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Abstract

Tuning interactions in the spin singlet and quintet channels of two colliding atoms could change the 
symmetry of the one-dimensional spin-3/2 fermionic systems of ultracold atoms while preserving the in-
tegrability. Here we find a novel SO(4) symmetry integrable point in the spin-3/2 Fermi gas and derive 
the exact solution of the model using the Bethe ansatz. In contrast to the model with SU(4) and SO(5)

symmetries, the present model with SO(4) symmetry preserves spin singlet and quintet Cooper pairs in 
two sets of SU(2) ⊗ SU(2) spin subspaces. We obtain full phase diagrams, including the Fulde–Ferrel–
Larkin–Ovchinnikov like pair correlations, spin excitations and quantum criticality through the generalized 
Yang–Yang thermodynamic equations. In particular, various correlation functions are calculated by using 
finite-size corrections in the frame work of conformal field theory. Moreover, within the local density ap-
proximation, we further find that spin singlet and quintet pairs form subtle multiple shell structures in 
density profiles of the trapped gas.
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1. Introduction

Large-spin atomic fermions displaying rich pairing structures and diverse many-body phe-
nomena could be realized through controlling interactions in spin scattering channels. Promising 
theoretical progress has been made on large-spin atomic fermions in the context of multi-particle 
clustering superfluidity [1–4]. In particular, fermionic alkaline-earth atoms can exhibit an exact 
SU(κ) symmetry with κ = 2I + 1 [5,6], where I is pure nuclear spin. Experimental explorations 
of these fermionic systems have been reported on the trimer state of 6Li atoms [7–9], the SU(10)

symmetry fermionic gas of 87Sr atoms with I = 9/2 [10] and the two-orbital magnetism of SU(κ)

symmetry in 87Sr atoms [11], the SU(2) ⊗ SU(6) symmetry fermionic atoms of 173Yb with its 
spin-1/2 isotope [12], the SU(6) Mott-insulator state of 173Yb atoms [13] and two-orbital Hub-
bard model [14], etc. Despite much theoretical and experimental efforts on the large spin atomic 
systems, understanding spin pairs and large spin magnetism is still rather elusive [15], see a 
recent review [16].

In contrast to the conventional spin-1/2 electronic magnetism [17,18], one-dimensional (1D) 
large-spin ultracold atomic fermions exhibit richer high spin phenomena [19,20]. Preliminary 
study of multi-color superfluidity and quartetting ordering [21,22] was also carried out through 
few simplest integrable large spin fermionic systems, such as the SU(4)- and SO(5)-invariant 
spin-3/2 fermions [23–25]. However, there is still little progress toward to the understanding of 
large spin pairing in non-SU(κ) symmetry models [26–28]. To this regard, the spin-3/2 fermionic 
system comprises an ideal model towards to the precise understanding of large spin non-SU(κ)

symmetries. From experimental point of review, spin-3/2 systems can be realized with alkali 
atoms of 6Li, 132Cs and alkaline-earth atoms of 9Be, 135Ba and 137Ba [19], see the recent exper-
iment [29] for more details.

Advances in controlling ultracold atoms provide us promising opportunities of realizing quan-
tum many-body systems with more tunable parameters [30,31]. For example, S-wave scattering 
in these spin-3/2 atomic fermionic systems acquires six effective interaction channels according 
to the Clebsch–Gordan coefficients. One is the spin singlet channel with total spin-0 and the oth-
ers are the spin quintet channels with total spin-2, while the S-wave scattering in the channels 
of total spin-1 and -3 is forbidden. When the interactions in all scattering channels are the same, 
the system exhibits SU(4) symmetry and is integrable in 1D [23,24], see model (i) in Table 1. 
However, if the interaction in quintet channels is different from that in the singlet channel, then 
the system can exhibit a SO(5) symmetry without fine tuning [19], see model (ii) in Table 1. The 
model with SO(5) symmetry is integrable at a special point [27].

In fact, the scattering lengths in the quintet channels may be tuned to breakdown the SU(4)

or SO(5) symmetries while preserving the integrability. In this paper, we propose an integrable 
spin-3/2 atomic Fermi gas with SO(4) symmetry, see model (iii) in Table 1. Based on the exact 
solution, we find that the model has subtle spin pairing phases and exhibits Fulde–Ferrel–Larkin–
Ovchinnikov (FFLO) like pair correlations. For SU(4) symmetric model, there are no pairs when 
the interactions are repulsive, while for attractive interactions, four-body bound states appear in 
the ground state [23,24]. With the competition between chemical μ and external magnetic field h, 
three-body bound states and two-body pairs also could emerge in the ground state [25]. How-
ever, for the present SO(4) symmetry model with either repulsive interaction (c > 0) or attractive 
interaction (c < 0), bound pairs could emerge in the ground state regardless of the sign of c. In 
contrast to the SU(4) case, we also find that there are no four- and three-body bound states in 
the SO(4) system. We further show that the integrable SO(4) model presents universal quantum 
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Table 1
Three integrable points for spin-3/2 quantum gases.

No. g00 g2,2 g2,1 g2,0 g2,−1 g2,−2

i c c c c c c

ii 3c c c c c c

iii c −c c −c c −c

criticality with dynamic exponent z = 2 and correlation exponent ν = 1/2 in terms of different 
pairing states.

The paper is organized as following. In Section 2, we discuss the symmetry and conserved 
quantities of the integrable SO(4) model in the frame work of Yang–Baxter equation. The ex-
act solution, thermodynamic limit and thermodynamic Bethe ansatz equations are derived in 
Section 3. In Section 4, ground state properties and full phase diagrams are discussed in grand 
canonical ensemble. The elementary excitations of this model and Luttinger liquid behavior are 
studied in detail in Section 5. In Section 6, various asymptotics of correlation functions for sev-
eral quantum phases in strong coupling limit are calculated explicitly. The equation of states and 
the quantum criticality of the system are further studied in Section 7, followed by discussions in 
Section 8.

2. Integrable SO(4) model and conserved quantities

We consider the model Hamiltonian

Ĥ = −
N∑

j=1

∂2

∂x2
j

+
N∑

i �=j

∑
lm

glmP̂ lm
ij δ(xi − xj ) − hM̂, (2.1)

that describes dilute spin-3/2 atomic gases of N fermions with contact interaction constrained 
by periodic boundary conditions to a line of length L. Here we let 2m = h̄ = 1. The last term 
in the Hamiltonian (2.1) is the Zeeman energy. The spin polarization (magnetization) is given 
by M̂ = ∑

j f̂ z
j , where f̂ z is hyperfine spin moment in the z-direction. The projection operator 

P̂ lm
ij = |lm〉〈lm| projects the total spin-l state onto the spin-m state in the z-direction of two 

colliding atoms i and j . In the above equation, the summation 
∑

lm is carried out for l = 0, 2
and m = −l, −l + 1, . . . , l. The interaction strength in the channel |lm〉〈lm| is given by glm =
−2h̄2/(malm

1D), where

alm
1D = − a2⊥

2alm

(
1 − C

alm

a⊥

)

is the effective 1D scattering length depending on the 3D scattering length alm in the channel 
|lm〉〈lm| [32]. The constant C ≈ 1.4603 and (l, m) stands for the interaction channel. Re-
markably, the model (2.1) exhibits three classes of mathematical symmetries that preserve the 
integrability by appropriate choices of the interaction strength via clm = −2/alm

1D = mglm/h̄2, 
see Table 1.

