y ), andd ∈ D. Then

πX

[
V ∩ (

X × {d})] ∈ Coz(X).

SinceX is cozero complemented, this latter set has a cozero complementUd in X, and
it is easy to see that

⋃{Ud × {d}: d ∈ D} is a cozero complement ofV in X × Y . �
It is sometimes possible to describe the cozerosets of a product of two spaces in t

the cozerosets of each factor, and we invoke material from [6] for this purpose. The produ
of a cozeroset ofX and a cozeroset ofY is called acozero-rectangle ofX × Y . If these
cozerosets are clopen, then the resulting cozero-rectangle is called aclopen-rectangle.
A countable union of cozero-rectangles. is called aσ -rectangle.

The next result is proved in 1.1 and 1.4 of [6].

3.4. Lemma (Blair–Hager).If X × Y is a Lindelöf space, then each cozeroset ofX × Y is
a σ -rectangle.

3.5. Definition. For an uncountable discrete spaceD, let L = D ∪ {p}. Imposing on
L the topology generated by the singletons ofD and the sets containingp together
with a co-countable subset ofD yields a regular LindelöfP -space calledthe one-point
Lindelöfication ofD.

ClearlyL is cozero complemented. (See 1.6(e).)

3.6. Theorem. SupposeY is a Lindelöf space andL is the one-point Lindelöfication o
an uncountable discrete spaceD. ThenY is cozero complemented if and only ifL × Y is
cozero complemented.
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Proof. It follows from 3.3(a) that ifL × Y is cozero complemented, then so isY .
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Conversely supposeY is cozero complemented. It iswell known and easy to see th
the product of two Lindelöf spaces, one of which is aP -space, is Lindelöf. So, i
C ∈ Coz(L×Y ), then by Lemma 3.4, there are, for eachi < ω, cozerosetsVi of L andEi of
Y such thatC = ⋃

i<ω Vi ×Ei . BecauseL is aP -space,Vi andL\Vi are clopen. Moreover
Vi is countable or co-countable according asp ∈ Vi or not. LetI = {i < ω: |Vi | � ω}, let
J = ω\I , and let

M =
(⋃

i∈I

Vi

)
∪

(
L\

⋂
i∈J

Vi

)
.

Then the countable subsetM of D is clopen inL and

C = [
C ∩ (M × Y )

] ∪ [
C ∩ (

(L\M) × Y
)]

.

As M is discrete, by 1.5(c),M × Y is cozero complemented sinceY is. Hence there is
cozero complementS of C ∩ (M × Y ) in M × Y . BecauseM × Y is clopen inL × Y ,
S ∈ Coz(L × Y ).

If i ∈ J , then

(Vi × Ei) ∩ (
(L\M) × Y

) = (L\M) × Ei

becauseL\M ⊂ Vi . So

C ∩ [
(L\M) × Y

] =
⋃
i∈J

(L\M) × Ei = (L\M) ×
⋃
i∈J

Ei.

Now
⋃

i∈J Ei ∈ Coz(Y ), so asY is cozero complemented, there is aT ∈ Coz(Y ) such
thatT ∪ ⋃

i∈J Ei is dense inY , butT ∩ ⋃
i∈J Ei = ∅. Thus,

(L\M) × T ∈ Coz(L × Y ).

It is now easy to see thatS ∪ ((L\M) × T ) is a cozero complement ofC in L × Y . �
Next, we consider product spaces where one factor isβD for some discrete spaceD.
Recall that a space in which every pointhas a separable neighborhood is said to

locally separable.

3.7. Theorem. If M is a locally separable metric space(in particular if M is locally
compact and metric) andD is a discrete space, thenM × βD is cozero complemented.

