
Journal of Computational and Applied Mathematics 236 (2011) 1009–1023

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Higher-order semi-implicit Taylor schemes for Itô stochastic differential
equations
R. Zeghdane a,∗, L. Abbaoui b, A. Tocino c

a University of Bordj Bou Arreridj, Algeria
b University of Setif, Algeria
c University of Salamanca, Spain

a r t i c l e i n f o

Article history:
Received 25 July 2009
Received in revised form 7 April 2011

Keywords:
Stochastic Taylor formula
Weak approximations
Stiff stochastic differential equations
Weak numerical schemes
Semi-implicit schemes
Mean-square stability

a b s t r a c t

The paper considers the derivation of families of semi-implicit schemes of weak order
N = 3.0 (general case) and N = 4.0 (additive noise case) for the numerical solution of Itô
stochastic differential equations. The degree of implicitness of the schemes depends on the
selection ofN parameterswhich vary between 0 and 1 and the families contain as particular
cases the 3.0 and 4.0 weak order explicit Taylor schemes. Since the implementation of the
multiple integrals that appear in these theoretical schemes is difficult, for the applications
they are replaced by simpler random variables, obtaining simplified schemes. In this way,
for the multidimensional case with one-dimensional noise, we present an infinite family
of semi-implicit simplified schemes of weak order 3.0 and for the multidimensional case
with additive one-dimensional noise, we give an infinite family of semi-implicit simplified
schemes ofweak order 4.0. Themean-square stability of the 3.0 family is analyzed, conclud-
ing that, as in the deterministic case, the stability behavior improves when the degree of
implicitness grows. Numerical experiments confirming the theoretical results are shown.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Analytical solutions of stochastic differential equations (SDEs) are, in general, not available and investigators are forced
to use numerical methods that give approximated solutions. There are mainly two ways of measuring the accuracy of a
numerical solution of an SDE: mean-square (strong) convergence is suitable when the sample paths of the solutions need to
be approximated; if one is only interested in the moments of the solution, weak approximations are used. Many numerical
methods have been proposed for both types of convergence, see for example [1] and the references therein. As in the
deterministic case, many problems lead to stiff SDEs, characterized, see for example [1], by having a linearized system with
Lyapunov exponents λd ≤ · · · ≤ λ2 ≤ λ1 < 0 verifying λd ≪ λ1. The integration of stiff SDEs requires the use of schemes
with good stability properties, such as implicit or predictor–corrector methods. A number of implicit schemes have been
proposed in the literature, see for example [1–7]. To increase the efficiency without losing the stability properties, following
the pattern laid down by Platen, see [1] or [6], in this work, a general approach to construct semi-implicit Taylor methods is
developed. The paper is organized as follows: In Section 2, weak convergence is defined and some basic results are recalled.
Section 3 is devoted to explicit weak Taylor schemes. Truncated stochastic Taylor expansions are used in Section 4 to derive
a family of third weak order semi-implicit schemes for general Itô SDEs and a fourth order family suitable for equations with
additive noise. In addition, in the scalar noise case, simplified versions of the obtained families are given. In Section 5, we
show that the stability behavior of each semi-implicit simplified scheme depends on its degree of implicitness. Numerical
results that confirm the convergence and stability properties are given in the last section.
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2. Weak approximations

Consider a filtered probability space (Ω, At , P), anm-dimensionalWiener process {Wt}with componentsW 1
t , . . . ,Wm

t ,
and an Itô stochastic differential equation

dXt = a(t, Xt) dt +

m−
j=1

bj(t, Xt) dW
j
t , (1)

with d-dimensional drift vector awith components a1, . . . , ad and diffusion coefficients bj, j = 1, . . . ,m, with components
b1j, . . . , bdj. The functions a = a(t, x) and bj = bj(t, x) are assumed to be defined andmeasurable in [t0, T ]×Rd and to satisfy
both Lipschitz and linear growth bound conditions in x. These assumptions ensure the existence of a unique solution of the
sde (1) with the initial condition Xt0 = X0 if X0 is Ft0-measurable, see [8]. We shall suppose that all of the initial moments
E[|X0|

r
] < ∞, r = 1, 2, . . . exist; so, the moments of every Xt will exist (see [8]). Let Xt,x denote the solution of (1) starting

at time t ∈ [t0, T ] at x ∈ Rd. Let CP denote the space of functions f (t, x) defined in [t0, T ]×Rd that have polynomial growth
(with respect to x) and CN

P , N = 1, 2, . . . , the subspace of functions f ∈ CP with all partial derivatives up to order N in CP .
Together with Eq. (1) we consider the one-step approximation

X t,x(t + h) = x + A(t, x, h, ξ), (2)

where A is someRd-valued function and ξ a randomvector.We shall say that the one-step approximation X = X t,x converges
weakly to X = Xt,x with local order N + 1 if there exists a function K(x) ∈ CP such thatE


l∏

j=1

(X
ij
− xij) −

l∏
j=1

(X ij − xij)

 ≤ K(x)hN+1, ij = 1, . . . , d, l = 1, . . . , 2N + 2, (3)

where z i denotes the ith component of the vector z. From (3) it is obvious that the differences between the moments, from
the first up to (2N + 2)th inclusively of the vector X and the corresponding moments of its approximation X have N + 1
order of smallness in h.

Given an equidistant discretization {t0, t1, . . . , tM} of the time interval [t0, T ]with step size∆ = (T−t0)/M , the one-step
approximation (2) gives the scheme:

Y0 = X0

Yn+1 = Yn + A(tn, Yn, ∆, ξn), n = 0, . . . ,M − 1.

The scheme Y = {Y0, Y1, . . . , YM} is said to converge weakly to X with order N if for each g ∈ C2N+2
P there exist constants

Kg ≥ 0 and ∆0 > 0 such that

|E[g(YM) − g(XT )]| ≤ Kg ∆N

for all ∆ ∈ (0, ∆0).
The number N in the above definition is the order of the scheme on an interval. Based on a theorem due to Milstein

(see [9]) one can obtain schemes of order N by means of one-step approximations of local order N + 1.
We shall say that two one-step approximations X t,x and X t,x of the solution Xt,x are N-equivalent if there exists a function

K(x) ∈ CP such thatE


l∏
j=1

(X
ij
− xij) −

l∏
j=1

(X
ij
− xij)

 ≤ K(x)hN+1, ij = 1, . . . , d, l = 1, . . . , 2N + 2.

To denote that the one-step approximations X t,x(t+h) and X t,x(t+h) areN-equivalent wewrite X t,x
(N)
≃ X t,x or Y n+1

(N)
≃ Y n+1

if Y and Y are the corresponding schemes.
It is obvious that if the one-step approximations X t,x and X t,x are N-equivalent then either both or none of them have

local order N + 1. Notice also that, with this notation, X t,x
(N)
≃ Xt,x for any local order N + 1 one-step approximation X t,x of

the solution Xt,x.