For model (iii), two sets of interacting channels {(2, 1), (0, 0), (2, −1)} and {(2, 2), (2, 0),

(2, −2)} form two spin subspaces with interaction potentials V̂1 = P̂
2,1
ij + P̂

0,0
ij + P̂

2,−1
ij and 

V̂2 = P̂
2,2
ij + P̂

2,0
ij + P̂

2,−2
ij , respectively. The full interaction potential is V̂ij = cV̂1 − cV̂2, which 

can also be written as
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V̂ij = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −c 0 0 c 0 0 0 0 0 0 0 0 0 0 0
0 0 c 0 0 0 0 0 −c 0 0 0 0 0 0 0
0 0 0 0 0 0 −c 0 0 c 0 0 0 0 0 0
0 c 0 0 −c 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −c 0 0 0 0 0 0 0 0 c 0 0 0
0 0 0 0 0 0 0 c 0 0 0 0 0 −c 0 0
0 0 −c 0 0 0 0 0 c 0 0 0 0 0 0 0
0 0 0 c 0 0 0 0 0 0 0 0 −c 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −c 0 0 c 0
0 0 0 0 0 0 c 0 0 −c 0 0 0 0 0 0
0 0 0 0 0 0 0 −c 0 0 0 0 0 c 0 0
0 0 0 0 0 0 0 0 0 0 0 c 0 0 −c 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.2)

Consequently, for c > 0 (or c < 0), the potential V̂2 (or V̂1) presents attractive channels while 
V̂1 (or V̂2) is repulsive.

The multipole operators are defined by [27]

T̂ l
m =

∑
m′=0,±1

T̂ 1
m′ T̂ l−1

m−m′C
1,m′;l−1,m−m′
l,m ,

m = l, l − 1, . . . ,−l, l = 2,3,

T̂ 1
1 = −(f̂ x + if̂ y)/

√
2, T̂ 1

0 = f̂ z, T̂ 1−1 = (f̂ x − if̂ y)/
√

2, (2.3)

where Cj1,m1;j2,m2
j,m = 〈j1, m1; j2, m2|j, m〉 are Clebsch–Gordan coefficients and f̂ x,y,z are the 

spin operators of the spin- 3
2 atoms

f̂ x =

⎛
⎜⎜⎜⎝

0
√

3
2 0 0√

3
2 0 1 0

0 1 0
√

3
2

0 0
√

3
2 0

⎞
⎟⎟⎟⎠ , f̂ y =

⎛
⎜⎜⎜⎝

0 −i
√

3
2 0 0

i
√

3
2 0 −i 0

0 i 0 −i
√

3
2

0 0 i
√

3
2 0

⎞
⎟⎟⎟⎠ ,

f̂ z =

⎛
⎜⎜⎝

3
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2

⎞
⎟⎟⎠ . (2.4)

There are 15 multipole operators and only following 6 are commutative with the interaction 
potential

T̂ 3
0 = 3

2
√

10

⎛
⎜⎜⎝

1 0 0 0
0 −3 0 0
0 0 3 0
0 0 0 −1

⎞
⎟⎟⎠ , T̂ 3

2 = 3

2

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,
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T̂ 3
−2 = 3

2

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ , T̂ 2

0 = 1

2

⎛
⎜⎜⎝

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎞
⎟⎟⎠ ,

T̂ 2
1 = √

3

⎛
⎜⎜⎝

0 −1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ , T̂ 2−1 = √

3

⎛
⎜⎜⎝

0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

⎞
⎟⎟⎠ . (2.5)

Using above six multipole operators and the Pauli matrices, we define the pseudo spin-operators 
as

j1,x = 1

3
(T̂ 3

−2 + T̂ 3
2 ) = 1

2
σ̂ x ⊗ σ̂ z, j2,x = i

2
√

3
(T̂ 2−1 − T̂ 2

1 ) = 1

2
σ̂ z ⊗ σ̂ x,

j1,y = i

3
(T̂ 3

−2 − T̂ 3
2 ) = 1

2
σ̂ y ⊗ σ̂ z, j2,y = i

2
√

3
(T̂ 2−1 + T̂ 2

1 ) = 1

2
σ̂ z ⊗ σ̂ y,

j1,z = 1

5

(
2T̂ 2

0 −
√

10

3
T̂ 3

0

)
= 1

2
σ̂ z ⊗ Î ,

j2,z = 1

5

(
T̂ 2

0 + 2
√

10

3
T̂ 3

0 /3

)
= 1

2
Î ⊗ σ̂ z. (2.6)

The operators jd,α with d = 1, 2 and α = x, y, z satisfy the commutation relations

[jd,α, jd,β ] = ih̄
∑
γ

εαβγ jd,γ , (2.7)

where εαβγ is the fully antisymmetric tensor. We clearly see that j1,α and j2,α generate two 
SU(2) Lie algebras and the six operators jd,α form the generators of the SO(4) Lie algebra.

The attractive potentials may lead to spin-J pairs with J = 0, 2 in the quasi-momentum space. 
Consequently, the generators φ̂† of these spin-J pairs comprise the following two sets of repre-
sentations regarding to the attractive channels V̂2 and V̂1

φ̂2,0 = 1√
2
(ψ̂−3/2ψ̂3/2 − ψ̂1/2ψ̂−1/2),

φ̂2,2 = ψ̂1/2ψ̂3/2, φ̂2,−2 = ψ̂−3/2ψ̂−1/2, (2.8)

φ̂0,0 = 1√
2
(ψ̂−3/2ψ̂3/2 + ψ̂1/2ψ̂−1/2),

φ̂2,1 = ψ̂−1/2ψ̂3/2, φ̂2,−1 = ψ̂−3/2ψ̂1/2. (2.9)

Using the language of second quantization, the pseudo spin operators can be expressed as ĵ d,α =
ψ̂

†
jd,αψ̂ , where ψ̂ = (ψ̂3/2, ψ̂1/2, ψ̂−1/2, ψ̂−3/2)

t and the superscript t denote the transposition. 
One can check that following commutation relations are valid

[ĵ1±,z, φ̂
†
2,1] = 0, [ĵ1±,z, φ̂

†
2,−1] = 0, [ĵ1±,z, φ̂

†
0,0] = 0,

[ĵ2±,z, φ̂
† ] = 0, [ĵ2±,z, φ̂

† ] = 0, [ĵ2±,z, φ̂
† ] = 0. (2.10)
2,2 2,−2 2,0
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The pseudo spin operators are commutative with the interaction potential. Therefore, the model 
has SO(4) symmetry. This symmetry does not preserve the number of atoms with each internal 
degree of freedom. But the total number of atoms are conserved. Meanwhile, the quantities

Ĵ3/2 = N̂3/2 − N̂−3/2, Ĵ1/2 = N̂1/2 − N̂−1/2, (2.11)

are conserved. Here N̂i is the number of atoms with spin-i component. The spin polarization 
along the z-direction, which is given by M̂ = 3

2 Ĵ3/2 + 1
2 Ĵ1/2, is also conserved.

