NOTE

Linear Spaces and Partitioning the Projective Plane

Ferenc Fodor

Department of Mathematics, Auburn University, 218 Parker Hall, Auburn, Alabama 36849-5310

Communicated by A. Barlotti

Received March 25, 1996

The aim of this paper is to settle a question about the partitioning of the projective plane by lines except for a small set. Suppose that \(Q \) is a set of points in the projective plane of order \(n \) and \(H \) is a set of lines that partitions the complement of \(Q \). If \(Q \) has at most \(2n-1 \) points and \(P \) has less than \(n+1+\sqrt{n} \) lines, then these lines are concurrent. An example is given which shows that the condition on the number of points of \(Q \) is sharp. However, it turns out that this is a 'pathological' example and if we exclude this case, then the statement can be improved.

1. INTRODUCTION

A linear space is a pair \(\mathcal{F} = (P, L) \) consisting of a set \(P \) of elements called points and a set \(L \) of distinguished subsets of points, called lines satisfying the following axioms:

1. Any two distinct points of \(\mathcal{F} \) belong to exactly one line of \(\mathcal{F} \).
2. Any line of \(\mathcal{F} \) has at least two points of \(\mathcal{F} \).
3. There are three points of \(\mathcal{F} \) not on a common line.

We shall restrict ourselves to finite linear spaces. We use \(v \) and \(b \) to denote the number of points and lines of \(\mathcal{F} \). For any point \(p \), \(r_p \) denotes the number of lines on \(p \). For any line \(L \), \(k_L \) denotes the number of points on \(L \). We also refer to \(r_p \) as the degree of the point \(p \) and to \(k_L \) as the size of the line \(L \).

Suppose that \(n = m^2 \) is a perfect square and that \(\mathcal{P} \) is a projective plane of order \(n \) with a Baer-subplane \(\mathcal{B} \), i.e. \(\mathcal{B} \) is a projective plane of order \(m \) embedded in \(\mathcal{P} \).

The problem originates from a conjecture of de Witte [3], Erdős, Mullin, Sós and Stinson [2]. They conjectured that linear spaces with
\(v \geq n^2 - n + 2 \) points, \(b = n^2 + n + 1 \) lines having at least one point of degree \(n + 2 \) do not exist. It turned out that, on the contrary, the closed complement of a Baer-subplane has the desired properties. Moreover, this is the only example for \(v > n^2 - \frac{2}{3}n + 1 \).

Suppose that \(S \) is a linear space with a point \(q \) of degree at least \(n + 2 \) and that \(S - q \) can be embedded into a projective plane \(P \) of order \(n \). Then the lines passing through \(q \) form a parallel class \(\Pi \) of \(S - q \). In order to determine \(S \) we need information about the structure of \(\Pi \) in \(P \). We shall obtain this information from Lemma 1, which we shall try to improve.

Lemma 1 ([1], Lemma 7.1). Let \(P \) be a finite projective plane of order \(n \). Suppose that \(Q \) is a set of points and that \(\Pi \) is a set of lines with the property that no line of \(\Pi \) is contained in \(Q \) and that every point outside \(Q \) lies on a unique line of \(\Pi \). If \(|Q| \leq 2n - 1 \) and \(|\Pi| < 1 + n + \sqrt{n} \), then the lines of \(\Pi \) are concurrent.

Example 1. [1] Let \(P \) be a projective plane of order \(n = m^2 \) which contains a Baer-subplane \((B, G)\). \(G \) is the set of lines of \(P \) whose intersection with the subplane are lines of the subplane. Let \(L \) be a line of \(G \), denote by \(Q \) the set of points lying in \(B \) or on \(L \), and set \(\Pi = G - \{L\} \). Then \(|Q| = 2n + 1 \) and \(|\Pi| = n + m < n + 1 + \sqrt{n} \). Furthermore, every point outside of \(Q \) lies on a unique line of \(\Pi \) and no line of \(\Pi \) is contained in \(Q \).

This example shows that the bound for \(|Q| \) in Lemma 1 is almost the best possible. But, is it the best possible?

2. RESULTS

The following lemma considers the case when \(|Q| = 2n \). To state the lemma we need the following configuration.

