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Abstract 

Surface roughness inspection in robotic abrasive belt machining process is an off-line operation which is time-consuming. An in-process multi-
sensor integration technique comprising of force, accelerometer and acoustic emission sensor was developed to predict state of the surface 
roughness during machining. Time and frequency-domain features extracted from sensor signals were correlated with the corresponding surface 
roughness to train the Support vector machines (SVM’s) in Matlab toolbox and a classification model was developed. Prediction accuracy of the 
classification model shows proposed in-process surface roughness recognition system can be integrated with abrasive belt machining process for 
capping lead-time and is reliable. 
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1. Introduction 

Surface quality which is assessed in terms of surface 
roughness is an off-line process. This process is both time-
consuming and laborious. It takes time when parts are relocated 
from the machining station to the measurement station. Much 
research effort previously has been devoted for studying 
surface roughness prediction in real time in conventional 
machining such as end milling & hard turning operation [1]. 
Intuitively, surface roughness is also correlated to the frictional 
property of the two sliding surfaces [2-4]. By monitoring the 
property, the surface roughness can also be estimated. 
Predictive models such as ANN, ANFIS & SVM were 
developed in these researches and high correlations were 
established between predicted surface roughness values and 
experimentally measured values in off-line. However In-
process surface roughness prediction in compliant tools such as 
abrasive belt machining process still remains one of the most 
challenging problems in industry due to the high complexity 

and nonlinearity. Abrasive belt are form-adaptive due to their 
inherent flexibility. Khellouki et al. [5] have investigated about 
effective contact duration between abrasive grains and 
machined surface interface in abrasive belt grinding process 
which revealed number of active abrasive grains increase based 
on the interaction on the surface roughness. Xue et al. [6] 
established a neuro-fuzzy model and suggested that data 
acquired through the forces and acoustic emission sensors can 
be correlated with the surface roughness using signal 
processing algorithm there by opening opportunities for 
predicting the surface quality in real time for tools with 
multiple cutting edges. Incorporation of a sensor technology for 
precision manufacturing process such as abrasive machining 
process has been investigated by D. A. Dornfeld et al. [7], 
which revealed that force, accelerometer, laser and acoustic 
emission are most critical sensor required in precision 
machining for assessing surface finish. Cutting forces and 
machining vibrations have been reported to be much indicative 
than other monitoring signals in predicting surface roughness 
in hard tooling [8-10]. Acoustic emission sensitivity to abrasive 
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process such as grinding based on inherent frictional 
interactions has been applied by H.G.Cai [11]. This research 
tries to predict the surface roughness in coated abrasive 
compliant belt machining process in real time with the help of 
smart sensors tool by virtual verification using the machine 
learning based classification technique such as Support Vector 
Machines (SVM’s). This kind of metrology adds value for the 
whole manufacturing process 

2. Multi-sensor integration - Complementary approach 

In-process sensors can be exercised strategically for machining 
process automation as they have the ability to predict the 
process state based on sensory feedback. A complementary 
based multi-sensor integration approach has been proposed as 
a strategy to estimate the values of physical variables being 
measured since any compliant abrasive machining process is 
difficult to understand and knowledge available on such 
processes are inadequate.  

A complementary multi-sensor integration system 
incorporating force, accelerometer and acoustic emission is 
developed to give a more complete picture of the state of 
abrasive belt machining which is dynamic. An in-situ surface 
roughness prediction system based on LabVIEW platform has 
been developed consisting of a Kistler 9256C2 three 
component dynamometer, Kistler 8763A500 triaxel 
accelerometer and Kistler Piezotron® Acoustic Emission 
Sensor as shown in Fig.  1. Aluminium 6061 workpiece of 
different surface roughness (Ra) of 3 µm, 2 µm, 1.2 µm and 0.3 
µm is then mounted on the dynamometer to calculate normal 
force and tangential force. Kistler 8763A500 triaxel 
accelerometer sensor is closely located near the tension arm of 
the electric belt grinder to obtain data on tool vibration during 
machining. Acoustic Emission Sensor is located in close 
proximity with respect to the machining zone in the workpiece 
with good acoustic coupling. 

3.  Experimentation  

3.1. Methodology 

Surfaces of different roughness of 3 µm, 2 µm, 1.2 µm and 0.3 
µm Ra are machined with the abrasive belt with the same 

machining condition. The signatures during machining of 
different surface roughness are captured using the appropriate 
sensors placed at 1 kHz. The raw sensor data contain fixed-
width sliding windows (100readings/window). From each 
window, a vector of 27 independent features are extracted from 
time and frequency domain such as shown in Table 1.  
 
Table 1. List of time and frequency domain features extracted from the sensor 

signatures 
 

Feature No Feature Name 

1 Mean value 
2 Root mean square 

3-5 Autocorrelation (Height of main peak, 
Height and Position of second peak) 

6 Kurtosis 
7 Skewness 
8 Crest-factor 
9 Band-power 
10 

11-22 
 

23-27 

Standard deviation 
Spectral Peak Features (Height and 
position of first 6 peaks) 
Spectral power (Features in 5 adjacent and 
pre-defined frequency bands) 

Once the features are extracted, the supervised learning 
technique based on support vector machines such as Linear-
SVM, Quadratic–SVM and Cubic–SVM are used to create a 
classification model with the four different surface roughness 
(3 μm, 2 μm, 1.2 μm and 0.3 μm) as the classifiers in Matlab 
Classification learner Tool. Once the model is trained, fresh set 
of signatures are extracted from the surface roughness (3 μm, 2 
μm, 1.2 μm and 0.3 μm) with the same machining condition. 
These features are passed into the classification model 
developed and trained using SVM to check the robustness of 
the model. Schematic representation of the methodology is 
described in the Fig.  3. 