3. The Bethe ansatz solution and thermodynamic limit

The model (2.1) with SO(4) symmetry can be solved by means of the coordinate Bethe ansatz 
(BA) [33,17]. The BA wave function of the model reads

Ψ (x1σ1, x2σ2, . . . , xNσN) =
∑
P,Q

Θ(Q)Aσ1,σ2,...,σN (Q,P)ei
∑

j kPj
xQj , (3.1)

where xj and σj are the coordinate and the spin in z-direction of the j -th atom respectively. 
Here kj are pseudo-momenta of the particles, j = 1, 2, . . . , N , and Q and P are the per-
mutations of {1, 2, . . . , N}. Θ(Q) is a series of production of step functions, i.e. Θ(Q) =
θ(xQ2 − xQ1)θ(xQ3 − xQ2) · · · θ(xQN

− xQN−1). As usual, θ(x) = 1 when x ≥ 0 and θ(x) = 0
otherwise. In particular, the key ingredient of BA is the superposition coefficients of these plane 
waves �A(Q,P), which can be consequently determined by the two-body scattering relation be-
low.

The wave function (3.1) of the many-body interacting fermions (2.1) should satisfy the 
fermionic statistics and time independent Schrödinger equation ĤΨ = EΨ . These restric-
tions lead to the scattering relation between two superposition coefficients �A(Q(ba), P(ba)) =
ŜQa,Qb

(kPa
− kPb

) �A(Q(ab), P(ab)), where the two-body scattering matrix

Sab(k) = k + ic

k − ic
V̂1,ab + k − ic

k + ic
V̂2,ab +

∑
l=1,3

l∑
m=−l

P̂ lm
ab , (3.2)

satisfies the Yang–Baxter equation

Sab(λ)Sac(λ + ν)Sbc(ν) = Sbc(ν)Sac(λ + ν)Sab(λ), (3.3)

which guarantees the integrability of the model. In the above equations we denoted Q(ab) =
{. . . , Qa−1, QaQb, Qb+1, . . .}, Q(ba) = {. . . , Qa−1, QbQa , Qb+1, . . .}, and P(ab) and P(ba) have 
a similar definition. Eq. (3.2) indicates that there is no interaction in the total spin-1 and -3
channels. This is the consequence of the symmetry of the wave function. The periodic boundary 
conditions give rise to the following eigenvalue problem

eikj LŜj,j−1(kj − kj−1) · · · Ŝj,2(kj − k2)Ŝj,1(kj − k1)

× Ŝj,N (kj − kN) · · · Ŝj,j+1(kj − kj+1) �A = �A, (3.4)

which is used to determine the quasi-momenta ks.
By using the nested algebraic BA [34,35] and after complicated calculations, we obtain the 

energy of the system as E = ∑N
k2 − hM , where the quasi-momenta {ki} should satisfy fol-
j=1 j
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Fig. 1. (Color online.) Spin-flipping process: for c > 0, the spin rapidity λ provides the spin flip with a total spin change 
of 1 whereas ν gives the spin flip with a total spin change of 2. For c < 0, the rapidity ν provides the spin flip with a total 
spin change of 1 whereas λ leads to a total spin change of 2.

lowing BA equations,

eikiL =
M1∏
j=1

e 1
2

(
ki − λj

) M2∏
j=1

e− 1
2

(
ki − νj

)
, i = 1, . . . ,N,

N∏
i=1

e 1
2

(
λj − ki

)= −
M1∏
�=1

e1
(
λj − λ�

)
, j = 1, . . . ,M1,

N∏
i=1

e 1
2

(
νj − ki

)= −
M2∏
�=1

e1
(
νj − ν�

)
, j = 1, . . . ,M2. (3.5)

Here λ and ν are the spin rapidities, and we denoted the function ea(x) = x−iac
x+iac

. The BA equa-
tions coincide with the two-band model of electrons in 1D [36]. From these BA equations we 
can obtain the full phase diagrams and thermodynamics of the spin-3/2 interacting fermions with 
SO(4) symmetry. In Eq. (3.5), the quasi-momenta {ki} are nested with the spin rapidities λ and ν. 
For c > 0, the spin rapidity λ provides the spin flip with a total spin change of 1 whereas ν gives 
the spin flip with a total spin change of 2, see Fig. 1. Thus the quantum numbers are given by 
M1 = N1/2 + N−3/2 and M2 = N−1/2 + N−3/2 for {λ} and {ν}, respectively. For c < 0, the roles 
of the above ν and λ are swapped. Thus N1/2 and N−1/2 exchange in M1 and M2 in this case.

Finding root patterns of the BA equations (3.5) presents a big theoretical challenge towards 
to understanding the physics of the model. Here we find that the quasi-momenta {ki} can be 
either real or complex conjugated pairs at the thermodynamic limit, L → ∞ and n = N/L is 
a constant. The real roots ku,z ∈ R with z = 1, 2, . . . , Nu characterize the quasi-momenta for 
unpaired fermions. The complex conjugated roots kp,z ∈ C with z = 1, 2, . . . , Np denote the 
quasi-momenta of bound states, i.e., spin-J pairs with total spin J = 0, 2. We observe that the BA 
equations (3.5) present the spin pair bound states solely depending on the attractive interaction 
channels of V̂1 and V̂2 (or say c < 0 or c > 0), see Eqs. (2.8) and (2.9). Explicitly, for c > 0, 
the momenta for a bound pair of two-atom with different spins have a complex conjugate pattern 
k±

p,z = kp,z ± ic/2 with a binding energy εp = c2/2 in the thermodynamic limit. Where a real 
spin rapidity λp,z = kp,z is coupled together with k±

p,z. So do the spin rapidities νp,z in the case of 
c < 0.

For the ground state, we observe that the BA roots only involve real k, complex conjugated k, 
1-string ν and 2-string ν for c > 0, see Section 4. Here we denote the corresponding density 
distribution functions as ρ(u), ρ(p), ρ(1) and ρ(2). Whereas, for c < 0, the 1-string and 2-string λ
populate the ground state instead of the ν. At finite temperatures, the spin rapidities λ’s and ν’s 
evolve different lengths of spin strings similar to the spin-1/2 Heisenberg integrable model [37]:
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λn,z,j = λn,z + 1

2
(n + 1 − 2j)i|c|, z = 1,2, . . . ,M1,n,

νn,z,j = νn,z + 1

2
(n + 1 − 2j)i|c|, z = 1,2, . . . ,M2,n,

λn,z, νn,z ∈R, j = 1,2, . . . , n, (3.6)

where M1,n and M2,n are the numbers of n-string of λ and ν, respectively. Thus we have ∑
n Ml,n = Ml (l = 1, 2). The BA equations in thermodynamic limit are obtained by substi-

tuting the string hypothesis into Eqs. (3.5). By taking the logarithm of the BA equations and 
using the relation

x − inc

x + inc
= −eiθn(x), θn(x) = 2 arctan

( x

nc

)
, (3.7)

when c > 0, we get the logarithmic form of the BA equations

2πI (u)(kuz) = kuzL −
Np∑
y=1

θ 1
2
(kuz − kpy) −

∞∑
m=1

M1m∑
y=1

θm
2
(kuz − λmy)