3. Weak Taylor schemes

Stochastic Taylor expansions, see [10], provide a systematicway to constructweak Taylor schemes of any order. Following
Kloeden and Platen [1], together with Eq. (1) define the differential operators

L(0)
=

∂

∂t
+

d−
i=1

ai
∂

∂xi
+

1
2

d−
i,j=1

m−
k=1

bikbjk
∂2

∂xi∂xj
;

L(k)
=

d−
i=1

bik
∂

∂xi
k = 1, . . . ,m. (4)



R. Zeghdane et al. / Journal of Computational and Applied Mathematics 236 (2011) 1009–1023 1011

For each multi-index α = (j1, . . . , jl) with length l(α) = l > 1 and components j1, . . . , jl ∈ {0, 1, . . . ,m}, define
Lα

= L(j1)L(j2) · · · L(jl). Theorem 5.11.1 in [1] proves that for an Itô stochastic differential equation with drift and diffusion
components ak and bkj in C

2(N+1)
P and satisfying Lipschitz and linear growth conditions, the weak order N ∈ N truncated

Itô–Taylor expansion of f (t, x) = x (obtained retaining in the stochastic Taylor expansion the terms corresponding tomulti-
indices of length up to N) provides a one-step approximation of Xt of local order N + 1:

f (t, Xt)
(N)
≃ f (t0, Xt0) +

−
1≤l(α)≤N

(Lα f )(t0, Xt0) Iα,t0,t , (5)

where Iα,t0,t =
 t
t0
(
 sl
t0

. . .
 s3
t0

(
 s2
t0

dW j1
s1 )dW

j2
s2 . . .)dW jl

sl with dW 0
t = dt . As a consequence, the corresponding scheme

Yn+1 = Yn +

N−
l(α)=1

Lα f · Iα (6)

where Iα stands for Iα,tn,tn+1 and Lα f stands for (Lα f )(tn, Yn), has weak order N and is called theweak order N Taylor scheme.
From now on, for simplicity, when a function g in a scheme is evaluated at (tn, Yn) this point is omitted and we write gn or
simply g .

As explained in Section 2 the scheme (6) still achievesweak orderN if the Itômultiple integrals Iα are replaced by simpler
random variables Îα with the same first 2N + 1 moments, i.e. satisfying the conditionsE


l∏

k=1

Iαk −

l∏
k=1

Îαk

 ≤ K ∆N+1 (7)

for all choices of multi-indices α1, . . . , αl, l = 1, . . . , 2N + 1, with 1 ≤ l(αk) ≤ N . The obtained schemes in this way

Yn+1 = Yn +

N−
l(α)=1

Lα f Îα

are called simplified weak order N Taylor schemes.
For example, taking N = 1 in (6) we obtain the Euler scheme

Yn+1 = Yn + a ∆ +

m−
j=1

bj 1W j
n, (8)

where 1W j
n = I(j), j = 1, . . . ,m, are the Gaussian increment components of the Wiener process on [tn, tn+1]. It achieves

weak order 1.0 and the variables I(j) = 1W j in (8), j = 1, . . . ,m, can be replaced by random variables Î(j) = 1Ŵ j satisfying
conditions (7) with N = 1, which can be summarized in the moment condition

|E(1Ŵ j)| + |E((1Ŵ j)3)| + |E(1Ŵ j)2 − ∆| ≤ K ∆2. (9)

The Euler scheme is the simplest Taylor scheme. The second weak order Taylor scheme was originally proposed in [11] and
can be obtained by the above general procedure taking N = 2, see [1].

To obtain the weak order 3.0 Taylor scheme one takes N = 3 in (6). Platen proposed, see [1], the following simplified
weak order 3.0 Taylor scheme in the scalar case with scalar noise (d = m = 1):

Yn+1 = Yn + a ∆ + b 1Ŵ +
1
2
L1b((1Ŵ )2 − ∆) + L1a 1Ẑ + L0a

∆2

2

+ L0b(1Ŵ∆ − 1Ẑ) + L(0,0)a
∆3

6
+

1
6
(L(0,0)b + L(0,1)a + L(1,0)a)1Ŵ∆2

+
1
6
(L(1,1)a + L(0,1)b + L(1,0)b)((1Ŵ )2 − ∆)∆ +

1
6
L(1,1)b((1Ŵ )2 − 3∆)1Ŵ , (10)

where 1Ŵ and 1Ẑ are correlated Gaussian random variables with

1Ŵ ∼ N(0, ∆), 1Ẑ ∼ N

0,

1
3
∆3


and E(1Ŵ 1Ẑ) =
1
2
∆2. (11)

For a more efficient implementation, the scheme (10) is proposed in [12] using simpler variables.
To derive the weak order 4.0 Taylor scheme one includes all the fourth order multiple Itô integrals from the Itô Taylor

expansion. For the one-dimensional additive noise case (m = 1, b(t, x) = b(t) for all (t, x)), the explicit 4.0 order weak
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Taylor scheme is

Yn+1 = Yn + a ∆ + b I(1) + L(0)a
∆2

2
+ L(1)a I(1,0) + L(0)b I(0,1) + L(0,0)a

∆3

3!

+ L(1,0)a I(1,0,0) + L(0,1)a I(0,1,0) + L(0,0)b I(0,0,1) + L(1,1)a I(1,1,0) + L(0,0,0)a
∆4

4!
+ L(1,0,0)a I(1,0,0,0) + L(0,1,0)a I(0,1,0,0) + L(0,0,1)a I(0,0,1,0) + L(0,0,0)b I(0,0,0,1)

+ L(1,1,0)a I(1,1,0,0) + L(1,0,1)a I(1,0,1,0) + L(0,1,1)a I(0,1,1,0) + L(1,1,1)a I(1,1,1,0). (12)

In [13] a simplified explicit 4.0 weak order Taylor scheme was obtained replacing the fifteen Iα ’s that appear in (12) by the
following variables Îα ’s satisfying (7) with N = 4:

Î(1) = 1Ŵ ; I(1,0) = 1Ẑ; Î(0,1) = 1Ŵ ∆ − 1Ẑ; Î(0,1,0) =
1
6

1Ŵ ∆2
;

Î(1,1,0) =
1 −

√
2

2
1Ŵ 1Ẑ +

3
√
2 − 2
24

1Ŵ 2 ∆ −
4 +

√
2

24
∆2

+

√
2
2

1Ẑ2/∆;

Î(1,0,0) =
1
2

1Ẑ ∆ −
1
12

1Ŵ ∆2
; Î(0,0,1) = −

1
2

1Ẑ ∆ +
5
12

1Ŵ ∆2
; (13)

Î(1,1,1,0) =
1
24

(1Ŵ 2
− 3 ∆)1Ŵ ∆; Î(1,1,0,0) = Î(0,1,1,0) = Î(1,0,1,0) =

1
24

(1Ŵ 2
− ∆)∆2

;

Î(1,0,0,0) = Î(0,1,0,0) = Î(0,0,1,0) = Î(0,0,0,1) =
1
24

1Ŵ ∆3,

where 1Ŵ and 1Ẑ are as in (11).

4. Semi-implicit Taylor schemes

As it was stated, the introduction of implicitness in the terms of a stochastic scheme is a useful tool to overcome stability
problems. The simplest method of this kind is the implicit Euler scheme

Yn+1 = Yn + a(tn+1, Yn+1)∆ +

m−
j=1

bj 1Ŵ j (14)

where 1Ŵ j are independent random variables verifying the moment condition (9). From the explicit scheme (8) and the
implicit scheme (14), a family of semi-implicit Euler schemes can be defined by

Yn+1 = Yn + ((1 − θ)a + θ a(tn+1, Yn+1))∆ +

m−
j=1

bj 1Ŵ j (15)

where θ ∈ [0, 1] can be interpreted as the degree of implicitness. These schemes, also called θ-methods, have order 1.0 in
the weak sense and their stability properties have been studied in [14–17]. Milstein presented in [4], see also [9], a two-
parameter family of semi-implicit weak order 2.0 methods where the parameters can be chosen in [0, 1] to determine
the degree of implicitness. The stability properties of this family of schemes have been studied in [18]. Platen [6], see
also [1], proposed away to obtain these 1.0 and 2.0 families of semi-implicit schemes using truncated Itô–Taylor expansions.
Systematizing this procedure we propose in this section families of semi-implicit schemes of third and fourth order
containing the explicit schemes (10) and (12) respectively as the members with null degree of implicitness.