3.2. Surface roughness estimation: SVM -classification 
modeling 

Support vector machines are supervised machine learning 
methods for solving problems in nonlinear classification [12] 
using kernel trick which has been explained in this section. In 
a real-valued vector space (X=R^N), let’s take a binary linear 
classification problem (i.e. . An n-dimensional 
pattern (object)  has n coordinates, (

where each is a real number   for i 
= 1, 2… n). Each pattern  fits to a class  
If these two classes can find a linear function 

 whenever the label  and  whenever the 
label  they can be linearly distinguishable of the 
inputs  .This can be suitably expressed by a hyper-plane 
in the space   .For linearly separable data a hyper-plane 

 can be determined as, 
 

 

 
Where  is an n-dimensional vector and  is a scalar which 
determine the optimal separating hyper-plane that leaves 

Fig.  1. Experimental setup for surface roughness prediction in abrasive belt 
machining 
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maximum margin from both the classes.  However in-case of 
non-linear classification a Kernel trick is used. Kernel trick 
transforms the data into a higher dimensional feature space to 
make it possible to perform linear separation. SVM using a 
non-linear kernel function  transforms data from 
the input space  to a feature space . In the space  the 
discriminant function is: 
 

 
 
Linear classification can be derived from the non-linear SVM 
by implicitly mapping the input data  into the feature space 
and training the SVM for the mapped features . The 
weight vector can be expressed as a linear combination of the 
training examples, i.e.  hence the equation 2 
takes the form: 
 

 

 
In the feature space,  this expression takes the form: 
 

 

 
Non-linear SVMs can then be trained by replacing the inner 
products in Equation 4 with the corresponding kernel .  
 

 
 
The resulting classifier for the non-linear SVM is then 
represented In terms of the kernel function as: 
 

 

In this research three kernel functions such as linear, quadratic, 
and cubic SVM’s are used for mapping data onto a high-
dimensional feature space to derive linear classification from 
the non-linear form using the four surface roughness values 
considered as classifiers. 

3.3. Experimental trials 

Electrically-Powered abrasive belt tool that runs at 11,000 rpm 
at unloading condition and can drive belts of grit size 60 with 
dimensions about 8" to 3/4" wide x 18" long is moved along 
the linear tool path planned using ABB Robot Studio. A 
constant contact force of 25 N throughout the abrasive belt 
finishing process in normal direction (Z-axis) is achieved by 
using force sensor (ATI Omega 160) attached to the end 
effector of robotic arm of ABB 6660 robot. The signature from 
the dynamometer on each pass suggest that forces along X 
(along the direction of the pass) and Z (Normal to the 
workpiece surface) axis show some significance compared to 
force along y-axis (which is perpendicular to the pass).In case 
of accelerometer all the signatures from three axis showed 
significance. However noise component in accelerometer 
mounted on to the running tool are eliminated using 
Butterworth-bandstop filter. Once the features are extracted 
from the force, acceleration and acoustic signature, support 
vector machine (SVM) is used to create a classification model 
with different surface roughness’s as classifier as discussed in 
previous sections. 

4. Results and Analysis 

Power spectral density comparison plot in the Fig.  3 shows 
variation in height and position of the first six highest peaks for 
different surface roughness due to different tribological 
conditions between surface-belt interfaces which can be used 
as a feature set to classify between four different surfaces in 
real time. All of the implementations of the three classification 

Fig.  2.Methodology to predict surface roughness using SVM classification algorithm 
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models were performed by using MATLAB classification 
learner Toolbox. 

 

Fig.  3.Comparison between power spectral features for different roughness 

Performance-testing experiment is designed to test the 
predictive ability of this classification models with fresh set of 
signatures obtained under same machining conditions. The 
accuracy of prediction of Linear-SVM, Quadratic-SVM and 
Cubic-SVM was 94.5%, 96.9% and 96.9% respectively. Fig.  4 
shows confusion matrices obtained with Cubic-SVM model. 
As can be seen, there is a clear separation between different 
surface roughness classifiers and the fraction of samples 
misclassified of the developed model is small. Similar structure 
is observed for all other classifications models as well. Among 
three of SVM models considered Quadratic-SVM and Cubic-
SVM were found to be the best in terms of predictive ability. 
 

 

Fig.  4.Confusion matrix of the Cubic-SVM classifier model 

5. Conclusion 

Sensor enabled in-situ surface roughness prediction has the 
potential to significantly improve productivity while reducing 
lead time for manufacturing components. It has been shown 
that it is possible and useful to use complementary multi-sensor 
integration technique in abrasive belt machining process to 
measure surface finish in real time. This technique can be 
further extended for surface quality prediction using other type 
of compliant tools. Three types of support vector classification 
models such as linear, quadratic and cubic has been developed, 
demonstrating a prediction accuracy of 94.5%, 96.9% and 
96.9% respectively. Proposed in-process surface roughness 
identification system can predict surface finish in the 

micrometer range when machining surfaces with the compliant 
abrasive belt. Such a greater precision in this range can only be 
achieved using high-precision profilometers or scanners. 
Inclusion of higher number of features will result in higher 
computational time, so feature optimization technique may add 
a degree of robustness to the classification model developed. 
The technique is established on planar surfaces while 
machining free form surfaces are subject to further research.  
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