+
∞∑

m=1

M2m∑
y=1

θm
2
(kuz − νmy),

2πI (p)(kpz) = 2kpzL −
Np∑
y=1

θ1(kpz − kpy) −
Nu∑
y=1

θ 1
2
(kpz − kuy)

+
∞∑

m=1

M2m∑
y=1

A1m(kpz − νmy),

2πI (1)(λnz) =
Nu∑
y=1

θ n
2
(λnz − kuy) −

∞∑
m=1

M1m∑
y=1

Anm(λnz − λmy),

2πI (2)(νnz) =
Nu∑
y=1

θ n
2
(νnz − kuy) +

Np∑
y=1

A1n(νnz − kpy)

−
∞∑

m=1

M1m∑
y=1

Anm(νnz − νmy), (3.8)

where Anm = θ n+m
2

+ 2
[
θ n+m−2

2
+ · · · + θ |n−m|−2

2

] + θ |n−m|
2

− δn,mθ0. Here the quantum number {
I (u), (p), (1), (2)

}
takes integers or half odd integers as the following

I (u) ∈ Z+ 1

2

(
Np +

∑
m

M1,m +
∑
m

M2,m

)
, I (p) ∈ Z+ 1

2

(
1 + Nu + Np

)
,

I (1) ∈ Z+ 1

2

(
1 + n + Nu

)
, I (2) ∈ Z+ 1

2

(
1 + n + N

)
. (3.9)

The BA wave function acquires that any two rapidities of each branch are not equal. Otherwise 
the wave function is zero. According to this restriction, the quantum numbers I s of each branch 
take different numbers in parameter space [34]. The solutions of the BA equations (3.5) are 
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classified by a set of quantum number 
{
I (u), (p), (1), (2)

}
. Thus the momentum of the BA eigenstate 

is given by

P = 2π

L

[∑
z

I (u)(ku,z) +
∑

z

I (p)(kp,z) +
∑
nz

I (1)(λn,z) +
∑
nz

I (2)(νn,z)

]
. (3.10)

Accordingly, the energy E and the magnetization M of the model are given by

E =
Nu∑
j=1

(
ku,z

)2 + 2

Np∑
j=1

(
kp,z

)2 + Npεp − hM, (3.11)

M = 3

2
Nu + 3Np −

∑
n

(M1,n + 2M2,n), (3.12)

respectively.
At finite temperature, some quantum numbers I s (called vacancies) are occupied in parameter 

spaces whereas some of those quantum numbers are not occupied. The unoccupied BA roots are 
called unoccupied vacancies. In spin sector, the unoccupied vacancies are regarded as holes of the 
spin strings. The spin strings are nothing but spin wave bound states. For thermodynamic limit, 
i.e. L, N → ∞ and N/L is finite, the strings and holes can be treated as density distribution 
functions ρ(k) and ρh(k), respectively. It follows that d

dk
I (k)
L

= ρ(k) + ρh(k). Consequently, we 
obtain the integral form of the BA equations in the thermodynamic limit,

ρu
h + ρu = 1

2π
− â 1

2
∗ ρp −

∑
m

âm
2

∗ [ρ1,m − ρ2,m
]
,

ρ
p
h + ρp = 1

π
− â 1

2
∗ ρc − â1 ∗ ρp +

∑
m

Â1,m ∗ ρ2,m,

ρ1n
h + ρ1,n = â n

2
∗ ρu −

∑
m

Â′
nm ∗ ρ1,m,

ρ2n
h + ρ2,n = â n

2
∗ ρu + Â′

1n ∗ ρp −
∑
m

Â′
nm ∗ ρ2,m. (3.13)

Here for c > 0, ρ1,n and ρ2,n are the string densities of n-strings of λ and n-strings of ν, re-
spectively. Whereas for c < 0, ρ1,n and ρ2,n are the densities of n-strings of ν and n-string 
λ, respectively. The ∗ denote the convolution f̂ ∗ g(k) = ∫∞

−∞ f (k − k′)g(k′)dk′. The integral 
kernels are denoted as A′

nm(k) = Anm(k) − δnmδ(k), Anm = a|n−m|/2 + 2a(|n−m|+2)/2 + · · · +
2a(n+m−2)/2 + a(n+m)/2 and an(k) = 1

π
n|c|

(nc)2+k2 . The ρl n and ρl n
h are the densities of particle 

and hole for the length n-strings in spin sector. The energy, momentum and total spin of the 
Hamiltonian are given by

e = E

L
=
∫

dkk2ρu(k) +
∫

dk
(
2k2 − εp

)
ρp(k) − hm,

P

L
=
∫

dkkρu(k) +
∫

dk(2k)ρp(k),

m = M

L
= 3

2
nu + α2np − α1

∑
nm1n − α2

∑
nm2n, (3.14)
n n
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where α1 = 1, α2 = 2 for c > 0, whereas α1 = 2, α2 = 1 for c < 0. We also denote nu,p =∫
dkρu,p(k) as the density of atoms in the scattering state and the density of the pairs, respectively. 

Moreover, ml,n = ∫
dkρl,n(k) with l = 1, 2 are the densities of n-strings in the spin sector.

At finite temperature T , following Yang and Yang’s grand canonical description [38], the ther-
modynamic Bethe ansatz (TBA) equations can be obtained from minimization of the Gibbs free 
energy Ω = E −T S −μN with S the entropy of the system. Here we define the dressed energies 
of the charge rapidities as εα(k) = T ln

[
ρα

h (k)/ρα(k)
]

with α = u, p for unpaired fermions and 
pairs, respectively, thus the TBA equations are given by

εu = k2 − μu − â1/2 ∗ ε
p
− +

∑
n

ân/2 ∗ (ε1n− + ε2n− ),

εp = 2k2 − μp − â1/2 ∗ εu− − â1 ∗ ε
p
− +

∑
n

Â′
1n ∗ ε2n− ,

ε1n = nα1h − ân/2 ∗ εu− −
∑
m

Â′
nm ∗ ε1m− ,

ε2n = nα2h + ân/2 ∗ εu− + Â′
1n ∗ ε

p
− −

∑
m

Â′
nm ∗ ε2m− , (3.15)

where ε− = − ln(1 + ρ/ρh). The effective chemical potentials of unpaired fermions and pairs 
are defined by μu = μ + (α1 + α2)h/2 and μp = c2/2 + 2μ + α2h. For c > 0, ε1,n and ε2,n are 
the dressed energies for n-strings of λ and n-strings of ν, respectively. Whereas for c < 0, ε1,n

and ε2,n are the dressed energies for n-strings of ν and n-strings of λ, respectively.
The TBA equations (3.15) involve infinite branches of εl,n coupled together. This imposes a 

big theoretical challenge to find the exact solutions of the TBA equations (3.15). We observe that 
the dressed energy of the spin string tends to be a constant when the spin string length increases. 
The larger strings contribute the smaller energy as the temperature decreases. In order to discuss 
the solutions of the TBA equations, we present the TBA equations (3.15) in the recursive form