4.1. Semi-implicit weak order 3.0 Taylor schemes

Using (5) with N = 3 one obtains for any smooth function f (t, x) that

fn+1
(3)
≃ fn +

m−
j=0

f(j),n I(j) +

m−
j1,j2=0

f(j1,j2),n I(j1,j2) +

m−
j1,j2,j3=0

f(j1,j2,j3),n I(j1,j2,j3), (16)

where fα,n means (Lα f )(tn, Xn) for each multi-index α. In particular, if f (t, x) = xwe have

Xn+1 − Xn
(3)
≃

m−
j=0

f(j),n I(j) +

m−
j1,j2=0

f(j1,j2),n I(j1,j2) +

m−
j1,j2,j3=0

f(j1,j2,j3),n I(j1,j2,j3),n (17)

where f(0) = a, f(j) = bj, j = 1, . . . ,m, f(0,0) = L(0)a, etc.
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Applying the expansion (16) to the coefficient function f(0) we obtain

f(0),n+1
(3)
≃ f(0),n +

m−
j=0

f(j,0),n I(j) +

m−
j1,j2=0

f(j1,j2,0),n I(j1,j2) +

m−
j1,j2,j3=0

f(j1,j2,j3,0),n I(j1,j2,j3). (18)

Since any product I(j1,j2,j3),n I(0) is a linear combination of multiple integrals of length 4 we have I(j1,j2,j3),n I(0)
(3)
≃ 0 for

j1, j2, j3 = 0, . . . ,m. Then from (18)

f(0),n ∆
(3)
≃ f(0),n+1 ∆ −

m−
j=0

f(j,0),n I(j) ∆ −

m−
j1,j2=0

f(j1,j2,0),n I(j1,j2) ∆. (19)

If θ ∈ [0, 1] from (17) and (19) we have

Xn+1 − Xn
(3)
≃ θ f(0),n ∆ + (1 − θ)f(0),n ∆ +

m−
j=1

f(j),n I(j) +

m−
j1,j2=0

f(j1,j2),n I(j1,j2) +

m−
j1,j2,j3=0

f(j1,j2,j3),n I(j1,j2,j3)

(3)
≃ θ


f(0),n+1∆ −

m−
j=0

f(j,0),n I(j) ∆ −

m−
j1,j2=0

f(j1,j2,0),n I(j1,j2) ∆


+ (1 − θ)f(0),n ∆ +

m−
j=1

f(j),n I(j)

+

m−
j1,j2=0

f(j1,j2),n I(j1,j2) +

m−
j1,j2,j3=0

f(j1,j2,j3),n I(j1,j2,j3)

= (θ f(0),n+1 + (1 − θ)f(0),n)∆ + f(0,0),n(1 − 2θ)
∆2

2
+

m−
j=1

f(j),n I(j) − θ

m−
j=1

f(j,0),nI(j)∆

− θ

m−
j1,j2=0

f(j1,j2,0),n I(j1,j2) ∆ +

m−
j1,j2=0
j1+j2≠0

f(j1,j2),n I(j1,j2) +

m−
j1,j2,j3=0

f(j1,j2,j3),n I(j1,j2,j3). (20)

We can now use the expansion (16) with the function f(0,0) and multiply by ∆2; since I(j1,j2) ∆2 (3)
≃ 0 and I(j1,j2,j3) ∆2 (3)

≃ 0 for
j1, j2, j3 = 0, . . . ,m we have

f(0,0),n+1∆
2 (3)
≃ f(0,0),n∆2

+

m−
j=0

f(j,0,0),n I(j) ∆2.

Then, if β ∈ [0, 1] we can write

f(0,0),n∆2
= βf(0,0),n∆2

+ (1 − β)f(0,0),n∆2

(3)
≃ βf(0,0),n+1∆

2
− β

m−
j=0

f(j,0,0),n I(j)∆2
+ (1 − β)f(0,0),n∆2

and inserting this expression in (20) we obtain

Xn+1 − Xn
(3)
≃ (θ f(0),n+1 + (1 − θ)f(0),n)∆ + (1 − 2θ)(βf(0,0),n+1 + (1 − β)f(0,0),n)

∆2

2

+ (1 − 3θ − 3β + 6θβ)f(0,0,0),n
∆3

6
+

m−
j=1

f(j),n I(j) − θ

m−
j=1

f(j,0),n I(j)∆

−
1
2
(1 − 2θ)β

m−
j=1

f(j,0,0),n I(j)∆2
+

m−
j1,j2=0
j1+j2≠0

f(j1,j2),n I(j1,j2)

− θ

m−
j1,j2=0
j1+j2≠0

f(j1,j2,0),n I(j1,j2) ∆ +

m−
j1,j2,j3=0

j1+j2+j3≠0

f(j1,j2,j3),n I(j1,j2,j3). (21)

Finally we can use the expansion (16) with the function f(0,0,0) and multiply by ∆3, obtaining

f(0,0,0),n+1∆
3 (3)
≃ f(0,0,0),n∆3.



1014 R. Zeghdane et al. / Journal of Computational and Applied Mathematics 236 (2011) 1009–1023

Then, if γ ∈ [0, 1] we have

f(0,0,0),n∆3
= γ f(0,0,0),n∆3

+ (1 − γ )f(0,0,0),n∆3 (3)
≃ γ f(0,0,0),n+1∆

3
+ (1 − γ )f(0,0,0),n∆3

and inserting this expression in (21) we get

Xn+1 − Xn
(3)
≃ (θ f(0),n+1 + (1 − θ)f(0),n)∆ + (1 − 2θ)(βf(0,0),n+1 + (1 − β)f(0,0),n)

∆2

2!

+ (1 − 3θ − 3β(1 − 2θ))(γ f(0,0,0),n+1 + (1 − γ )f(0,0,0),n)
∆3

3!
+

m−
j=1

f(j),n I(j)

− θ

m−
j=1

f(j,0),n I(j)∆ −
1
2
(1 − 2θ)β

m−
j=1

f(j,0,0),n I(j)∆2
+

m−
j1,j2=0
j1+j2≠0

f(j1,j2),n I(j1,j2)

− θ

m−
j1,j2=0
j1+j2≠0

f(j1,j2,0),n I(j1,j2) ∆ +

m−
j1,j2,j3=0

j1+j2+j3≠0

f(j1,j2,j3),n I(j1,j2,j3) (22)

where f (t, x) = x. From this equivalence we have:

Theorem 1. Suppose that the drift and diffusion components ak, bkj, k = 1, . . . , d, j = 1 . . . ,mof Eq. (1) belong toC8
P and satisfy

Lipschitz and linear growth bound conditions. Then the scheme defined by (22) has order 3.0 in the weak sense.