Proof. It is shown in [1] and noted in 4.4F(c) of [9] that every locally separable me
space is a free union of separable metric spaces. Because by 1.5(c) free unions of coz
complemented are cozero complemented, it is enough to prove 3.7 in caseM is separable
in which caseM is a dense subspace of a compact metric spaceK. ClearlyM × βD is a
dense Lindelöf subspace ofK × βD, so by 2.9(a) above, it suffices to show thatK × βD

is cozero complemented. BecauseK is compact with a countable base andD is discrete,
we conclude thatK ×D is z-embedded inK ×βD from Theorem 3.2 of [6]. So, by 2.8(a
we conclude thatK × βD is cozero complemented, which completes the proof.�
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The spaceU discussed in 3.11 shows that the hypothesis “metric” cannot be omitted

-

ly from

ly

d by

l

n

as
n

erning
in 3.7.
In this last argument, essential use was made of the local separability ofM, but one

might ask:

3.8. Question. If M is a metric space andD is discrete, mustM × βD be cozero comple
mented?

In the remainder of this section,D = D(κ) will denote a discrete space of cardinalityκ ,
andR will denote the real line.

Before presenting a negative answer to 3.1(a), we state a lemma that follows easi
Lemma 3.4 once one observes that: (i) IfD is infinite, then a rectangleS × T in βD × βD

is clopen if it is of the form clβD A × clβD B, whereA andB are subsets ofD, and (ii)
(βD × βD)\(D × D) has empty interior inβD × βD.

3.9. Lemma. If V andV ′ are cozerosets ofβD × βD, they are complementary if and on
if V ∩ (D × D) andV ′ ∩ (D × D) are disjointσ -rectangles whose union isD × D.

3.10. Theorem. βD(κ) × βD(κ) is cozero complemented if and onlyκ � ω.

Proof. If κ � ω, thenβD(κ)× βD(κ) is separable and hence is cozero complemente
1.6(d).

Let ∆ denote the diagonal ofD(c)× D(c) and letV = D(c)×D(c)\∆. By identifying
the setD(c) with the spaceR with its usual topology andD(c)×D(c) with R × R, one
sees how to writeV as a countable union

⋃
n<ω An ×Bn of clopen rectangles with rationa

endpoints. Thus,
⋃

n<ω(clβD An) × (clβD Bn) is a cozerosetU of βD(c)×βD(c) that
meetsD(c)× D(c) in V . If W were a cozero complement ofU in βD × βD, then by
3.4W would be aσ -rectangle ofβD × βD. ThusW ∩ (D × D) would be aσ -rectangle
of D × D. Now clearlyW ∩ (D × D) = ∆. But ∆ is not aσ -rectangle since any clope
rectangle ofD(c)× D(c) contained in∆ is a singleton. So, by Lemma 3.4,βD(c)× βD(c)
is not cozero complemented.

Supposeω < κ � c, regardD(κ) as a subspace ofD(c), and define∆ and V as
above. BecauseV is aσ -rectangle inD(c)× D(c), V ∩ (D(κ)×D(κ)) is aσ -rectangle in
D(κ) × D(κ) whose complement inD(κ) × D(κ) is not aσ -rectangle inD(κ) × D(κ).
Hence the conclusion follows in this case as well.

Finally, if κ > c, thenβD(c) × βD(c) is a clopen subspace ofβD(κ) × β D(κ). So, if
the former were cozero complemented, so would be the latter, which it is not.�

Observe thatβω× βω is cozero complemented; this follows from its separability
well as from the last result. But, by 5.8 of [3], this space is notOz. So, a separable fractio
dense space need not beOz.

The authors wish to acknowledge a useful conversation with Kenneth Kunen conc
the proof of 3.10.

The next example answers a question of Levy and Shapiro posed in [19].
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3.11. Example. A compact cozero complemented space with a dense open subspace that
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is not cozero complemented.
Let L = D ∪ {p} be as in 3.5, letK = βL, and letU = K\{p}. Observe thatU is

pseudocompact because each of its countable sets has compact closure. So,βD × U

is pseudocompact. Thus by a well-known theorem of Glicksberg (see 4AG in
β(βD × U) = βD × βD, whence by Theorems 3.10 and 1.4(a),βD × U is not cozero
complemented. By Theorem 3.6,βD × L is Lindelöf and cozero complemented. Hen
by 2.9,βD × K is cozero complemented. Thus,βD × K is the desired compact coze
complemented space whose dense open subspaceβD × U is not cozero complemented.