εu = k2 − μ − Ĝ ∗ ε
p
− + Ĝ ∗ ε

1,1
− + Ĝ ∗ ε

2,1
− , (3.16)

εp = 2

(
k2 − μ − 1

4
c2
)

− ε2,1, (3.17)

ε1,1 = −Ĝ ∗ εu− + Ĝ ∗ ε
1,2
+ , (3.18)

ε2,1 = Ĝ ∗ εu− + Ĝ ∗ ε
2,2
+ , (3.19)

ε2,2 = Ĝ ∗ ε
p
− + Ĝ ∗ ε

2,1
+ + Ĝ ∗ ε

2,3
+ , (3.20)

ε1,n = Ĝ ∗ ε
1,n−1
+ + Ĝ ∗ ε

1,n+1
+ , n ≥ 2, (3.21)

ε2,n = Ĝ ∗ ε
2,n−1
+ + Ĝ ∗ ε

2,n+1
+ , n ≥ 3, (3.22)

lim
n→∞

ε1,n

n
= α1h, lim

n→∞
ε2,n

n
= α2h. (3.23)

Here the convolution kernel is given by G(k) = (1/2|c|) sech(πk/c) and the function ε+ is de-
fined by ε+(k) = T ln(1 + ρh/ρ). The thermal potential per unit length is p = pu + pp and the 
effective pressures are given by pu,p = − r

2π

∫∞
−∞ dkε−(k) with r = 1 (r = 2) for the unpaired 

fermions (the bound pairs). The TBA equations (3.16)–(3.23) provide not only ground state prop-
erties at zero temperatures but also full thermodynamics at finite temperatures. In the following 
Sections, we will solve the complicated TBA equations and discuss the physics of the spin-3/2
fermionic system with SO(4) symmetry.
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4. Quantum phase diagram and pairing signature

In this section, we will study the phase diagram and the pairing signature of the model. A rig-
orous way of finding the ground state in grand canonical ensemble is to take the zero temperature 
limit in the recursive TBA equations (3.16)–(3.23). In the limit of T → 0, we have ε+(k) ≥ 0
and ε−(k) ≤ 0. For a nonzero magnetic field h and c > 0, from Eqs. (3.23), we observe that the 
large strings of λ and ν always have positive dressed energies. Therefore there are no such strings 
in the ground state. From Eqs. (3.21)–(3.22), it is obvious that ε1,n (n ≥ 2) and ε2,n (n ≥ 3) are 
positive so that the corresponding strings do not populate in the ground state. Even the magnetic 
field tends to zero, the dressed energies of these strings approach to 0+. Therefore there are still 
no such strings in the ground state. Eq. (3.18) also gives a nonnegative dressed energy for the 
real λ (or ν) rapidity for c > 0 (or c < 0). Thus the dressed energy ε1,1 is also excluded from the 
ground state.

In the T → 0 limit, the TBA equations (3.21)–(3.22) reduce to a new set of dressed energy 
equations that characterize the Fermi seas of the paired states and single atoms in terms of chem-
ical potential μ and magnetic field h. The band filling of those Fermi seas with respect to μ and 
h provide an analytical way to determine the full phase diagram in the μ–h plane. For c > 0, the 
dressed energy equations involve quasi-momenta ku and kp, and spin rapidities ν1 and ν2. The 
corresponding density distributions of them are denoted as ρu, ρp, ρ(1) and ρ(2). For c < 0, the 
dressed energy equations involve ku, kp, ν1 and ν2. We can define the ground state densities in a 
similar way as the ones for c > 0. The densities of these rapidities satisfy the following integral 
BA equations

�ρh(k) + �ρ(k) = �ρ0 − K̂ ∗ �ρ(k), (4.1)

where �ρh = (ρu
h , ρp

h , ρ(1)
h , ρ(2)

h )t, �ρ = (ρu, ρp, ρ(1), ρ(2))t, �ρ0 = (1/2π, 1/π, 0, 0)t. Here the su-
perscript t means the transposition and integral kernel K̂ is given by

K̂ =

⎛
⎜⎜⎜⎝

0 â 1
2

−â 1
2

−â1

â 1
2

â1 −â1 −â 1
2
− â 3

2−â 1
2

−â1 â1 â 1
2
+ â 3

2−â1 −â 1
2
− â 3

2
â 1

2
+ â 3

2
2â1 + â2

⎞
⎟⎟⎟⎠ . (4.2)

The TBA equations (3.16)–(3.23) in the T → 0 limit reduce to the dressed energy equations 
which can be written in the following form

�ε(k) = �ε0(k) − K̂ ∗ �ε−(k), (4.3)

where �ε = (εu, εp, ε(1), ε(2))t, �ε− = (εu−, εp
−, ε(1)

− , ε(2)
− )t and �ε0 = (k2 −μ1, 2k2 −μ2, α1h, α2h)t. 

These equations are very convenient to analyze quantum phase diagram and quantum phase 
transitions in terms of chemical potential and magnetic field.

We observe that only the atomic pairs and the unpaired atoms populate the ground state. The 
absence of three- or four-body charge bound states is the consequence of the repulsive interacting 
channels due to the SO(4) symmetry. For c > 0, the existing pairs are φ†

2,±2 and φ†
2,0, whereas 

for c < 0, the paired states comprise φ†
2,±1 and φ†

0,0. The competition among the pairing, chem-
ical potential μ and external magnetic field h gives rise to a rich phase diagram of this model. 
Following the method presented in [39], full phase diagrams of the model can be both analyt-
ically and numerically worked out from the density equations (4.1) or from the dressed energy 
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Fig. 2. (Color online.) Phase diagram of 1D spin-3/2 Fermi gas: left panel for c > 0, right panel for c < 0. Contour 
plot shows the spin polarization rate M/N . The black solid lines divide the diagram into three quantum phases in quasi-
momentum space: fully-paired phase (FP), fully-polarized phase (FF) and mixed phase of paired and unpaired fermions 
(FFLO). Here V stands the vacuum state. The red dashed lines divide the diagram into four mixed phases associated with 
different spin pairs, see in the text. Two sets of spin pair states in Eq. (2.8) give rise to the pairing phases in left and right 
panels, respectively.

equations (4.3). The phase diagram of the system with c > 0 is shown in the left panel in Fig. 2. 
For c < 0, different BA root patterns lead to a different phase diagram which is presented in the 
right panel in Fig. 2.