In the multidimensional case with scalar noise, d = 1, 2, . . . ,m = 1, (22) gives the family of semi-implicit 3.0 weak order
Taylor schemes

Yn+1 = Yn + (θ an+1 + (1 − θ)a)∆ + (1 − 2θ)(β(L(0)a)n+1 + (1 − β) L(0)a)
∆2

2!

+ (1 − 3θ − 3β(1 − 2θ))(γ (L(0,0)a)n+1 + (1 − γ ) L(0,0)a)
∆3

3!

+


b − θ L(1)a ∆ −

1
2
(1 − 2θ)β L(1,0)a ∆2


I(1) + (L(1)b − θ L(1,1)a ∆)I(1,1)

+ (L(1)a − θ L(1,0)a ∆)I(1,0) + (L(0)b − θ L(0,1)a ∆)I(0,1)
+ L(1,0)a I(1,0,0) + L(0,1)a I(0,1,0) + L(0,0)b I(0,0,1)

+ L(1,1)a I(1,1,0) + L(1,0)b I(1,0,1) + L(0,1)b I(0,1,1) + L(1,1)b I(1,1,1), (23)
where the parameters θ, β, γ ∈ [0, 1] determine the degree of implicitness.

It can be seen that taking 1Ŵ and 1Ẑ as in (11) the variables

Î(1) = 1Ŵ , Î(1,0) = 1Ẑ, Î(0,1) = ∆ 1Ŵ − 1Ẑ,

Î(1,1) =
1
2
(1Ŵ 2

− ∆), Î(0,0,1) = Î(0,1,0) = Î(1,0,0) =
1
6
∆21Ŵ ,

Î(1,1,0) = Î(1,0,1) = Î(0,1,1) =
1
6
∆(1Ŵ 2

− ∆), Î(1,1,1) =
1
6
1Ŵ (1Ŵ 2

− 3∆)

satisfy (7) with N = 3. Then the multiple integrals Iα in (23) can be replaced by these variables Îα , obtaining the three-
parameter family of simplified semi-implicit 3.0 weak order Taylor schemes for them = 1 case:

Yn+1 = Yn + (θ an+1 + (1 − θ)a)∆ + (1 − 2θ)(β(L(0)a)n+1 + (1 − β) L(0)a)
∆2

2!

+ (1 − 3θ − 3β(1 − 2θ))(γ (L(0,0)a)n+1 + (1 − γ ) L(0,0)a)
∆3

3!

+


b − θ L(1)a ∆ −

1
2
(1 − 2θ)β L(1,0)a ∆2


1Ŵ

+
1
2
(L(1)b − θ L(1,1)a ∆)(1Ŵ 2

− ∆) + (L(1)a − θ L(1,0)a ∆)1Ẑ

+ (L(0)b − θ L(0,1)a ∆)(∆ 1Ŵ − 1Ẑ) +
1
6
(L(1,0)a + L(0,1)a + L(0,0)b)∆21Ŵ

+
1
6
(L(1,1)a + L(1,0)b + L(0,1)b)∆(1Ŵ 2

− ∆) +
1
6
L(1,1)b1Ŵ (1Ŵ 2

− 3∆), (24)
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with 1Ŵ , 1Ẑ as in (11) and parameters θ, β, γ ∈ [0, 1]. Notice that the values θ = β = γ = 0 in (24) results in the
simplified explicit 3.0 weak order Taylor scheme (10).

4.2. Semi-implicit weak order 4.0 Taylor schemes

The above procedure can be repeated with N = 4 to achieve a family of semi-implicit Taylor schemes of weak order 4.0.
In this case we omit all terms that are not relevant for a fourth order weak approximation: for a sufficiently smooth function
f (t, x) we have from (5)

fn+1
(4)
≃ fn +

m−
j=0

f(j),n I(j) +

m−
j1,j2=0

f(j1,j2),n I(j1,j2) +

m−
j1,j2,j3=0

f(j1,j2,j3),n I(j1,j2,j3) +

m−
j1,j2,j3,j4=0

f(j1,j2,j3,j4),n I(j1,j2,j3,j4). (25)

In particular, if f (t, x) = xwe have

Xn+1 − Xn
(4)
≃

m−
j=0

f(j),n I(j) +

m−
j1,j2=0

f(j1,j2),n I(j1,j2) +

m−
j1,j2,j3=0

f(j1,j2,j3) I(j1,j2,j3),n +

m−
j1,j2,j3,j4=0

f(j1,j2,j3,j4),n I(j1,j2,j3,j4) (26)

where f(0) = a, f(j) = bj, j = 1, . . . ,m, etc. Applying the expansion (25) to the coefficient functions f(0), f(0,0), f(0,0,0), f(0,0,0,0)
and multiplying by ∆, ∆2, ∆3 and ∆4 respectively, one obtains

f(0),n ∆
(4)
≃ f(0),n+1∆ −

m−
j=0

f(j,0),n I(j) ∆ −

m−
j1,j2=0

f(j1,j2,0),n I(j1,j2)∆ −

m−
j1,j2,j3=0

f(j1,j2,j3,0) I(j1,j2,j3),n∆

f(0,0),n ∆2 (4)
≃ f(0,0),n+1∆

2
−

m−
j=0

f(j,0,0),n I(j) ∆2
−

m−
j1,j2=0

f(j1,j2,0,0),n I(j1,j2)∆
2

f(0,0,0),n ∆3 (4)
≃ f(0,0,0),n+1∆

3
−

m−
j=0

f(j,0,0,0),n I(j)∆3

f(0,0,0,0),n ∆4 (4)
≃ f(0,0,0,0),n+1∆

4. (27)

As in the third order case we can control the degree of implicitness of the scheme inserting in (26) the equivalences of (27)
with parameters θ, β, γ , α ∈ [0, 1]. In this way we obtain:

Theorem 2. Suppose that the drift and diffusion components ak, bkj, k = 1, . . . , d, j = 1, . . . ,m of Eq. (1) belong to C10
P and

satisfy Lipschitz and linear growth bound conditions. For each selection of the parameters θ, β, γ , α ∈ [0, 1] the scheme

Yn+1 = Yn + (θ f(0),n+1 + (1 − θ)f(0),n)∆ + (1 − 2θ)(βf(0,0),n+1 + (1 − β)f(0,0),n)
∆2

2!

+ (1 − 3θ − 3β(1 − 2θ))(γ f(0,0,0),n+1 + (1 − γ )f(0,0,0),n)
∆3

3!

+ (1 − 4θ − 6β(1 − 2θ) − 4γ (1 − 3θ − 3β(1 − 2θ)))(αf(0,0,0,0),n+1 + (1 − α)f(0,0,0,0),n)
∆4

4!

+

m−
j=1


f(j),n − θ f(j,0),n ∆ −

β

2
(1 − 2θ) f(j,0,0),n ∆2

−
γ

6
(1 − 3θ − 3β(1 − 2θ))f(j,0,0,0),n ∆3


I(j)

+

m−
j1,j2=0
j1+j2≠0


f(j1,j2),n − θ f(j1,j2,0),n ∆ −

1
2
(1 − 2θ)β f(j1,j2,0,0),n ∆2


I(j1,j2)

+

m−
j1,j2,j3=0

j1+j2+j3≠0

(f(j1,j2,j3),n − θ f(j1,j2,j3,0),n ∆) I(j1,j2,j3) +

m−
j1,j2,j3,j4=0

j1+j2+j3+j4≠0

f(j1,j2,j3,j4),n I(j1,j2,j3,j4) (28)

has order 4.0 in the weak sense.
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For SDEs with one-dimensional additive noise, if f (t, x) = x we have f(1,1) = L(1,1)f = L(1)b = 0; then the terms fα with α
ended by (1, 1) do not appear in (28); in a similar way the terms with indices ended by (1, 0, 1) and (1, 0, 0, 1) do not appear
either. If in addition we take θ = 0 in (28) we obtain the three-parameter family of semi-implicit schemes

Yn+1 = Yn + a ∆ + (β(L(0)a)n+1 + (1 − β)L(0)a)
∆2

2
+ (1 − 3β)(γ (L(0,0)a)n+1 + (1 − γ )L(0,0)a)

∆3

3!