Note that by 3.3(b),βD × U is locally cozero complemented.
The argument just given depends essentially on the pseudocompactness of the sU .

This inspires:

3.12. Question. Must every realcompact dense open subspace of a compact c
complemented space be cozero complemented?

We return to the question posed in 3.1(b).

3.13. Theorem. If X × Y is cozero complemented andY is separable, thenX is cozero
complemented.

Proof. It follows from 1.6(d) that the hypothesis implies thatY is cozero complemented
If V ∈ Coz(X), thenV ×Y ∈ Coz(X ×Y ), so by assumption there is aW ∈ Coz(X ×Y )

such thatW ∪ (V × Y ) is dense inX × Y andW ∩ (V × Y ) = ∅. ThusπX[W ] ∩ V = ∅
andπX[W ] ∪ V is dense inX.

By assumption, there is a sequence{yn}n<ω that is dense inY . For eachn < ω,W ∩
(X × {yn}) ∈ Coz(X × {yn}) and hence there exists aUn ∈ Coz(X) such that

W ∩ (
X × {yn}

) = Un × {yn}.
If U = ⋃

n<ω Un, thenU ∈ Coz(X) and since eachUn is contained inπX[W ], U ∩V =
∅.

If U ∪ V failed to be dense inX, it would be disjoint from some nonempty open sub
S of X. Now the nonempty setS × Y ⊂ (X\V ) × Y , and becauseW ∪ (V × Y ) is dense in
X ×Y , it follows that(S ×Y )∩W �= ∅. ThusπY [(S ×Y )∩W ] is a nonempty open subs
of Y , which must contain some elementyk of the dense set{yn}n<ω. It follows that there
is ans ∈ S such that(s, yk) ∈ W , soS ∩ U �= ∅, contrary to our choice ofS. ThusU ∪ V

is dense inX andU is a cozero complement ofV . �
The preceding theorem prompts us to ask:

3.14. Question. Must the product of a cozero complemented spaceX and a separable spa
Y be cozero complemented?

In the special case whereX is alsoσ -compact, ifT is a countable dense subspace ofY ,
X × T is a dense Lindelöf subspace of bothX × Y andX × βY , so thatX × Y is weakly
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Lindelöf. It follows from 2.9 thatX × Y is cozero complemented if and only ifX × βY
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is cozero complemented. So in trying to settle Question 3.14 in this special case, w
assume thatY is compact as well as separable.

Next, we consider the questions raised in 3.2, not only for their own sake, but as
for answering those raised in 3.1(b). Some of the difficulties involved are illustrated b
following

3.15. Example. SupposeD is an uncountable discrete space,K is the compact spac
described in Example 3.12, and consider the sequence of spaces and mappings ill
by

β(D × D) → βD × βD → βD × K → (D × D)∗,

where(D × D)∗ denotes the one-point compactification of the discrete spaceD × D.
Each map in the above sequence is a perfect irreducible surjection that fixesD × D

pointwise. By 1.6 and the remarks precedingit, together with the observation made
3.10, the first and third spaces in this sequence are cozero complemented. By 3.11 and
easy exercise, the second and fourth are not. This shows that neither the property o
cozero complemented nor its negation is preserved under this natural class of mapp

3.16. Definition. Supposef :X → Y is a continuous surjection.

(a) If f [Z(X)] ⊂Z(Y ) thenf is said to bezeroset preserving.
(b) If f [Coz(X)] ⊂ Coz(Y ) thenf is said to becozeroset preserving.

Clearly cozeroset preserving maps are open. However zeroset preserving ma
closed continuous surjections are independent concepts, and not every open continuo
surjection is cozeroset preserving as is shown next.

3.17. Examples. If X is a space andp is a point such that{p} is not aGδ-set, then
{p} /∈ Z(X). If Y = X ⊕ {a} is the free union ofX and a one-point set, define a m
f :Y → X such thatf (a) = p andf |X is the identity map. Thenf is a closed continuou
surjection that is not zeroset preserving.

An example of a zeroset preserving continuous surjection that is not closed is
in [24, 15.17(2)].