Example 2. There is a line \(L \) with two points of \(Q \) on it, say \(q_1 \) and \(q_2 \). Through \(q_1 \) there are \(n - 1 \) lines of \(\Pi \), and through \(q_2 \) there is one \(X \). On \(X \) there are \(n \) points of \(Q \), and on the lines through \(q_1 \) there are at least one different from \(q_1 \). Hence, there is a line \(G \) through \(q_1 \), not in \(\Pi \). There are \(n - 1 \) points on it, so which necessarily are not on the lines \(\Pi \). These must be in \(Q \). Altogether we have \(2n \) points.

Lemma 2. Let \(P \) be a projective plane of order \(n \). Suppose that \(Q \) is a set of points and that \(\Pi \) is a set of lines with the properties that no line of \(\Pi \) is entirely contained in \(Q \) and that every point outside \(Q \) lies on a unique line of \(\Pi \) and that is not the configuration of Example 2. If \(|Q| = 2n \) and \(|\Pi| < n + 1 + \sqrt{n} \), then the lines of \(\Pi \) are concurrent.
Proof. Let P be the set of points outside Q, and set $v = |P|$. For every line L, we define $k_L = |L \cap P|$, and call k_L the degree of L. We have
\[n^2 - n + 1 = n^2 + n + 1 - |Q| = |P| = v = \sum_{L \in \Pi} k_L. \tag{1} \]

If Π contains a line L of degree $n + 1$, then $\Pi = \{L\}$, since every other line meets L in a point p, which is a point of P. If Π has a line N of degree n, then every line of Π has to contain the unique point of $N \cap Q$. W.l.o.g. we may therefore assume that every line of Π has degree at most $n - 1$.

Choose a line L of Π, with L having maximal degree. Put $d = n + 1 - k_L$ and $L \cap Q = \{q_1, \ldots, q_d\}$. Furthermore, denote by M_j, the set of lines other than L of Π which contain q_j, and set $m_j = |M_j|$, $j = 1, \ldots, d$. We may assume w.l.o.g. that $m_j \geq m_k$ for $j < k$. Finally, set $M = M_2 \cup \cdots \cup M_d$, $m = |M|$ and $a = |\Pi| - n - 1$. Since every line of Π has degree at most $n - 1$, (1) implies that $a \geq 0$. Furthermore, our definitions yield
\[m_1 + m = \sum_{j=1}^d m_j = |\Pi| - 1 = n + a. \tag{2} \]

In order to prove our lemma we have to show that $M = \emptyset$. We shall do this in several steps.

Step 1. If $j, k \in \{1, \ldots, d\}$ with $j \neq k$, then every line of M_j has degree at most $n - m_j$.

This is true, since a line X of M_j intersects each of the lines of $M_k \cup \{L\}$ in a point of Q.

Step 2. M_1 contains a line of degree $n - 1$.

In view of $v > k_L + n(n - 2)$, q_1 is contained in a line G with $G \neq L$ and $k_G \geq n - 1$. If G is in M_1, then G has degree $n - 1$, since every line of Π has degree at most $n - 1$. It suffices to show that G is in M_1.

Assume to the contrary that $G \notin M_1$. Then each point of $G \cap P$ lies on a line of M. Consequently $m \geq k_G \geq n - 1$. In view of $m_j \geq m_k$ for $j < k$, we obtain
\[m_1 \geq m_2 \geq \frac{m}{d - 1} \geq \frac{n - 1}{d - 1}. \]

It follows that
\[n + a = m_1 + m \geq \frac{n - 1}{d - 1} + n - 1, \]

i.e.
\[n - 1 \leq (a + 1)(d - 1). \tag{3} \]
Using (1), we conclude that
\[n^2 - (a + 1)(d - 1) \leq n^2 - n + 1 = \nu \leq |\Pi| k_L \]
\[= (n + 1 + a)(n + 1 - d) \]
\[= n^2 + n(a + 2 - d) - (a + 1)(d - 1). \quad (4) \]

Now, there are two possibilities.