+ (1 − 6β − 4γ (1 − 3β))(α(L(0,0,0)a)n+1 + (1 − α)L(0,0,0)a)
∆4

4!

+


b −

1
2
βL(1,0)a∆2

−
1
6
γ (1 − 3β)L(1,0,0)a∆3


I(1) −

1
2
βL(1,1,0)a∆2I(1,1)

+


L(1)a −

1
2
βL(1,0,0)a∆2


I(1,0) +


L(0)b −

1
2
βL(0,1,0)a∆2


I(0,1)

+ L(1,0)a I(1,0,0) + L(0,1)a I(0,1,0) + L(0,0)b I(0,0,1) + L(1,1)a I(1,1,0)
+ L(1,0,0)a I(1,0,0,0) + L(0,1,0)a I(0,1,0,0) + L(0,0,1)a I(0,0,1,0) + L(0,0,0)b I(0,0,0,1)

+ L(1,1,0)a I(1,1,0,0) + L(1,0,1)a I(1,0,1,0) + L(0,1,1)a I(0,1,1,0) + L(1,1,1)a I(1,1,1,0). (29)

Notice that taking β = γ = α = 0 in (29) one obtains the explicit 4.0 Taylor scheme (12).
The semi-implicit schemes (29) contain sixteen random integrals Iα: the fifteen that appear in the explicit scheme

(12) plus I(1,1). In order to obtain from (29) semi-implicit simplified schemes we shall replace these fifteen Iα ’s by the
corresponding Îα ’s in (13) and I(1,1) by Î(1,1) =

1
2 (1Ŵ 2

− ∆). It is straightforward to show that this sixteen-element set
of multiple integrals fulfills (7) with N = 4: Since the conditions have been proven in [13] for the fifteen-element subset in
(12), it reduces to check that every product Îα1 · · · Îαl with mean-square order up to 4.5 in which I(1,1) appears has the same
expectation that the corresponding product Iα1 · · · Iαl , i.e.:
Order 1.0:

E[Î(1,1)] = 0.

Order 2.0:

E[Î(1,1) Î2(1)] = ∆2
; E[Î2(1,1)] =

1
2

∆2.

Order 3.0:

E[Î(1,1) Î4(1)] = 6 ∆3
; E[Î(1,1) Î(1) Î(1,0)] =

1
2

∆3
; E[Î2(1,1) Î

2
(1)] =

5
2

∆3
;

E[Î(1,1) Î(1) Î(0,1)] =
1
2

∆3
; E[Î(1,1) Î(1,1,0)] =

1
6

∆3
; E[Î3(1,1,1)] = ∆3.

Order 4.0:

E[Î(1,1) Î(1,1,0,0)] =
1
24

∆4
; E[Î(1,1) Î(1,1,0) Î2(1)] =

5
6

∆4
; E[Î2(1,1) Î

4
(1)] =

39
2

∆4
;

E[Î(1,1) Î(0,1,1,0)] =
1
24

∆4
; E[Î(1,1) Î2(1,0)] =

1
4

∆4
; E[Î2(1,1) Î(1,0) Î(1)] =

5
4

∆4
;

E[Î(1,1) Î(1,0,1,0)] =
1
24

∆4
; E[Î(1,1) Î(1,0) Î(0,1)] =

1
4

∆4
; E[Î2(1,1) Î(0,1) Î(1)] =

5
4

∆4
;

E[Î(1,1) Î(1,1,1,0) Î(1)] =
1
8

∆4
; E[Î(1,1) Î2(0,1)] =

1
4

∆4
; E[Î2(1,1) Î(1,1,0)] =

1
3

∆4
;

E[Î(1,1) Î(1,0,0) Î(1)] =
1
6

∆4
; E[Î(1,1) Î(1,0) Î3(1)] = 3 ∆4

; E[Î3(1,1) Î
2
(1)] =

17
2

∆4
;

E[Î(1,1) Î(0,1,0) Î(1)] =
1
6

∆4
; E[Î(1,1) Î(0,1) Î3(1)] = 3 ∆4

; E[Î4(1,1)] =
15
4

∆4
;

E[Î(1,1) Î(0,0,1) Î(1)] =
1
6

∆4
; E[Î(1,1) Î6(1)] = 45 ∆4.

together with E[Îα1 · · · Îαl ] = 0 for every product of mean-square orders 1.5, 2.5, 3.5 and 4.5. Then the proposed family of
4.0 weak order semi-implicit schemes for SDEs with additive noise is

Yn+1 = Yn + a ∆ + (β(L(0)a)n+1 + (1 − β)L(0)a)
∆2

2
+ (1 − 3β)(γ (L(0,0)a)n+1 + (1 − γ )L(0,0)a)

∆3

3!
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+ (1 − 6β − 4γ (1 − 3β))(α(L(0,0,0)a)n+1 + (1 − α)L(0,0,0)a)
∆4

4!

+


b −

1
2
βL(1,0)a∆2

−
1
6
γ (1 − 3β)L(1,0,0)a∆3


1Ŵ −

1
4
βL(1,1,0)a∆2(1Ŵ 2

− ∆)

+


L(1)a −

1
2
βL(1,0,0)a∆2


1Ẑ +


L(0)b −

1
2
βL(0,1,0)a∆2


(1Ŵ ∆ − 1Ẑ)

+
1
2
(L(1,0)a − L(0,0)b)1Ẑ ∆ +

1
6


L(0,1)a −

1
2
L(1,0)a +

5
2
L(0,0)b


∆Ŵ ∆2

+ L(1,1)a


1 −

√
2

2
1Ŵ 1Ẑ +

3
√
2 − 2
24

1Ŵ 2 ∆ −
4 +

√
2

24
∆2

+

√
2
2

1Ẑ2/∆



+
1
24

(L(1,0,0)a + L(0,1,0)a + L(0,0,1)a + L(0,0,0)b)1Ŵ ∆3

+
1
24

(L(1,1,0)a + L(1,0,1)a + L(0,1,1)a)(1Ŵ 2
− ∆)∆2

+
1
24

L(1,1,1)a(1Ŵ 2
− 3 ∆)1Ŵ ∆ (30)

where β, γ , α ∈ [0, 1] and 1Ŵ and 1Ẑ are as in (11).