Finally, let L = D ∪ {p} be as in 3.5, and letX = D ⊕ L denote the free union ofD
andL. Definef :X → L by letting its restriction to its first summandD shift it to its copy
in L, and by letting its restriction toL be the identity map. It is clear thatf is a continuous
open surjection that is not cozeroset preserving because the image of its first summ
not a cozeroset ofL.

The following definition is given in [20].

3.18. Definition. A space is calledδ-normally separatedif closed sets and disjoint zerose
are completely separated.
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This concept was introducedin [25] where it was calledproperty Z. Every normal space
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is δ-normally separated, but the converse fails. For example, everyP -space and ever
countably compact space isδ-normally separated, but there are nonnormalP -spaces and
nonnormal countably compact spaces. For other examples ofδ-normally separated space
see 1R and 5Q in [22].

3.19. Lemma. If V is an open subset of aδ-normally separated spaceX that is a countable
union of zerosets ofX, thenV is a cozeroset.

Proof. SupposeV = ⋃
n<ω Zn, where eachZn is a zeroset. By assumption, for ea

n < ω, there is anfn ∈ C(X) such thatfn[Zn] = {1} and fn[X\V ] = {0}. Clearly
X\V = ⋂

n<ω Z[fn] ∈ Z(X), soV is a cozeroset. �
The following is 15.14 of [24].

3.20. Lemma. An open perfect surjection is zeroset preserving.

The next result is a step towards answering 3.1(b).

3.21. Theorem. If X is compact,Y is δ-normally separated, andX × Y is cozero
complemented, thenY is cozero complemented.

Proof. If W ∈ Coz(Y ), thenX × W ∈ Coz(X × Y ) and hence by assumption has a coz
complementV ∈ Coz(X × Y ) which is a countable union of zerosetsZn of X × Y . So the
open setπY [V ] is the countable union of theπY [Zn], which are zerosets by 3.20. (AsX
is compact,πY is a perfect map.) It follows then from 3.19 thatπY [V ] ∈ Coz[Y ] and it is
easy to verify thatπY [V ] is a cozero complement ofW in Y . �

Another partial answer to 3.1(b) follows:

3.22. Theorem. If X × Y is weakly Lindelöf and cozero complemented, thenX andY are
cozero complemented.

Proof. As X × Y is weakly Lindelöf and dense inβX × βY , it follows by 2.4 thatX × Y

is Z#-embedded inβX × βY . BecauseX × Y is also cozero complemented,βX × βY is
cozero complemented by 2.9. It then follows from 3.21 that each ofβX andβY is cozero
complemented. SoX andY are cozero complemented by 1.4(a).�

As was shown in 3.10, a product of two compact cozero complemented spaces need
be cozero complemented. Another question related to the questions in 3.1 is:

3.23. Question. Must the product of aP -space and a cozero complemented space be coze
complemented?
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The last example of this section is peculiar in that its conclusion does not follow from
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any of our general theorems on when a product of cozero complemented spaces is
complemented.

3.24. Products of spaces of ordinals. Let Ω denote the first uncountable ordinal, a
Ω∗ (= βΩ) its one-point compactification. We will show thatΩ∗ × Ω∗ is cozero
complemented. Hence sinceβ(Ω × Ω) = βΩ × βΩ , we will know also thatΩ × Ω ,
Ω∗× Ω , andΩ× Ω∗ are cozero complemented. Ifα < ω1, let

A(α) = [α + 1,ω1] × [α + 1,ω1],
B1(α) = [0, α] × [α + 1,ω1],
B2(α) = [0, α] × [0, α], and

B3(α) = [α + 1,ω1] × [0, α].
Note that each of these four sets is clopen inΩ∗ × Ω∗.

By 8LM of [11], if V ∈ Coz(Ω∗ × Ω∗), then either:
Case1. p = (ω1,ω1) ∈ V and there is anα < ω1 such thatA(α) ⊂ V , or
Case2. p /∈ V and there is anα < ω1 such thatV ∩ A(α) = ∅.
In case 1, note thatB2(α) is cozero complemented becauseit is a compact metrizabl

space. Each ofB1(α) andB3(α) contains as a dense subspace the product ofΩ∗ and a
countable discrete space. Recall from 1.6(f) thatΩ∗ is cozero complemented, so the
latter dense subspaces are cozero complemented by 1.5, as well as being Lindelöf. So
1.4(d) or 2.6, each of the spacesB2(α) andB3(α) is cozero complemented. It is easy
verify that the union fori = 1,2,3 of a cozero complement ofV in V ∩ Bi(α) is a cozero
complemented ofV in Ω∗ × Ω∗.

