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Abstract

The three-dimensional universal complex Clifford algeé@o is used to represent relativistic vectors in terms of paravectors. In analogy to
the Hestenes spacetime approach spinors are introduced in an algebraic form. This removes the dependance on an explicit matrix represen
of the algebra.
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1. Introduction eral relativity, where the hyperbolic numbers are also denoted
as paracomplex or split-complex numbers. Paracomplex pro-
Over the last years there is growing interest in the Clifford alJ€Ctive models and harmonic maps were investigated by Erdem
gebra approach to spacetime that has been initiated by Hesterléd—13} A survey on paracomplex geometry, para-Hermitian,
[1-4]. The algebraic representation of geometry has in gener@nd para-Kaehler manifolds has been given by Cruceanu et al.
advantages compared to the conventional description in termjd# 15} Solutions of Minkowskian sigma models generated by
of column vectors and matrices. An overview of applications igYPerbolic numbers were considered by Lambert gl&l17}
given by Doran and Lasentj§] and by Gull et al[6]. Zhong generated new solutions of the stationary axisymmetric
Beside the approach to relativistic physics in terms of the=NStéin equations with hyperbolic numbgis]. He investi-
Ry 3 Dirac algebra, there is the less noticed approach of Bayligated hyperbolic complex linear symmetry groups and their
which is based orR3, o paravector§7]. Baylis derived a new 0cal gauge transformation actioft9]. Furthermore, the hy-
representation of electrodynamifgj with these paravectors. Perbolic complexification of Hopf algebrd20]. Moffat [21]
This algebra has been introduced originally by Sobczyk in thd1@s interpretated the hyperbolic number as fermion number.
spacetime vector analys[§]. In a recent work/10] this al- This interpretation has led to fundamental explanation of sta-
gebra is generalized to the universal complex Clifford algebrlity of fermionic matter. . _
C3,0. The structural difference compared to Baylis appears in AS @ supplement to the references[i0] it is mentioned
the shape of the hyperbolic unit, which plays an integral part ifhat introductions to hyperbolic numbers including further ref-
the complex formalism. erences are given by Sobczj@#?], Borota and Oslej23]. Hy-
For more details on the hyperbolic numbers and their propPerbolic numbers are applied to integrable systems by Bracken
erties it is referred to the referenceg10]. However, it should ~and Hayeg24,25] Linear and quasilinear complex equations

be mentioned that hyperbolic numbers are used also within ge@'® investigated by Wen based on hyperbolic numi2s
A slightly different structure than the algebra used in this work

have the so-called paraquaternions (or split-quaternipnp
E-mail address: stefan.ulrych@bluewin.c{S. Ulrych). used, e.g., by Blazif28].
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The hyperbolic numbers form, together with complex num-  The scalar product of two vectors is defined as
bers and quaternions, the fundamental building blocks in the
classification of Clifford algebras. Porteoyi9] gives an X~y=§(X§+yi)=(X§)+~ (7)
overview of real and complex Clifford algebras for geometries.l_
with arbitrary signatures. Beside the real Clifford algebras there
exist four different types of complex algebras. Porteous derive
explicit matrix representations for all algebras. Spinors are el-
ements of a minimal left ideal, which can be represented a¥he wedge product corresponds to a so-called biparavector,
column vectors corresponding to the matrix representation ofvhich can be used for the description of the electromagnetic
the algebra. Such a representation has been ug&@lin field or the relativistic angular momentum (see also Bggjs
Though this conventional picture is familiar to physicists, A special notation has been introduced indicating the symmet-
Hestenes actually promoted the full algebraic representatioric and anti-symmetric contributions of a geometric product
of vectors and spinors. The theory should be free of any ex- _ _ _
plicit matrix representations. Hestenes achieved this for nortY = ¥+ + (x¥)—. i ©)
relativistic and relativistic physics. It is the intention of this  The basis elements of th€z o paravector algebra can be
work to apply these ideas explicitly to the three-dimensionakonsidered as the basis vectors of the relativistic vector space.
complex paravector algebra. These basis elements form a non-Cartesian orthogonal basis
with respect to the scalar product defined in &9.

he wedge product is given as

1
Ay =50y = y8) = (xy)—. 8

2. Hyperbolic algebra

€€ =8uv, (10)
Vector spaces can be defined over the commutative ring offhereg,,, is the metric tensor of the Minkowski space.
hyperbolic numbers € H The groupSU(2, H) corresponds to the spin group of the

hyperbolic algebra and its elements can be used to express rota-
tions and boosts of the paravectors. The rotation of a paravector
where the hyperbolic unit has the property? = 1. In the ter-  can be expressed as
_mmqlogy of Clifford algebras the _hyperbollc numbers deflnedx Ly — ReRT (11)
in this way are represented I} o, i.e., they correspond to the
universal one-dimensional complex Clifford algebra (see PorFor the boosts one finds the transformation rule
teous[29]). / t
: : . - . =BxB'. 12