5. MS-stability analysis of semi-implicit 3.0 schemes

In this section the stability properties of the proposed weak order 3.0 semi-implicit schemes is investigated. We shall
see that, as in the deterministic case, the introduction of implicitness in Taylor schemes improves the numerical stability
behavior. In the deterministic case the stability properties of a method are clarified applying it to the linear test equation

dXt = λXt dt (31)

with λ ∈ C and ℜ(λ) < 0 and studying the asymptotic stability of the resulting difference equation. Then, to analyze the
linear stability of a numerical scheme for the stochastic case, the test equation (31) needs to be generalized and the concept
of asymptotic stability as well as its characterization in terms of the equation parametersmust be established. For SDEswith
multiplicative noise the usual linear scalar test equation, see for example [3,14,16,19–21], is

dXt = λXt dt + µXt dWt (32)

with λ, µ ∈ C and X0 = x0 ∈ R, x0 ≠ 0. The exact solution of (32) is given by Xt = x0 exp{(λ −
1
2µ

2)t + µ Wt}. For this
solution

E[|Xt |
2
] = |x0|2 exp{(2ℜ(λ) + |µ|

2)t},

and then the following property holds:

lim
t→∞

E[|Xt |
2
] = 0 if and only if ℜ(λ) +

1
2
|µ|

2 < 0. (33)

The condition on the left is known as mean-square (MS) stability, see e.g. [14,16,17]. The set

D =


(λ, µ) ∈ C × C : ℜ(λ) +

1
2
|µ|

2 < 0


(34)

is called the MS-stability domain of the stochastic equation (32). Notice that if µ = 0 the condition on the right of (33)
reduces to the deterministic A-stability condition ℜ(λ) < 0 of the linear equation (31), see [22].

By analogy with the deterministic case, to analyze the stability of a stochastic scheme S we apply it to test equation (32),
obtaining a recurrence of the form

Yn+1 = rS(λ, µ, ∆, 1W ) Yn, (35)

and study the behavior of the numerical solution {Yn}. In the case of MS-stability we ask for the conditions leading to

lim
n→∞

E[|Yn|
2
] = 0. (36)

Taking mean-square norm in (35) we obtain a difference equation

E[|Yn+1|
2
] = RS(λ, µ, ∆) E[|Yn|

2
]

where RS(λ, µ, ∆) = E|rS(λ, µ, ∆, 1W )|2. Then the analysis of condition (36) reduces to find for what values of the
parameters λ, µ ∈ C and of the step size ∆ > 0 the inequality |RS(λ, µ, ∆)| < 1 is fulfilled. So, RS(λ, µ, ∆) is called
the stability function of the scheme and the set

DS(∆) = {(λ, µ) ∈ C × C : |RS(λ, µ, ∆)| < 1} (37)
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is called the stability domain of the stochastic method S (applied with step ∆). In [16] there appear the stability functions of
a number of schemes.

In our case, applying the scheme (24) to test equation (32), the obtained recurrence is Yn+1 = (A/B) Yn with

A = 1 + (1 − θ)λ∆ +
1
2
(1 − β)(1 − 2θ)λ2∆2

+
1
6
(1 − γ )(1 − 3θ − 3β(1 − 2θ))λ3∆3

+ µ


1 + (1 − θ)λ∆ +

1
2
(1 − β)(1 − 2θ)λ2∆2


∆Ŵ

+
1
2

µ2 (1 + (1 − θ)λ∆) (∆Ŵ 2
− ∆) +

1
6

µ3(∆Ŵ 3
− 3∆ ∆Ŵ );

B = 1 − θλ∆ −
1
2

β(1 − 2θ)λ2∆2
−

1
6

γ (1 − 3θ − 3β(1 − 2θ))λ3∆3.

Then

E[|Yn+1|
2
] = R(θ,β,γ )(λ, µ, ∆) E[|Yn|

2
] (38)

with R(θ,β,γ )(λ, µ, ∆) = U/V ,

U =

1 + (1 − θ)λ∆ +
1
2
(1 − β)(1 − 2θ)λ2∆2

+
1
6
(1 − γ )(1 − 3θ − 3β(1 − 2θ))λ3∆3

2
+

1 + (1 − θ)λ∆ +
1
2
(1 − β)(1 − 2θ)λ2∆2

2 |µ|
2∆ +

1
2
|1 + (1 − θ)λ∆|

2
|µ|

4∆2
+

1
6
|µ|

6∆3
;

V =

1 − θλ∆ −
1
2
β(1 − 2θ)λ2∆2

−
1
6
γ (1 − 3θ − 3β(1 − 2θ))λ3∆3

2 . (39)

In particular the simplified explicit 3.0 Taylor scheme (θ = β = γ = 0) in (10) has stability function

R(0,0,0)(λ, µ, ∆) =

1 + λ∆ +
1
2
λ2∆2

+
1
6
λ3∆3

2 +

1 + λ∆ +
1
2
λ2∆2

2 |µ|
2∆ +

1
2
|1 + λ∆|

2
|µ|

4∆2
+

1
6
|µ|

6∆3

and the simplified implicit 3.0 Taylor scheme (θ = β = γ = 1) has stability function

R(1,1,1)(λ, µ, ∆) =
1 + |µ|

2∆ +
1
2 |µ|

4∆2
+

1
6 |µ|

6∆31 − λ∆ +
1
2λ

2∆2 −
1
6λ

3∆3
2 .

As in the deterministic case, Higham [14,15] emphasizes that the interest of the stability analysis of a numerical method
lies not only in finding the parameters values for which the scheme is stable, but in the comparison of its stability domains
DS(∆) with the MS-stability domain of the stochastic test equation D . In particular, the inclusion D ⊆ DS(∆) for a given
scheme S and any ∆ > 0 means that whenever the stochastic differential equation is stable then so is the scheme. In this
case we can say that the scheme S is MS-stable and MS-stability can be seen as a generalization of deterministic A-stability,
see [22], p. 224. On the other hand, the inclusion DS(∆) ⊆ D denotes that if the SDE is unstable then so is the numerical
method applied with step size ∆.

Since the parametersλ, µ belong toC, the stability domains are difficult to visualize. Ifλ, µ are restricted to real numbers
the sets DS(∆) and D are called regions instead domains; they are denoted by RS(∆) and R respectively and can be
represented in the real plane. Here, following [14], when λ, µ ∈ R the stability regions will be drawn in the x–y plane
with x = λ∆, y = µ2∆. For example, the stability region R in the x–y plane corresponds to the region 0 < y < −2x,
represented by the (unbounded) squared area in the pictures of Figs. 1–3. And the stability regions R(0,0,0) and R(1,1,1) are
the shaded areas shown in Fig. 1, left and right, respectively. A different representation of stability regions can be seen in [16],
where ĥ = 1λ and k = −µ2/λ are taken as plane coordinates.

The following results show some instances of semi-implicit 3.0 schemes that are MS-stable:

Proposition 1. The simplified semi-implicit 3.0 weak order Taylor schemes (24) with θ = 1, β = 1 and 1
2 ≤ γ ≤

3
4 are

MS-stable, i.e. these schemes give numerical MS-stable solutions for any step size ∆ > 0 whenever they are applied to a linear
test equation with mean-square stable solution.

Proof. We have to prove that D ⊂ D(1,1,γ )(∆) for any ∆ > 0 if 1
2 ≤ γ ≤

3
4 . From (38)–(39) the stability function of

schemes (24) with θ = 1 and β = 1 is

R(1,1,γ )(λ, µ, ∆) =

1 +
1−γ

6 λ3∆3
2 + |µ|

2∆ +
1
2 |µ|

4∆2
+

1
6 |µ|

6∆31 − λ∆ +
1
2λ

2∆2 −
γ

6 λ3∆3
2 .
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Fig. 1. Comparison between MS-stability region R (squared area) and MS-stability regions of semi-implicit 3.0 Taylor schemes (shaded area) with
θ = β = γ = 0 (left) and θ = β = γ = 1 (right).