In case 2, one may proceed as in case 1 to combine cozero complements in each of t
rectanglesBi(α) to complete the proof thatΩ∗ × Ω∗ is cozero complemented.

4. Extensions and cozero complementation

First, we consider when being a cozeroset is preserved under extension. A
alteration of the proof of 3.15 in [11] yields:

4.1. Lemma. If X is dense inT andV is a locally compact open subset ofX, thenV is
open inT .

4.2. Lemma. If V is subspace of a spaceX, the following are equivalent:

(a) V is open, locally compact, andσ -compact.
(b) If X is dense in a spaceT , thenV ∈ Coz(T ).

Proof. (a) implies (b). By 4.1,V is open inT as well as locally compact andσ -compact.
Let V = ⋃

n<ω K(n) where eachK(n) is compact. SinceT is a Tychonoff space, ther
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is for eachn < ω an fn ∈ C(T ) such thatfn[K(n)] = 1 and fn[T \V ] = 0. Clearly
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V = ⋃
n<ω coz(fn) ∈ Coz(T ).

(b) implies (a). Note thatX is dense in the compact spaceT = βX, so by (b),
V ∈ Coz(βX). SoV is locally compact,σ -compact, open inβX, and hence inX. �
4.3. Corollary. If V is a locally compactσ -compact cozeroset ofX with no cozero
complement inX, then no extension ofX is cozero complemented.

Proof. If T were a cozero complemented extension ofX, then by 4.2,V ∈ Coz(T ). So
there existsW ∈ Coz(T ) that is a cozero complement ofV in T . BecauseX is dense in
T ,W ∩ X is a cozero complement ofV in X, which is a contradiction. �
4.4. Examples. (a) Using 4.3, we see that the Michael line of 1.7(d) has no co
complemented extension.

(b) Any locally compactσ -compact noncompact spaceV can be embedded as
cozeroset in a space with no cozero complemented extension. To see this, supposV is a
locally compactσ -compact space that is not compact, letb ∈ βV \V , letλ denote a cardina
with uncountable cofinality, and letL(λ) = D ∪ {p} topologized as follows: each point o
D is isolated, and ifp ∈ A ⊂ L(λ), thenA is open inL(λ) if and only if |D\A| < λ.
Finally, letX(λ) be the quotient space obtained from the free union(V ∪ {b}) ⊕ L(λ) by
identifying b andp to a point we denote byr. ClearlyV is open inX(λ) and is locally
compact andσ -compact. So, by 4.2, ifT is an extension ofX(λ), thenV ∈ Coz(T ).

If V has a cozero complementW in T , thenV ∩W = ∅ andV ∪W is dense inT . Then
V ∩(W ∩X(λ)) = ∅ andV ∪(W ∩X(λ)) is dense inX(λ). Becauser ∈ clX(λ) V , it follows
thatW ∩ X(λ) = D, and becauseW ∩ X(λ) ∈ Coz(X(λ)) is anFσ -set inX(λ), there is a
sequence of closed subsets{An: n < ω} of X(λ) whose union isW ∩ X(λ). Sinceλ has
uncountable cofinality,|Ak| = λ for somek < ω. But then(D ∪ {r})\Ak is an open subse
of L(λ) that containsr and has cardinalityλ, contrary to the way in which the topolog
of L(λ) was obtained. We conclude that no extension ofX(λ) is cozero complemented
(A special case of this construction appears in 5.7 of [13].) Note that ifλ � ℵ2, thenL(λ)

is not weakly Lindelöf.

The next lemma will be used to characterize a class of spaces such that eac
extensions is cozero complemented.

4.5. Lemma. If (i) X is locally compact.(ii) X has aσ -compact subspaceS whose closure
is not compact, and(iii) X is not weakly Lindelöf, thenX has a compactification that i
not cozero complemented.