Case 1. \(d < a + 2. \)

Our hypothesis \(n > a^2 \), and (3) imply that \(d = a + 1 \). Because of
\[a^2 + a < n + a = \sum_{j=1}^{d} m_j \leq dm_1, \]
it follows that \(m_1 > a \). Now, \(n + a = m_1 + m \) and \(m \geq n - 1 \) imply \(m_1 = a + 1 \) and \(m = n - 1 \). Since \(k_X \leq n - m_1 \), for every line \(X \) of \(M \) and \(k_X \leq k_L \) for every line \(X \) of \(M_1 \), (1) shows that
\[n^2 - n + 1 = \nu = \sum_{X \in M_1} k_X \leq (m_1 + 1) k_L + m(n - m_1) = n^2 + 1 - a(a + 1). \quad (5) \]
We obtain \(a(a + 1) \leq n \), and therefore
\[a(a + 1) \leq n = m + 1 = \sum_{j=2}^{d} m_j + 1 \leq (d - 1) m_2 + 1 \]
\[\leq (d - 1) m_1 + 1 = a(a + 1) + 1. \]

If \(d > 2 \), then \(m_1 = m_2 = a + 1 \), and \(a(a + 1) = n \) or \(a(a + 1) = n - 1 \). Substituting \(a(a + 1) \) into (5), it follows that there exists a line \(X \) in \(M_1 \) such that \(k_X = k_L = n - a \). This is a contradiction, since by Step 1 \(k_X \leq n - m_2 \) for all \(X \in M_1 \).

If \(d = 2 \), then \(a = 1 \) so there are the following two possibilities:
1. \(n = 2, m_1 = 2 \) and \(m_2 = 1 \);
2. \(n = 3, m_1 = m_2 = 2 \).

It can also be easily checked that such configurations do not exist.

Step 3 for Case 1. We have shown that \(M_1 \) contains a line \(G \) of degree \(n - 1 \). Since \(L \) is a line of maximal degree of \(\Pi \), \(L \) has also degree \(n - 1 \), i.e. \(d = 2 \). In particular, \(\Pi = \{ L \} \cup M_1 \cup M_2 \) so that \(n + a = |\Pi| - 1 = m_1 + m_2 \).
Let \(q \) be the unique point other than \(q_1 \) on \(G \cap Q \). Since every line of \(M_2 \) contains \(q \), we have \(m_2 \leq 1 \) and hence \(m_1 \geq n + a - 1 \geq n - 1 \).
If $m_1 = n$ then k_X is zero for every line X of M. This is a contradiction, so $M = \emptyset$.

If $m_1 = n - 1$, then $m_2 = 1$ and the only possibility is the configuration described in Example 2.

Case 2. $d = a + 2$.

Here, $v = |\Pi| k_L$ and so the degree of the lines of Π is constant. $|\Pi| = n + 1 + a |n^2 - n + 1|.$

From (3) $n - 1 = (a + 1)^2$, hence $n - 1$ must be a square. This implies that $k_L = n - a + 1$ for each line L in Π.

We have

$$n + a = (a + 1)^2 + 1 + a \leq dm_1 = (a + 2) m_1.$$

Then $m_1 \geq (a + 1)$. If $m_1 > a + 1$ then by Step 1 $k_X \leq n - a - 2$ for every line X not in M, which is a contradiction. Hence, $m_1 = a + 1$. Moreover, $n + a = m_1 + m$ implies that $m = n - 1$.

Now, we can write

$$(a + 1)^2 = n - 1 = m \leq (d - 1) m_2 \leq (d - 1) m_1 = (a + 1)(a + 1).$$

From this $m_1 = m_2 = a + 1$.

The number of points of Q on the lines of M_1 is $(a + 1)^2 + a + 1 + 1$. From this $m_i = a + 1$ for all i. On each line X of M_1 there are precisely $a + 1$ points of Q different from q_1. Any line $Y \in M$ must meet every X in one of these points. The number of lines in Π is $n + a + 1 = (a + 1)^2 + a + 1 + 1$. It can be easily checked that these points form a projective plane of order $a + 1$.

There is one remaining point on each line through q_1 which is not on the lines of Π. Add these points to those on M_1. Altogether, these give the desired $2n$ points. However, such a subplane does not exist in a projective plane of order n.

The lines of Π cannot be concurrent ones, because $n^2 - n + 1$ is not divisible by $n + 1$. Thus, we have finished the proof.

References