Telmisartan, Cycloporsone, or 11RVIVIT attenuated stretch-induced alterations in Ito density and protein expression, and prevented the stretch-induced abbreviation of APD.

Conclusions: The activation of AT1-Calciurexin-NFAT pathway plays an important role in regulating stretch-induced remodeling of Ito and preventing the stretch-induced abbreviation of APD in cultured neonatal rat atrial myocytes.

GW25-e0792

In vivo molecular imaging of plaques in rabbits, using a molecular probe 99mTc-3PEG4-RGD

Su Hang, Wang Qian
Beijing Anzhen Hospital, Capital Medical University

Objectives: The extent of neovascularization is closely linked to the inflammatory response and the infiltration of foam cells within atherosclerotic plaques. In this study, we evaluated the feasibility of a radioactive-labeled 99mTc-3PEG4-RGD for vulnerable plaque imaging in vivo by SPECT/CT.

Methods: 15 male New Zealand white rabbits were randomly divided into normal diet group (group A, n=5), vulnerable plaque group (group B, n=5) and stable plaque group (group C, n=5). The animals were treated with the operation of sham separating femoral artery (group A, C) or abdominal aorta balloon injury (group B) after fed for 2 weeks. 99mTc-3PEG4-RGD was injected at key time points of plaque formation (4wk end, 8wk end, 12wk end), images were obtained with SPECT/CT at 0.5 h, 1 h and 2 h and 24 h. Then the abdomen was opened and one rabbit at the end of 4wk, 8wk, and the rest were executed at the end of 12wk. Vito SPECT imaging, pathology and immunohistochemistry analysis was performed to validate the presence of plaque and microvessels.

Results: In vivo and vitro imaging study, at the end of 4wk, there was no significant uptake in abdominal aorta in all three groups; at the end of 8wk and 12wk, group B, C both had certain radioactive uptake. The uptake in group B was much higher compared with group A, C (12wk end, 0.5h after injection, the T/NT values of A, B, C group were 1.37 ± 0.07, 3.91 ± 0.11 and 1.62 ± 0.06). CD31 immunohistochemistry staining confirmed that at the end of 8wk and 12wk the number of micro-vessels in group B was significantly higher than group C, Histopathology results showed that at the end of 12wk group B, animals’ AHA atherosclerotic type was type III and IV, and group C was type II. All the rabbits in group A had no exist of vulnerable plaque and micro-vessels in abdominal aorta.

Conclusions: The uptake of molecular probe 99mTc-3PEG4-RGD is closely associated with the number of micro-vessels and the severity of vulnerable plaque. 99mTc-3RGD has a certain value for noninvasively evaluating the stability of arterial plaque.

GW25-e1428

Metformin attenuates Angiotensin II induced cardiac fibrosis and cardiac connetive tissue growth factor (CTGF) expression through AMP-activated protein kinase activation

Xiao Han, Zhang Youyi
Institute of Vascular Medicine of Peking University Third Hospital

Objectives: In diabetic patients, metformin appears to provide cardiovascular protection that cannot be attributed only to its antihyperglycemic effects. Metformin is also known as the AMP-activated protein kinase (AMPK) activator. Our previous study suggested that metformin inhibits cardiac fibrosis in a mouse heart failure model of pressure overload. Connective tissue growth factor (CTGF) is one of key factors in cardiac fibrosis and is usually induced by Angiotensin II (AngII) in the pressure overload mouse models. Metformin might play its cardioprotective role through inhibition of cardiac fibrosis and CTGF production. This study investigated the effect of metformin on CTGF production induced by AngII and the underlying mechanisms.

Methods: C57BL/6 wild-type and AMPK-K2 knockout were used. (3mg/kg*day) was infused subcutaneously into mice for 7 days. Adult mouse cardiac fibroblasts were isolated and treated with AngII and/or metformin. Realtime PCR, western blot were performed for the further experiments.

Results: In C57BL/6 mice, metformin inhibits AngII-induced cardiac fibrosis (AngII vs. AngII+Metformin: 1260 ± 1.97% vs. 7.26 ± 1.30% fibrosis area percentage, P < 0.05). In cardiac fibroblasts, metformin inhibits CTGF expression induced by AngII (fold of control mRNA level, AngII vs. AngII+Metformin: 1.37 ± 0.045 vs. 0.997 ± 0.067, P < 0.05). In vivo, AMPK2 deficiency further increases AngII-induced cardiac fibrosis (AngII + wild type vs. AngII+AMPK2 knockout: 2.16 ± 0.5% vs. 4.91 ± 1.05% fibrosis area percentage, P < 0.05) and CTGF expression (fold of control mRNA, AngII + wild type vs. AngII+AMPK2 knockout: 2.551 ± 0.212 vs. 6.245 ± 1.094, P < 0.05). Using bioinformatics method, we found that there are putative HNF4a binding sites in the promoter region of CTGF. A 2-fold increased expression of CTGF was found in cardiac fibroblasts infected with HNF4a adenovirons. In cardiac fibroblasts, metformin inhibits HNF4a protein level induced by AngII (fold of control, AngII vs AngII+Metformin: 4.171 ± 0.818 vs 2.547 ± 0.903, P < 0.05). In vivo, AMPK2 deficiency further increases AngII-induced HNF4a protein level (fold of control, wild type vs. AMPK2 knockout: 2.064 ± 0.241 vs. 4.198 ± 0.142, P < 0.05).