Proof. By (iii) X has an open coverV no countable subfamily of which has a dense un
Let V ∈ V . By (i), for eachx ∈ V , there is a compact setKx and a cozerosetCx such that
x ∈ Cx ⊂ Kx ⊂ V . ThenCx ∈ Coz(Kx) is σ -compact. Thus each member ofV is a union
of σ -compact cozerosets, so we may assume thatV consists ofσ -compact cozerosets.

By (ii), there is a countable subfamilyC of V whose unionW containsS. ThenW is
a locally compact andσ -compact cozeroset ofX. Let T = X ∪ {p} denote the one-poin
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compactification ofX. Then by 4.2,W ∈ CozT . Now clT S is compact, and by (ii) clX S
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is not compact. As clX S ⊂ clT S ⊂ clX S ∪ {p}, it follows thatp ∈ clT S. Thenp ∈ clT W

becauseS ⊂ W .
SupposeW has a cozero complementU in T . BecauseU ∩ W = ∅ andp ∈ clT W ,

we know thatp /∈ U , soU ⊂ X. But the cozerosetU ∈ CozT is σ -compact, so there i
a countable subfamilyA of V whose union containsU . If W ∪ U were dense inT , then
C ∪ A would be a countable subfamily ofV whose union is dense inX, contrary to the
choice ofV . ThusW has no cozero complement, soT is not cozero complemented.�
4.6. Theorem. SupposeX is cozero complemented and not pseudocompact. The
following are equivalent:

(a) Every compactification ofX is cozero complemented.
(b) Every extension ofX is cozero complemented.
(c) X is weakly Lindelöf.

Proof. That (c) implies (b) is immediate from Corollary 2.9. That (b) implies (a) is triv
We now prove that if (c) fails, then (a) fails. BecauseX is not pseudocompact, it follow
from 1.21 and 8A1 of [11] thatX contains a closed countable discreteC-embedded
subspaceD. ThenK = clβX D\X is a compact subspace ofβX\X. BecauseX is not
weakly Lindelöf, there is a collectionC of open subsets ofβX whose union coversX
such that no countable subcollection intersectsX in a dense subspace ofX. For each
x ∈ X, find Cx ∈ C containingx. Becausex /∈ K,there is aVx ∈ Coz(βX) containingx

and disjoint fromK Let Wx = Cx ∩Vx andW = {Wx : x ∈ X}. BecauseW is a refinemen
of C, no countable subfamily ofW has a union whose intersection withX is dense inX.
Consequently the unionY of the members ofW is an open and hence locally compa
subset ofβX that is not weakly Lindelöf. FurthermoreK ∩ Y = ∅, soY has aσ -compact
subsetD whose closure inY is not compact. Finally,X is dense inY .

So, by 4.5 (applied toY ), Y has a compactification that is not cozero complemented
is a compactification ofX. �

This leads us to ask:

4.7. Question. Which pseudocompact but not compact spaces have the property tha
of their extensions is cozero complemented?

5. Local versus global

The main purpose of this section is to address the question of when a space that is
cozero complemented must be cozero complemented. That this is not always the case w
be shown below. The main results of this section are 5.2 and 5.5.

Recall that every cozeroset isz- and henceZ#-embedded in any space containing
Thus by 2.5, ifX is cozero complemented, then every neighborhood of each pointX

contains a cozero complemented neighborhood.
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5.1. Proposition. If T is a countable union of cozero complemented cozerosets, thenT is

d,
sume

t

nly

n

sy
phic

me

d

a

cozero complemented.