Beside the grade involution, two anti-involutions play a ma-" x o _ (12)

jor role in the description of Clifford algebras and their struc- Rotations and boosts are given as

z=x+4iy+jv+ijw, x,y,v,weER, 1)

ture, conjugation and reversion. Conjugation changes the sig}‘i; — exo(—ibio: /2 B—exolitic: /2 13

of the complex and the hyperbolic unit o=i6'0i/2). o(j&"01/2). (13)

. . _ 3 The infinitesimal generators of a Lorentz transformation can be
T=x—iy—ju+ijw. (2)  identified as

Reversion, denoted a$, changes only the sign of the complex Ji=01/2 Ki=ijoi/2. (14)

unit. Anti-involutions reverse the ordering in the multiplica- ) )
tion, e.g.,(ab)t = bTa’. This becomes important when non- The generators satisfy the Lie algebra of the Lorentz group.

commuting elements of an algebra are considered. With respect BOOSts are invariant under reversidi = B, whereas the

to conjugation the square of the hyperbolic number, conjugated boost corresponds to the invese B~*. For ro-
tations reversion and conjugation correspond both to the inverse

|z|% = 2z, (3)  R'=R =R The effect of conjugation, reversion, and grad-

can be calculated as uation on the used hypercomplex units is displaye@iahle 1

) X . X N Note, that graduation is an i/rjvolutAion, which does not reverse
22=x"4+y°— v —w +2jxw — yv). 4) the ordering in a product, i.eap = ab. Conjugation, reversion,
The hyperbolic numbers form the basis of the hyperbolicad graduation are related by= al. _

paravector algebra. A Minkowski vectat' = (x%, x') € R3? This was a brief summary of the most important facts. A

is represented in terms of the hyperbolic algebra as more detailed representation of the hyperbolic algebra can be
found in[10].

x=xte,. %)

The basis elements, = (eo, ¢;) include the unity and the Pauli Tablel _ , _
algebra multiplied by the hyperbolic unjt Effect of conjugation, reversion, and graduation on the used hypercomplex units
a

en = 1, joi). (6) €0

€j
The algebra can be complexified with either the hyperbolic og,
the complex unit. The full structure is equivalent to the univer-i
sal three-dimensional complex Clifford algel®a,o. J -

L+ 1+
+ 0+t [y
L4+
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3. Spinorsin the hyperbolic algebra paravector algebra and the elemegt= 1, which is invariant
under the grade involution. Bayl[8] introduces the terminol-

The relationship between relativistic spinors and vectors cangy of a paravector grade. However, it is shown below that a

be derived in the same way as in non-relativistic physics. Starspinor cannot be identified uniquely as an element of even par-

ing from a parameterization of a normalized Minkowski vectoravector grade.

in terms of spherical coordinates, which can be generated from The factors in Eq(21) are introduced by convention. They

a standard vector by a vector transformation, the equivalerihdicate that not all elements in this expansion are linear inde-

object in spinor space is derived from the corresponding spipendent. The spinor consists of a scalar part, six independent

transformation. A normalized spacelike vectdrcan be repre- components of a biparavector, and one pseudoscalar contribu-

sented as tion. The last term could therefore be expressed also in the
x0 sinhg simplified form
1 .
w_ | x cosh sinf cosg 3 g
T 2 coshe sind sing (15) un=-—z (epevesep)—, (22)
x3 cosht cosd

with the pseudoscalatjn. The explicit form of the spinor
Inthe limit of ¢ — O the vector reduces to a non-relativistic vec- components for the parametrization of H47) is given in
tor in spherical coordinates. The vector can be obtained from Appendix A The eight independent components are included

standard vectar# = 0,0,0,1) with a Lorentz transformation also in the two-component spinor of E@_S) Exp||c|t|y one
of the form finds

L= 9% 1002 1EKs, (16) i (VO YT ijy O (23)
- 1//31+iw32+j¢10+l~j¢20 .

With the generators of Eq14)the corresponding spin transfor- o

mation can be written as The only non-trivial operators that can be generated by the

basis elements of the hyperbolic algebra greio;, and jo;.

Together with the unity they form the subalgel®a o, which

The spinor, corresponding to the above vector, is obtaine&’i" be denoted here as spinor algebra. The effect of these oper-

in the conventional picture from a multiplication of the two- ators on the spinor has to be investigated to proof the one to one

component standard spingf = (1, 0) by the above spin trans- relationship between the spinors given in E48) and (20)For
formation the two-component structure the elements of the Pauli algebra

‘ _ have to be replaced by their explicik2 matrix representation.
=Sy (18)  If the algebraic spinor is represented in the form

S — o i003/2,—i002/2 ,j§03/2 (17)

The elements of the Pauli algebra are represented here & 2 v = 49 + v32%ioy + v Bioy + ¥2tios

matrices. The hy_per_bolic spinor has two cqmpone’ﬁts H". + wlojo,1 + Ipzojaz + W?’Ojds + ijw0123, (24)
The bar symbol indicates that the correlation, which maps the . ] )
elements of the spinor to its dual space, is defined with conjut-he proof of this one to one correspondence is straightforward.