Fig. 2. Stability regions of semi-implicit 3.0 Taylor schemes (shaded) for θ = 1, β = 1 and γ = 0, 1
5 , 2

5 , 1
2 , 3

5 , 4
5 compared with the stability region of test

equation (squared).

After some algebraic manipulation, the condition R(1,1,γ )(λ, µ, ∆) < 1 can be written

2


ℜ(λ) +
1
2
|µ|

2


1 +
1
2
|µ|

2∆ − ℜ(λ)∆ +
2
3
ℜ(λ)2∆2

−
1
3
ℜ(λ)|µ|

2∆2
+

1
6
|µ|

4∆2


−
1
12

|λ|
2∆((3 − 4γ )|λ|

2∆2
+ 8γℜ(λ)2∆2) +

γ

6
ℜ(λ)|λ|

4∆4
+

1 − 2γ
36

|λ|
6∆5 < 0. (40)

If ℜ(λ) +
1
2 |µ|

2 < 0, the product in the first line of (40) is negative. If in addition 1
2 ≤ γ ≤

3
4 all the remaining addends in

(40) are negative. Then we have proven that for any ∆ > 0

ℜ(λ) +
1
2
|µ|

2 < 0 H⇒ R(1,1,γ )(λ, µ, ∆) < 1 if
1
2

≤ γ ≤
3
4
,

i.e. D ⊂ D(1,1,γ )(∆) if 1
2 ≤ γ ≤

3
4 . �
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Fig. 3. Stability regions of semi-implicit 3.0 Taylor schemes (shaded) for θ = 1, γ = 1 and β = 0, 1
5 , 2

5 , 1
2 , 3

4 , 4
5 compared with the stability region of test

equation (squared).

Notice that if γ > 3/4 there are values of λ, µ ∈ C such that ℜ(λ) +
1
2 |µ|

2 < 0 and (40) is positive. For example, if γ = 1
the values λ = −

3
5 + 10i, µ = 1 and ∆ = 10−1 give ℜ(λ) +

1
2 |µ|

2
= −

1
10 and

R(1,1,1)


−

3
5

+ 10i, 1,
1
10


=

621656250000
609813683629

≈ 1.01942 > 1. (41)

This proves that there exist values λ, µ ∈ C such that the test stochastic equation (32) is stable but the method (24) with
θ = 1, β = 1, γ = 1 is not stable for some ∆ > 0.

On the other hand if λ ∈ R we have that the term

−
1
12

|λ|
2∆((3 − 4γ )|λ|

2∆2
+ 8γℜ(λ)2∆2) = −

4γ + 3
12

λ4∆3 < 0

in (40). Then if λ ∈ R, γ ≥ 1/2 and λ +
1
2 |µ|

2 < 0, condition (40) holds. We have proven:

Corollary 1. For any values λ, µ ∈ D with λ ∈ R and any step size ∆ > 0 the simplified semi-implicit 3.0 weak order Taylor
schemes (24) with θ = 1, β = 1 and γ ≥

1
2 give numerical MS-stable solutions.

In particular, we have that R ⊆ R(1,1,γ )(∆) for any ∆ > 0 if γ ≥
1
2 : the MS-stability region of any semi-implicit 3.0 Taylor

schemewith θ = 1, β = 1 and γ ≥
1
2 contains the region of MS-stability of the linear test equation. This result is confirmed

in Fig. 2 comparing the regionR (squared) with themean-square stability regionsR(1,1,γ ) (shaded) plotted for γ =
1
2 ,

3
5 ,

4
5 .

See also the region R(1,1,1) on the right plot of Fig. 1. Fig. 2 shows also that R ⊈ R(1,1,γ )(∆) for γ = 0, 1
5 ,

2
5 .

Proposition 2. The simplified semi-implicit 3.0 weak order Taylor schemes (24) with θ = 1, γ = 1 and 3
4 ≤ β ≤

5
6 are

MS-stable, i.e. these schemes give numerical MS-stable solutions for any step size ∆ > 0 whenever they are applied to a linear
test equation with mean-square stable solution.
Proof. We have to prove that D ⊂ D(1,β,1)(∆) for any ∆ > 0 if 3

4 ≤ β ≤
5
6 . From (38)–(39) the stability function of

schemes (24) with θ = 1 and γ = 1 is

R(1,β,1)(λ, µ, ∆) =

1 −
1−β

2 λ2∆2
2 +

1 −
1−β

2 λ2∆2
2 |µ|

2∆ +
1
2 |µ|

4∆2
+

1
6 |µ|

6∆31 − λ∆ +
β

2 λ2∆2 −
3β−2

6 λ3∆3
2 .
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After some algebraic manipulation, the condition R(1,β,1)(λ, µ, ∆) < 1 can be written

2


ℜ(λ) +
1
2
|µ|

2


1 − ℜ(λ)∆ +
1
2
|µ|

2∆ + (1 − β)ℑ(λ)2∆2
+

3β − 1
3

ℜ(λ)2∆2
−

1
3
ℜ(λ)|µ|

2∆2
+

1
6
|µ|

4∆2


+
6β − 5

12
|λ|

4∆3
+ 2


2
3

− β


|λ|

2∆3
ℜ(λ)2 +

1
2
|λ|

4∆4


β(3β − 2)
3

ℜ(λ) +
(1 − β)2

2
|µ|

2


−
(3β − 2)2

36
|λ|

6∆5 < 0. (42)

If ℜ(λ) +
1
2 |µ|

2 < 0 and β ≥ 1/3 it is clear that the product in the first line of (42) is negative. If in addition 6β − 5 ≤ 0,
2/3−β ≤ 0 and β(3β − 2) ≥ 3(1−β)2 then all the remaining addends in (42) are negative. This proves that if 3

4 ≤ β ≤
5
6

then D ⊂ D(1,β,1)(∆) for any ∆ > 0. �

Notice that if λ ∈ R the inequality (42) becomes

2


λ +
1
2
|µ|

2


1 − λ∆ +
1
2
|µ|

2∆ +
3β − 1

3
λ2∆2

−
1
3
λ|µ|

2∆2
+

1
6
|µ|

4∆2


+
11 − 18β

12
λ4∆3

+
1
2
λ4∆4


β(3β − 2)

3
λ +

(1 − β)2

2
|µ|

2


−
(3β − 2)2

36
λ6∆5 < 0,

which is obviously true if λ +
1
2 |µ|

2 < 0 and β ≥ 3/4. Then we have proven

Corollary 2. For any values λ, µ ∈ D with λ ∈ R and any step size ∆ > 0 the simplified semi-implicit 3.0 weak order Taylor
schemes (24) with θ = 1, γ = 1 and β ≥

3
4 give numerical MS-stable solutions.

In particular, the MS-stability region of any semi-implicit 3.0 Taylor scheme with θ = 1, γ = 1 and β ≥
3
4 contains the

MS-stability region of the linear test equation:

R ⊆ R(1,β,1) if β ≥
3
4
.

This result is confirmed in Fig. 3 comparing the region R (squared) with the mean-square stability regions R(1,β,1) (shaded)
plotted for β =

3
4 ,

4
5 . See also the region R(1,1,1) on the right of Fig. 1. Notice also in Fig. 3 that if β = 0, 1

5 ,
2
5 ,

1
2 . then

R ⊈ R(1,β,1)(∆).