Proof. SupposeT = ⋃
n<ω Vn, where eachVn ∈ Coz(T ) and is cozero complemente

and letC ∈ Coz(T ). Because a finite union of cozerosets is a cozeroset, we may as
thatVn ⊂ Vn+1 for all n < ω. By assumption, for eachn, there is aWn ∈ Coz(Vn) such that
(C ∩Vn)∩Wn = ∅ and(C ∩Vn)∪Wn is dense inVn. By 1.5(a),W = ⋃

n<ω Wn ∈ Coz(T ).
It will be shown thatW is a cozero complement ofC in T ; that is (i)C ∪ W is dense inT
and (ii) C ∩ W = ∅. For, if S is a nonempty open subset ofT , thenS ∩ Vm �= ∅ for some
m < ω, and henceS ∩ [(C ∩Vm)∪Wm] �= ∅, soS ∩ (C ∪W) �= ∅ and (i) holds. To see tha
(ii) holds, note that

C ∩ W =
( ⋃

n<ω

C ∩ Vn

)
∩

( ⋃
j<ω

(W ∩ Vj )

)
=

⋃
n<ω

⋃
j<ω

(C ∩ Vn ∩ W ∩ Vj )

=
⋃
n<ω

⋃
j<ω

(C ∩ Vmin(n,j)) ∩ Wmin(n,j)) = ∅. �

5.2. Theorem. If a spaceX is weakly Lindelöf, then it is cozero complemented if and o
if it is locally cozero complemented.

Proof. As noted above, we need only prove the sufficiency. IfU(x) is a cozero
complemented neighborhood ofx in X, andV (x) is a cozeroset such thatx ∈ V (x) ⊂
U(x), thenV (x) is cozero complemented by the remarks preceding 5.1. By assumptio
the open cover{V (x): x ∈ X} has a countable subfamily whose unionV is dense
in X. Moreover,V is cozero complemented by 5.1. So, by 2.4 and 2.8,X is cozero
complemented. �

The example that follows shows that the assumption in 5.2 thatX is weakly Lindelöf
may not be dropped altogether.

5.3. Example. A locally cozero complemented space that is not cozero complemented.
Recall from Example 3.11 that ifD is a discrete space of cardinalityω1 and U =⋃{clβD A: A ⊂ D and|A| = ω}, thenβD × U fails to be cozero complemented. It is ea

to verify, however, that each point of thisspace has a clopen neighborhood homeomor
with βD × βω, which is cozero complemented by 3.3(b). SoβD × U is locally cozero
complemented.

Next, we exhibit another way that a locallycozero complemented is forced to beco
cozero complemented.

5.4. Lemma. The unionX of a locally finite family{Yα: α ∈ Γ } of cozero complemente
cozerosets is cozero complemented.

Proof. If V ∈ Coz(X), then V ∩ Yα ∈ Coz(Yα) for all α ∈ Γ and hence there is
Cα ∈ Coz(Yα) such thatCα ∩ (V ∩ Yα) = ∅ andCα ∪ (V ∩ Yα) is dense inYα . Clearly,
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Cα = coz(fα) for somefα � 0 in C(Yα). Observe that the local finiteness of the collection
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{Yα : α ∈ Γ } enables us to definef :X → R by lettingf (x) = ∑{fα(x): x ∈ Cα} for each
x ∈ X. We claim thatf ∈ C(X). For if p ∈ X, there is an open neighborhoodUp of p such
that{α ∈ Γ : Up ∩ Cα �= ∅} is a finite set. Thus, the restriction off to Up is continuous. It
follows from 1A(2) of [11] thatf ∈ C(X). Thus,

V ∩ coz(f ) = V ∩
(⋃

{Cα : α ∈ Γ }
)

=
⋃

{V ∩ Cα : α ∈ Γ } = ∅.

If W is open in X, then someYα meets it, soW ∩ (V ∪ Cα) �= ∅, and hence
W ∩ (V ∪ coz(f )) �= ∅. ThusV ∪ coz(f ) is dense inX, so coz(f ) is a cozero complemen
of V . �
5.5. Theorem. A locally cozero complemented paracompact spaceX is cozero comple
mented.

Proof. BecauseX is locally cozero complemented, it has a coverC consisting of cozero
complemented cozerosets. BecauseX is paracompact,C has a locally finite partition o
unity Φ subordinated to it. Thus for allf ∈ Φ,coz(f ) ⊂ C for someC ∈ C. Since
cozerosets of cozero complemented spaces are cozero complemented, so is coz(f ). Finally,
becauseΦ is locally finite,{coz(f ): f ∈ Φ} is a locally finite cover ofX. So by 5.4,X is
cozero complemented.�

Recall from 1.6(d) that every ccc-space iscozero complemented. So 5.5 yiel
immediately:

5.6. Corollary. Every paracompact space in which each point has a neighborhood
satisfies the countable chain condition(in particular, any paracompact space that is loca
separable) is cozero complemented.