In the following, we only consider the regime for c > 0. In Fig. 2, V stands for the vac-
uum. The phase FF denotes a fully-polarized phase of single |3/2〉 atoms in the region of 
strong magnetic field and small chemical potential. The FFLO-like phase composes of the 
largest spin-2 component pairs φ̂2,2 and excess fermions of |3/2〉 atoms that form two mis-
matched Fermi surfaces in quasi-momentum space. In this phase, atoms can be in either the 
scattering state |3/2〉 or bounded pair state φ̂2,2. We show that spatial oscillation of the pair 
correlation function solely depends on the mismatch between the Fermi surfaces of |3/2〉
and |1/2〉 atoms, i.e. �kF = π(n3/2 − n1/2). In the strong coupling region, the slowest de-
caying term of the pair correlation function Gp(x, t) = 〈G|φ̂†

2,2(x, t)φ̂2,2(0, 0)|G〉 is obtained, 
Gp ≈ A0 cos(π�kF x)/(|x + ivut |θu |x + ivpt |θp), where θu = 1/2, θp = 1/2 + np/c and nu,p are 
the densities of unpaired |3/2〉 atoms and atomic pairs φ̂2,2, respectively. More detailed analysis 
will be further discussed in Section 6. Thus the momentum pair distribution has peaks at the 
mismatch of the Fermi surfaces �kF , which presents a characteristic of the FFLO phase.

Moreover, the FP phase is the fully-paired state φ̂2,2, where the pair correlation function 
decays as a power of distance. The leading term of pair correlation function Gp is given by 
Gp = A/(|x + ivpt |θp) with θp = (1/2)(1 + 1/γ ). This indicates that the pair correlation in the 
fully-paired phase has a longer correlation length than the one in the phase FFLO. According to 
the Luttinger liquid theory, the long distance behavior of the pair correlation of this type gives 
rise to the algebraic form Gp ≈ |x|−1/(2K), where the parameter K ≈ 1 − 1/γ . However, the 
correlation function for the one particle Green’s function decays exponentially. When the inter-
action is very strong, i.e. near the phase transition line from vacuum into the FP phase, the system 
behaves like a Fermionic super Tonks–Girardeau gas [40,41].
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Fig. 3. (Color online.) Density profiles of a spin-imbalanced 1D Fermi gas of spin-3/2 atoms in an harmonic trap with 
the setting (h/εp, N/

√
εp) = (0, 2.82), (0.6, 1.75) and (1.8, 3.32) for (a), (b) and (c), respectively. (a) The MP phase of 

φ̂2,2, φ̂2,0 and φ̂2,−2 pairs extends to a whole 1D tub. (b) A core of the mixed phase III is surrounded by 6 wing shells of 
mixed states I, FFLO state and the pure φ̂2,2 paired states FP. (c) A core of the mixed phase III is surrounded by 6 wing 
shells of mixed states II, the FFLO state and the fully-polarized phase FF, also see Fig. 2.

The MP phase denotes a fully paired phase, but not a fully-polarized φ̂2,2 state. For c > 0, 
three kinds of spin pairs φ̂2,2, φ̂2,0 and φ̂2,−2 are involved in the MP phase. By increasing the 
chemical potential μ and magnetic field h, the system may enter into three other mixed phases 
denoted as V, FF and FFLO Phases, see Fig. 2. The phase transition from FFLO phase into V 
phase occurs as the 2-string ν emerges in the ground state. While the one from MP phase into V 
phase is driven by the appearance of real k, i.e. involvement of pair breaking. The one from V 
phase into FFLO phase is driven by spin flipping processes involving the real ν and the one from 
FF phase into FFLO phase is driven by spin flipping process involving the 2-string ν.

In a harmonic trap, quantum phase segments in density profiles can be used to identify differ-
ent quantum phases in experiments with cold atoms. We can extract the threshold values of the 
phase boundaries in Fig. 2 through the density profiles of the trapped gas. Within the local density 
approximation, the local chemical potential is replaced by μ(x) = μ0 − 1

2ω2
0x

2 for the trapped 
gas. The total density of fermions is given by n = nu + 2np. For fixed particle numbers, we plot 
the density profiles of the trapped gas in Fig. 3. In contrast to spin-1/2 Fermi gas [42–45], spin 
quintet pairs lead to multiple shell structures in the density profiles. The trapping center can be a 
mixture of three types of spin pairs as well as unpaired single atoms accompanied by the different 
shells involving the fully-polarized spin-2 pairs, the FFLO state, and the FF phase, see Fig. 3.

5. Elementary spin and charge excitations

We consider the elementary excitations in the fully paired MP phase. Suppose that the external 
magnetic field is zero. The excitations in the charge sector of the system are similar to the ones in 
the SU(4) interacting fermions. However, the spin excitations in the spin sector are quite different 
from those of SU(4) Fermi gas. In the fully paired MP phase, the elementary charge excitation 
has an energy gap. In contrast to the SU(2) attractive Fermi gas [46], there exist gapless low-lying 
spin excitations triggered by changing the quantum number of 2-string ν in this paired MP phase. 
The change of the number of 2-string ν results in necessary spin configuration changes in the 
paired states of φ̂2,2, φ̂2,0 and φ̂2,−2. In particularly, breaking down a 2-string ν leads to the total 
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Fig. 4. (Color online.) (a) Dressed energies of different rapidities in the fully paired phase for h = 0 and γ = 1. The red 
solid line stands for the dressed energy of the real k (unpaired fermions). The black solid line denotes the dressed energy 
of the pairs (2-string of k). The blue dashed line shows the dressed energy of the 2-strings of ν. The black dotted line is 
the dressed energies of higher strings of ν. (b) Elementary excitation spectra for the model with γ = 1 and h = 0 for the 
phase MP. One 2-string excitation of ν splits to four spin-1 holes of ν, i.e. creation of four spin-1 spinons.

spin change of 4, i.e. creation of 4 spinons, see Fig. 5. Each spinon carries spin-1, and we denote 
this type of excitations as large spinon excitations. There is no such kind of spin excitation in the 
attractive SU(2) Fermi gas. These spinons can be directly calculated from the BA equation (4.1). 
One 2-string of ν is excited that leads to four spin-1 holes of ν: δM2 = δMh

2/4. If one adds d
holes of 2-string ν into the ground state, the excited energy and momentum are given by

�E = −
d∑

j=1

ε(2)(νh
j ), �P = −

d∑
j=1

2π

νh
j∫

0

ρ(2)(ν)dν, (5.1)

respectively. Where νh
j are the positions of the added holes. For h = 0 and γ = c/n = 1, the 

4-hole exciting spectra is shown in Fig. 4(b). However, for c < 0, one 2-string λ excitation splits 
into four spin-1/2 holes which give an excitation with total spin-2.

In order for our convenience to discuss correlation function, we will focus on three phases 
FF, FFLO and FP for the strong coupling regime and a finite external magnetic field h. These 
phases near the vacuum phase boundary in Fig. 2. It is important to note that in these three 
phases both spin rapidities of ν and λ are absent in the ground state. Thus the dressed energy 
equations (4.3) reduce to the similar structure as the one for the attractive spin-1/2 Fermi gas 
[39,47,25]. However, spin excitations and finite temperature behavior of these states in the SO(4)

symmetry model are quite different from that of the attractive spin-1/2 Fermi gas. In general, 
at zero temperature, the Fermi points Qu,p are determined by the condition εu(±Qu) = 0 and 
εp(±Qp) = 0, where Qu,p > 0. At the ground state, all the quantum numbers are filled up to 
the Fermi points, i.e. I u(ku,z) − I u(ku,z−1) = 1 and I p(kp,z) − I p(kp,z−1) = 1 with ku,z > ku,z−1
and kp,z > ku,z−1. All excitations can be classified as three types of excitations, i.e. particle–hole 
excitations, backwards scatting process and adding particles at different Fermi points. We denote 
these excitations as Type 1, Type II and Type III, respectively, see Fig. 5.