6. Numerical experiments

To verify the previous order and stability analysis, a number of numerical experiments have been carried out and some
of them are presented in this section. In the first subsection we compare some of the proposed schemes with the Euler and
the simplified weak order 2.0 Taylor methods, see [1], to verify their weak order of convergence. In the second subsection
different examples that confirm the stability behavior of the order 3.0 schemes (24), denoted here by M(θ,β,γ ), are shown.

6.1. Numerical experiments confirming the weak order

To verify the weak order of convergence of the new schemes we have used the problems

(a) dXt =


1
3X

1/3
t + 6X2/3

t


dt + X2/3

t dWt ; X0 = 1;

(b)

dX1

t
dX2

t


=


0 1

−1 0

 
X1
t

X2
t


dt +


0
1


dWt ; X1

0 = X2
0 = 0.

For equation (a) we have estimated the exact value E[X1] = 28 with Euler, Taylor 2.0, M(0,0,0) and M(1,1,1) schemes using
50,000 trials with steps ∆ = 2−1, 2−2, 2−3, 2−4, 2−5. The left-hand picture in Fig. 4 shows log2 |µ| against log2(∆) where
µ = E[Y1] − E[X1] is the mean error. For equation (b) the noise is additive; we have estimated E[(X1

1 )2 + (X2
1 )2] = 1 using

Euler, Taylor 2.0, M(0,0,0), M(1,1,1) and M(0,0,0,0) schemes. In this case we have used ∆ = 2−2, 2−3, 2−4, 2−5. The right-hand
picture in Fig. 4 shows log2 |µ| against log2(∆) where µ = E[(Y 1

1 )2 + (Y 1
2 )2] − E[(X1

1 )2 + (X1
2 )2].

6.2. Stability numerical experiments with semi-implicit 3.0 schemes

For each problem we have used 5000 simulations and a constant step size ∆ to calculate E[|Xt |
2
] or E[Xt ]. The

computations were made with 16 significant digits. We have applied M(0,0,0), M(1, 34 ,1), M(1,1, 12 )
and M(1,1,1) to calculate

‖Xt‖
2

= E[|Xt |
2
], where Xt is the solution of test equation (32) with initial condition X0 = 1 for the following cases:

(i) λ = −10 + 5i, µ = 2, ∆ = 0.1
(ii) λ = −10 + 5i, µ = 4, ∆ = 0.1.
(iii) λ = −

3
5 + 10i, µ = 1, ∆ = 0.1.
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Fig. 4. Comparison of the weak order of convergence of Euler (�), Taylor 2.0 (N), M(0,0,0) (H), M(1,1,1)(•) and M(0,0,0,0) (�) schemes using problem (a),
left-hand plot; problem (b), right-hand plot.

Table 1
Values of E|Xt |

2 using weak order 3.0 schemesM(0,0,0) ,M(1, 3
4 ,1) , M(1,1, 1

2 )
and M(1,1,1) for test examples (i)–(ii).

t ‖X‖
2

= E|Xt |
2

Problem (i) Problem (ii)
M(0,0,0) M

(1, 3
4 ,1) M

(1,1, 1
2 )

M(1,1,1) M(0,0,0,0) M
(1, 3

4 ,1) M
(1,1, 1

2 )
M(1,1,1)

0.2 0.061472 0.038971 0.040436 0.037943 2.466417 0.280343 0.26601 0.243947
0.4 0.003817 0.001542 0.001663 0.001465 1.381881 0.048333 0.045591 0.038516
0.6 0.000917 0.000344 0.000373 0.000317 1.423551 0.031015 0.030338 0.024744
0.8 1.1006E−5 1.623E−6 1.930E−6 1.510E−6 0.235228 3.047E−5 2.218E−5 1.545E−5
1.0 7.3844E−7 8.105E−8 1.01239E−7 7.430E−8 0.344000 7.683E−7 9.808E−7 6.025E−7

Table 2
Values of E|Xt |

2 using weak order 3.0 schemesM(0,0,0) ,M(1, 3
4 ,1) , M(1,1, 1

2 )
and M(1,1,1) for test example (iii).

t ‖X‖
2

= E|Xt |
2

Problem (iii)
M(0,0,0) M

(1, 3
4 ,1) M

(1,1, 1
2 )

M(1,1,1)

0.2 0.868594 0.892386 0.817473 1.02465
0.4 0.773260 0.814360 0.683251 1.073865
0.6 0.724794 0.772012 0.620358 1.091651
0.8 0.576438 0.648247 0.456552 1.126469
1.0 0.516061 0.583764 0.376955 1.16737
2.0 0.176409 0.271111 0.114564 1.075440
3.0 0.055511 0.129726 0.035351 1.008479

The results are summarized in Tables 1 and 2. We have the following analysis:

(i) Since |R(0,0,0)(−10 + 5i, 2, 0.1)| = 0.250545, |R
(1, 34 ,1)(−10 + 5i, 2, 0.1)| = 0.206235, |R

(1,1, 12 )
(−10 + 5i, 2, 0.1)| =

0.209467, and |R(1,1,1)(−10 + 5i, 2, 0.1)| = 0.202781, the four schemes are MS-stable.
(ii) In this case |R(0,0,0)(−10+5i, 4, 0.1)| = 1.3913, |R

(1, 34 ,1)(−10+5i, 4, 0.1)| = 0.676149, |R
(1,1, 12 )

(−10+5i, 4, 0.1)| =

0.649436, and |R(1,1,1)(−10 + 5i, 4, 0.1)| = 0.620676, which means that the explicit scheme M(0,0,0) is unstable and
the three semi-implicit schemes are stable.

(iii) This example illustrates the discussion in (41). From (41) the schemeM(1,1,1) gives an unstable solution. The other three
are stable because |R(0,0,0)(−

3
5 + 10i, 1, 0.1)| = 0.940856, |R

(1, 34 ,1)(−
3
5 + 10i, 1, 0.1)| = 0.951007, |R

(1,1, 12 )
(− 3

5 +

10i, 1, 0.1)| = 0.910336. Notice that the convergence of these schemes is slow, due to their stability function values
are near to 1.

7. Conclusions

The integration of stiff SDEs requires the use of schemes with good stability properties, such as implicit methods. In
this paper, using stochastic Taylor expansions (as Platen in [11]) and weak equivalences we have obtained general schemes
of weak order 3.0 and 4.0 for the multidimensional case with multidimensional noise. These schemes contain multiple
integrals that are difficult to implement. Then, for applications, these integrals need to be replaced by simpler random
variables, obtaining the so-called simplified schemes. In thisway, for themultidimensional casewith one-dimensional noise
we present an infinite family of semi-implicit simplified schemes of weak order 3.0. Notice that the explicit Taylor scheme
of weak order 3.0 proposed in [1] is a member of this family. For the multidimensional case with additive one-dimensional
noise we present an infinite family of semi-implicit simplified schemes of weak order 4.0 containing the explicit scheme
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presented in [18]. Using a linear test equationwithmultiplicative noise, themean-square stability of the 3.0 family has been
analyzed, concluding that, as in the 1.0 Taylor schemes, see [15], for higher order schemes the stability behavior improves
when the degree of implicitness grows. These theoretical results have been verified with numerical experiments.
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