gation as given in E2). With the relationS = 51 it is easy From Eq.(24) it is obvious that the spinor can be expanded
to show that the spinor is normalized also into an odd number of basis vectors

. Yo

WNV =1 (19) Y= 1/f“€u + T(euevea)—a (25)

This representation provides a consistent framework for relwhich simply leads to a relabelling of the spinor components.
ativistic calculationg[10]. However, this picture requires an This spinor is formed by a paravector and a triparavector. The
explicit matrix representation of the algebra. Hestdig¢sug-  triparavector is calculated §8]
gested to identify the spinor directly with the spinor transfor- 1
mation itself to obtain a spinor in a pure algebraic form. This(e,e,e,)- = g(eﬂévea +evese, +ege e,
concept can be adopted also in the current context. The Clifford o - -
algebraic spinor is therefore defined as ~eveués — Euloy — €oren). (26)

The divisor in Eq(25) indicates again that not all elements

V=S5 (20) of the triparavector are linear independent. In fact, there are
The spinor can be expanded into a component structure wittnly four independent components. One could therefore also
an even number of basis vectors write the last term in the simplified form
0 wﬂv B nvoep B B nvo _
Y=v¢" 4+ o (epey)— + T(euevegep)_, (21)  ijnte,= T(eﬂeveg)_, (27)

where only the antisymmetric contributions of the algebra prodwhereijn* has the structure of a pseudovector. Though this
ucts are considered. Note, that this structure is not an elemergpresentation looks like a sum of a vector and a pseudovector,
of the even Clifford algebra. It is a mixture of even and odd elekeep in mind that in the terminology of Clifford algebras the
ments with respect to the grade involution. The reason lies in thepinor is considered as an element of a minimal left ideal. It is
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only multiplied from the left with other elements of the algebra, The algebraic spinor must not be multiplied from the right

whereas a vector transforms according to Efj$) and (12) by an element of the Pauli algebra, if the mass opefaioy,
which can be represented in terms of the spinor alg&arg is
4. Spinor product acting on it. This is required in thR1 3 algebra in order to keep

the spinor within the even algebra, when it is multiplied by the
In the conventional picture the scalar product of two spinorsodd grade Dirac operator.
is based on the correlation, which maps the elements of the The scalar product of the Clifford algebra can be used to
spinor space to their dual space. If the spinor corresponds tgefine a spinor product, which is equivalent to the conventional
a two-component column vector the correlation is representegcalar product of a column spinor.
with transposition and conjugation. One can therefore write

pov =iy, (28) Appendix A. Algebraic spinors
with ¢, ¢ € H#?. The Hermitian product will be denoted in the
following as spinor product. The components of the Clifford algebraic spinor are listed

Based on Eq(7) the spinor product of two algebraic spinors below. They correspond to the parametrization given in(Ed)
can be defined as 0
W =C0Ssp/2cox)/2CcostE /2,
poy=¢ Y+ jo ves (29) 10 cosp/2sing /2 sinke /2,
The secoqd term cor_r(_esponds tp a pr.ojection in the directioqbzoz sing /2 sind /2 sinhé /2,
of the z-axis. An explicit calculation using Eq§23) and (24) 30 )
shows that the above spinor products for the column spinor anf~ = 0S¢/2 cosd/2sinhé /2,
the algebraic spinor are equivalent. The square of the spinay'? = sing /2 cos /2 coste /2,
product can be calculated in terms of relative coordinates as w31 = cosp /2sind /2 costE /2,

|g00 w|2=CO§(9/2)(1+l] SinhE Sin¢), (30) Kb?’zzsin¢/23in9/2Coslff/z7

wherey has been chosen to be in its standard frame. Note, tha§3210— sing /2 cos) /2 sinhg /2. (A1)

the same expression can be derived also in momentum space. . . o
This square appears in physics in the calculation of croshlote, that the F:o.mp'onents of the spinor are ant|symmetr|c with
sections, for example in the scattering of polarized electronEeSPect to their indices. The ordering in the indices has been
by a spinless nucleus like oxygéfO (see, e.g., Perkirf80]). chosen to give positive values for all components. The elements
The spinory can be chosen to represent the spin structure ofPPear partly with reversed indices in the explicit form of the
the incoming electron beam with momentum and polarizatiorSPINOrs in Egs(23) and (24) o
(ms = +1/2) aligned in the direction of the-axis. The scat- Itis an interesting point that in the non-relativistic lingit->
tered electron beam, still polarized img = +1/2 state, corre- 0 a vector can be formed that corresponds to a parametrization
sponds tap. In the case of elastic scattering E80)reduces to  Of @ rotation with a 4 symmetry
the factor c_025(9/2), which is equall to the contribl_Jtion of the Y32 sing /2sing /2
eleqtron spin to.the Mott formula in th(_a conv_entlonal mathe— =y ) = —cosp/2sing,/2 ).
matical formulation of the problem. For inelastic scattering the Y2l —sing/2cos/2
second term in Eq(30) appears, which is proportional to the
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