The Type I elementary excitations are characterized by moving atoms (pairs) close the left 
or right pseudo Fermi point outside the Fermi sea, see Fig. 5(1). For example, we consider the 
excitations close to the right Fermi point Qu in real quasi-momentum space k. The process is 
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Fig. 5. (Color online.) Three types of elementary excitations: particle–hole excitation, adding particles at different Fermi 
points and backscattering process. k±

F,α
is the pseudo Fermi points at the right/left Fermi points. a = u, P denote the 

unpaired atoms and atomic pairs, respectively. The upper, middle and lower panels show Type I, Type II and Type III, 
respectively.

to create N+
u holes at positions I u(ku,Nu), I

u(ku,Nu) − 1, . . . , I u(ku,Nu) − N+
u + 1 and to add 

N+
u real ks outside the Fermi sea where the corresponding quantum numbers are I u(ku,Nu) +

1, I u(ku,Nu) +2, . . . , I u(ku,Nu) +N+
u . Based on this setting, one can perform standard calculation 

of finite-size corrections to the energy and momentum [48,47,25]. This type of excitations can 
take place close to the left pseudo Fermi point −Qu with adding N−

u holes below the Fermi 
point. In the branch of atomic pairs, particle–hole excitations also occur close to the left and 
right pseudo Fermi points with adding the quantum numbers N−

p and N+
p , respectively.

The Type II excitations arise from the changes of total number of unpaired fermions or bound 
pairs. This type of excitations are characterized by adding (or removing) atoms/pairs close to the 
Fermi points, see Fig. 5(2). We denote the change of particle number as �Nu (or �Np).

The Type III excitations are created by moving particles from the left Fermi point to the right 
Fermi point and vice versa. This process is also known as backscattering, see Fig. 5(3). These two 
types of excitations change the pseudo Fermi points. The quasi-momenta of single atoms/pairs 
with positive real parts are viewed as the right-going atoms/pairs whereas the ones with negative 
real parts are denoted as the left-going atoms/pairs. Both the Type II and the Type III excitations 
lead to the particle number difference between the right- and left- going atoms/pairs. We denote 
these number differences as 2�Du and 2�Dp for the unpaired atoms and the pairs, respectively.

Based on the above descriptions, all the three types of excitations can be unified in the fol-
lowing form of the finite-size corrections for the total momentum and energy of elementary 
excitations

�P = 2π

L

∑
α

[
�Nα�Dα + Nα�Dα + N+

α − N−
α

]
, (5.2)

�E = 2π

L

[∑
αβγ

(1

4
�Nα[Z−1]βαvβ [Z−1]βγ �Nγ + �DαZαβvβZγβ�Dγ

)

+
∑
α

vα(N+
α + N−

α )
]

= 2π

L

∑
vα

(1

4
[Z−1�N ]2

α + [�DZ]2
α + N+

α + N−
α

)
, (5.3)
α
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where the indices α, β, γ = u, p and vβ is the Fermi velocities of the corresponding states. In the 
above equations Z = Z(w) is the dressed charge which is determined by

Z(w)(k) = I (w) − K̂
(w) ∗ Z(w)(k), (5.4)

and w stands for different phases, i.e. FF, FFLO and FP. For the fully-polarized phase, w = FF
and we have

Z(FF)(k) = Zuu(k), I (FF) = 1, K(FF) = 0, Z(FF) = Zuu(Qu). (5.5)

For the pure paired phase, w = FP and we have

Z(FP)(k) = Zpp(k), I (FP) = 1, K(FP)(k) = a1(k), Z(FP) = Zpp(Qp). (5.6)

For the phase, w = FFLO and we have

Z(FFLO)(k) =
(

Zuu(k) Zup(k)

Zpu(k) Zpp(k)

)
, K(FFLO)(k) =

(
0 a 1

2
(k)

a 1
2
(k) a1(k)

)
,

I (FFLO) =
(

1 0
0 1

)
, Z(FFLO) =

(
Zuu(Qu) Zup(Qu)

Zpu(Qp) Zpp(Qp)

)
. (5.7)

The value of dressed charges can be obtained by solving the dressed charge equation (5.4) nu-
merically. The asymptotic forms of the dressed charges in the strong coupling regime is given in 
Section 6.

On the other hand, the excited energy and excited momentum can also be expressed by the 
conformal dimensions �± according to the conformal field theory [49,50]

�E = 2π

L

∑
α

vα(�+
α + �−

α ), (5.8)

�P = 2π

L

∑
α

(�+
α − �−

α ) + 2
∑
α

�DαkF,α, (5.9)

where kF,α is the Fermi momenta, kF,α = πNα/L. It follows that

�+
α + �−

α = N+
α + N−

α + 1

4
[Z−1�N]2

α + [�DZ]2
α,

�+
α − �−

α = N+
α − N−

α + �Nα�Dα. (5.10)

These relations provide us a analytical way to calculate the conformal dimensions via finite-size 
corrections

2�±
α = 2N±

α ± �Nα�Dα + [�DZ]2
α + 1

4
[Z−1�N]2

α. (5.11)

6. Asymptotics of correlation functions

In this section, we will calculate various correlation functions of the system with strong inter-
actions in three phases FF, FFLO and FP. At zero temperature, all correlation functions reveal a 
power law decay in the phases FF and FFLO. In the pure paired FP phase the pair correlation de-
cay as a power law of distance whereas the single particle Green’s function decays exponentially. 
However, at finite temperatures, all correlation functions exponentially decay in long distance.
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From the conformal field theory, the two-point correlation function for primary fields with the 
conformal dimensions �± is given by [49]

GO(x, t) =
∑ Ae−2π i(

∑
α Nα�Dα)x/L∏

α(x − ivαt)2�+
α (x + ivαt)2�−

α

, (6.1)

where GO(x, t) = 〈G|Ô†(x, t)Ô(0, 0)|G〉 is the correlator for the field operators Ô(0, 0) and 
Ô†(x, t). Here the conformal dimensions �± are determined by (5.11) in terms of N±, �N , �D

and the dressed charge Z. For strong interaction regime, the leading order of the dressed charge 
is given by Zαβ = δα,β , where δα,β is the Kronecker delta function. From this leading order of 
the dressed charge, we obtain the conformal dimensions as 2�±

α = 2N±
α + (�Dα ± �Nα/2)2 +

O(c−1). For the strong coupling regime, the order of 1/c corrections to the correlations are 
presented via the conformal dimensions

2�±
α = 2N±

α + (�Dα ± �Nα/2)2 + δα

c
+ O(c−2), (6.2)

where δα with α = FF, FP and FFLO are the first order corrections, see Table 2.
In the fully-polarized phase FF, fermions are unpaired and there does not exist contact inter-

action. Thus the dressed charge reads Zu
u = 1. In the phase FFLO, the dressed charges are given 

by

(
Zuu Zup
Zpu Zpp

)
=
(

1 − 4Qu
πc

− 4Qp
πc

1 − 2Qp
πc

)
+O

( 1

c3

)
. (6.3)

For the fully-paired phase FP we have the dressed charge of pairs Zp
p = 1 − 2Qp/πc +O(c−3).