Conclusions: Metformin inhibits AngII induced cardiac fibrosis and CTGF expression through AMPK activation. The underlying mechanism is that AMPK activation inhibits AngII induced HNF4a and then decreases CTGF expression.

GW25-e3342

Immunoglobulin expressed in mice myocardial tissue and localization in myocardial fibrosis tissue

Zhu Zhi1,2, XiaoYan Qiu1, Meng Zhang1, Bin Wang3
1Peking University Aerospace Clinical College, 2Peking University healthy science center

Objectives: This study is to demonstrate that Ig molecules can be expressed in myocardial tissue and their classes and localization. Meanwhile, observe the expression and localization of Ig in primary cultured myocardia in vitro.

Methods: Wild type mice and B cell deficient mice were used as objects. First, extracorporeal heart perfusion method was used to exclude the contamination of blood. Then we detected the expression and localization of IgM, IgE by Western Blot, RT-PCR, Immunohistochimetry and Immunofluorescence method. We also detected the expression of IgM, IgE in primary cultured cardiomyocyte and HL-1 cells by RT-PCR. Moreover, we analyzed the characteristics of Ig variable region sequences and observed their localization in cardiomyocyte. C57BL/6 mice were divided into two groups; the sham group and the test group. The test group was injected with angiotensin II while the sham group was injected with saline for 14 days through a micro pump post in the back hypodermal. Then the mice were killed, Western Blot and immunohistochimistry staining were taken to detect Ig.

Results: IgM, IgE, IgG, Ig can be expressed in the heart tissue of both wild type and B cell deficient mice and localized mainly on the cross striations, however, IgM can also be observed on the cell membrane and intercalated discs. Furthermore, we detected Ig expression in primary cultured cardiomyocyte and HL-1 cells. We observed that different cell image (cardiomyocyte and cardiac fibroblast) showed quite different image (immunofluorescence) pattern arrangement pattern, with the cardiomyocyte cell line showed the same pattern. We also observed that the variable region sequences of cardiomyocyte-derived IgM and IgG showed obvious tendency and highly homology. IgM localized mainly on the cell membrane especially on the cell junction. IgE and IgG showed network-like structure in cardiomyocyte.

Conclusions: Comparing the fibrosis group with the sham group, Ig expression were up-regulated in myocardial cells. In the fibrosis area, the staining seems to disappear. This is the first time to demonstrate that mice cardiomyocyte can produce Ig and these cardiomyocyte-derived Ig showed quite different functions comparing with Ig produced by B cells, which demonstrate that these cardiomyocyte-derived Ig may participate in the regulation of myocyte contraction and myocardial fibrosis.

GW25-e5187

The role and mechanism of RAS-MAPK/ERK in right heart dysfunction associated with pulmonary hypertension

Guo Wen, Weijian Zhang, Hanying Ma
An Zhen Hospital, Capital Medical University

Objectives: To observe in protein expression of AT,R, TGF-β1, and ERK1/2 in pulmonary hypertension related right ventricle remodeling. Methods: 24 male SD rats were randomly divided into: Group 1 (control group), Group 2 (OLMESARTAN group), Group 3 (Olmesartan Control) and Group 4 (Olmesartan PAH). After 6 weeks, all survival rats were detected by echocardiography and right catheterization to observe the RVWAd and mPAP, RVSP. Weighted the RV and (LV+SP), to figure out the RVHI. Right ventricles tissue was staining with HE and TEM. The collagen type I was detected by collagen volume fraction (CVF). Plasma concentrations of AngII was determined by radioimmunassay. Expressions of AT,R, TGF-β1 and ERK1/2 protein of right ventricles tissue were detected by western blot. Right ventricular cardiac fibroblasts (RVCFs) obtained from neonatal rats were cultured and divided into FBs control group (group 1), AngII group (group 2), Ang-(1-7) group (group 3), U0126 group (group 4), Losartan group (group 5). RVCFs multiplication was detected by MTT colorimetric assay. The expression levels of TGF-β1 were measured by Immunohistochemistry. The expression levels of Collagen type I was measured by western blotting.

Results: After 6 weeks, no mortality occurs. Compared with the group 1, RVWAd, mPAP, RVSP and RVHI significantly increased in group2 (P <0.01) and Compared with the group 2, RVWAd significantly decreased in group (P <0.01). In group 2, the microstructure of right ventricles show cardiac myocyte hypertrophy, interstitial fibrosis lined up in disorder, muscle wither, and the Z lines broken. These changes improved to some extent in group 4. CVF in group 2 was significant higher than that in group 1 (P <0.05), and group 4 was significant lower than that in group 2 (P <0.05). Plasma concentrations of AngII markedly increased in group 2 (P <0.05), and there was no significant difference between group 4 and group 2 (P>0.05). AT,R, TGF-β1, and ERK1/2 protein expression markedly increased (P <0.01) in group 2. Compared with group 2, AT,R, TGF-β1, and ERK1/2 protein expression in group 4 markedly decreased (P <0.01). The proliferative capacity of group 2 was significantly identical compared with group 1, while the proliferative capacity of group 3 was significantly decreased as compared with group 2, respectively. The levels of TGF-β1 and collagen type I in group 2 were significantly increased as compared with group 1. Compared with group 2, the levels of TGF-β1 and collagen type I markedly decreased in group 3-5, respectively.

Conclusions: In MCT-induced pulmonary hypertension related RV remodeling rats, AT,R, TGF-β1 and ERK1/2 protein expression of right ventricle were up-regulated, and Plasma concentrations of AngII markedly increased. Olmesartan inhibited the