A spaceX is calledhereditarily Lindelöfif each of its subspaces is Lindelöf. It is we
known and easy to see that a space is hereditarily Lindelöf if and only if each of its
subspaces is Lindelöf. As is noted in 3P of [22], this latter condition implies thatX is a
ccc-space and hence is cozero complemented.

5.7. Corollary. Every hereditarily Lindelöf space is cozero complemented.

5.8. Question. Can the hypothesis “paracompact” be replaced by “realcompact” in 5.5?

6. Open questions: products of ccc-spaces

A number of open questions have been stated above. We summarize and add to t
important questions in what follows.

6.1. SupposeX × Y is cozero complemented. MustX or Y be cozero complemented?
this generality, we cannot answer this question even ifX = Y , but we showed in Section
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that both factors are cozero complemented if the product is weakly Lindelöf and that ifX
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has an isolated point, thenY is cozero complemented.

Recall from [18] that a space for which oneand hence all of itscompactification is
separable is said to bedense separable.Such a space need not be separable but is co
complemented. One may deduce easily from this paper that ifX × Y is dense separabl
then bothX andY are cozero complemented.

6.2. Because the space of minimal prime ideals ofC(X) is determined completely b
this algebra, we may assume without loss of generality that the spacesX we consider
are realcompact. While we find this hypothesis difficult to use, we may ask how
of the results given above might be improved or changed by adding this hypot
For example, must a dense (or dense or open) realcompact subspace of a (co
cozero complemented space be cozero complemented? Recall that the subspace given
Example 3.11 above is not realcompact.

6.3. Is there a class of mapping between spaces which preserve cozero complementati
directly or inversely that makes it possible to create new cozero complemented spaces f
old ones?

6.4. In 1.6(e), it is shown that every almostP -point of a cozero complemented space is aP -
point. Note that both the Alexandroff double of[0,1] and the Michael line of Example 1.7
neither of which is cozero complemented, have nowhere dense closed almostP -sets that
fail to be P -sets. This leads us to ask if every nowhere dense closed almostP -set of a
cozero complemented space must be aP -set—at least if the space is realcompact?

6.5. Characterize those spaces all of whose subspaces are cozero complemented.

It was shown in 1.6(d) that ccc-spaces are cozero complemented; indeed they a
fraction dense. It is known that if Martin’s Axiom and the negation of the continu
hypothesis (CH), hold then arbitrary products of ccc-spaces are ccc (and hence
complemented). So it consistent with Zermelo–Fraenkel set theory together with the
of choice (ZFC) to believe that an arbitrary product of ccc-spaces is cozero complemen
There are, however, models of set theory in which a product of a ccc-space with it
not ccc. More precisely, a totally ordered ccc-space that fails to be separable is c
Souslin line, and there are models of set theory in which CH holds and Souslin lines
Moreover, ccc fails to hold in any product of a Souslin line with itself, although there
models for ZFC in which ccc can hold for products of some pairs of Souslin lines.
background and definitions of unfamiliar terminology in the above, see [2], Chapter II
[17], and 3T of [22].)

In a recent communication, Gary Gruenhage announced that ifS is a connected Sousli
line, thenS × S is cozero complemented. However, the more general question remains.

6.6. Must every finite or infinite product ofccc-spaces be cozero complemented in
models of ZFC?



170 M. Henriksen, R.G. Woods / Topology and its Applications 141 (2004) 147–170

We are indebted to the referee for making a large number of constructive suggestions
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for improving the quality of our exposition.

Added March 9, 2004. Gary Gruenhage has announced some results about wh
product of two spaces is cozero complemented. In particular, Question 3.1(b), 3.14
and 6.6 above have negative answers, 3.8 has an affirmative answer, and it is
that the product of a cozero complemented space and a separable metric space i
complemented.
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