Based on the above settings, we may calculate the asymptotics of the correlation functions 
〈G|Ô†(x, t)Ô(0, 0)|G〉. For a given correlation function, the operator O(x, t) act on the ground 
state that gives the quantum numbers �Nu,p. Expanding the operator O(x, t) with respect to the 
primary fields with conformal dimensions �± and their descendent fields, we may calculate the 
asymptotics of the correlation functions by the formula (6.1). We present the conformal dimen-
sions of various correlators in Table 2. In general, the real part of a correlation can be expressed 
as

g(x) = A cos(2πx/λs)
∏
α

|x − ivαt |−θα , (6.4)

where λs = (
∑

α Nα�Dα/L)−1 is the wave length of the oscillation and the exponent θα =
2�+

α + 2�−
α . The Fourier transform of the correlation function near the Fermi velocity k0 is 

given by [51]

g̃(k) ∝ [sign(k − k0)]2s |k − k0|νs , (6.5)

where νs = 2�+ + 2�− − 1, s =∑
α �+

α − �−
α is the conformal spin and 2s is always integer.

The various correlation functions, for example, single particle Green’s function, pair–pair cor-
relation, density–density correlation are listed in Table 2. The fully polarized case FF is regarded 
as a single component free fermionic gas. The correlation function of the field operator is given 
by

Gu(x, t) = 〈G|ψ̂†
(x, t)ψ̂3/2(0,0)|G〉. (6.6)
3/2
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This excitation associates with the quantum number �Nu = 1 and �Du ∈ Z +1/2. A few leading 
orders of the asymptotics of the single particle Green’s function are obtained by choices of the 
values of the �D, see the rows 1–3 in Table 2. The leading term in the correlation function Gu
is given by

GFF
u ≈ A0

cos(πnux)

|x − ivut | , (6.7)

with the setting �Du = ±1/2 and N+
u = N−

u = 0, see the row-1 and the row-2 in Table 2. Here 
nu is the density of single atoms and A0 is some constant. The row-1 shows a left-going wave 
with �Du = −1/2, or say that adding an unpaired atom near the left Fermi point. The row-2 
indicates a right-going excitation wave with �Du = 1/2. We also consider the charge density 
correlation function Gn(x, t) = 〈n(x, t)n(0, 0)〉 in this phase, namely

Gn = 〈G|n̂(x, t)n̂(0,0)|G〉 = n2 + An1 cos(2πnux)

|x − ivut |2 + An2

|x − ivut |2 , (6.8)

where An1 and An2 are constants, see the rows 4–8 in Table 2.
In phase FFLO, both the spin-2 pairs and single spin-3/2 atoms coexist. The single particle 

Green’s function Gu acquires �Nu = 1, �Np = 0 and �Du,p ∈ Z + 1/2. The few leading orders 
of the asymptotics of Gu are indicated in the rows 9–12 in Table 2. The first two leading terms 
read

GFFLO
u ≈ A1 cos[π(nu + np)x]

|x + ivut |θu1 |x + ivpt |θp1
+ A2 cos[π(nu − np)x]

|x + ivut |θu2 |x + ivpt |θp2
, (6.9)

where A1 and A2 are constants and the exponents read

θu1 = 1 − 2np/c, θp1 = 1/2 − 4nu/c − np/c,

θu2 = 1 + 2np/c, θp2 = 1/2 + 4nu/c − np/c. (6.10)

In the correlation function (6.9), the first term presents the result listed in the rows 9 and 10 in 
Table 2, and the second term is presented in the rows 11 and 12. For finitely strong interaction, 
the single particle correlation function decays slower than that of the free Fermions due to the 
correlations between pairs and between pairs and unpaired atoms.

In the FFLO phase, the asymptotic pair–pair correlation is given by

Gp(x, t) = 〈G|φ†
p(x, t)φp(0,0)|G〉, (6.11)

with the quantum numbers �Nu = 0, �Np = 1, �Du ∈ Z + 1/2 and �Dp ∈ Z. The leading 
order of the pair–pair correlation function is given explicitly by

Gp ≈ A3 cos[π(n3/2 − n1/2)x]
|x + ivut |θu3 |x + ivpt |θp3

, (6.12)

where A3 is a constant and

θu3 = 1/2, θp3 = 1/2 + np/c, (6.13)

see the rows 13 and 14 in Table 2. Here n3/2 and n1/2 are the densities of spin-3/2 and -1/2 atoms, 
respectively. We see that the long distance asymptotics for the pair correlation function oscillates 
with the wave number π(n3/2 − n1/2), a mismatch between the two Fermi surfaces of the two 
species. This is a characteristic of the FFLO-like correlation. We would also like to address that 
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Table 2
Various correlations functions for quantum phases FF, FFLO and FP.

c θu 1/λs s νs

1 − 1
2 nu − 1

2 0

1 1
2 nu

1
2 0

3 − 1
2 nu − 3

2 2

0 0 – –

2 nu 0 1

2 −nn 0 1

2 0 1 1

2 0 −1 1

,p 1/λs s νs

+ 2δu
+ 2δp

1
2 (nu + np) 1

2
1
2 − 3np+4nu

c

+ 2δu
+ 2δp

− 1
2 (nu + np) − 1

2
1
2 − 3np+4nu

c

+ 2δu
+ 2δp

1
2 (np − nu) − 1

2
1
2 + np+4nu

c

+ 2δu
+ 2δp

1
2 (nu − np) 1

2
1
2 + np+4nu

c

1
2

+ 2δp

1
2 nu 0

np
c

1
2

+ 2δp
− 1

2 nu 0
np
c

+ 2δu

+ 2δp

1
2 nu + np 1 2 − 7np+8nu

c

No. CF N+
u N−

u �Nu Du 2�+
u 2�−

u δ

1 GFF
u 0 0 1 − 1

2 0 1 0

2 GFF
u 0 0 1 1

2 1 0 0

3 GFF
u 0 1 1 − 1

2 0 3 0

4 GFF
n 0 0 0 0 0 0 0

5 GFF
n 0 0 0 1 1 1 0

6 GFF
n 0 0 0 −1 1 1 0

7 GFF
n 1 0 0 0 2 0 0

8 GFF
n 0 1 0 0 0 2 0

No. CF N+
u

N+
p

N−
u

N−
p

�Nu
�Np

Du
Dp 2�+

u,p 2�−
u,p δu,pc θ

9 GFFLO
u

0
0

0
0

1
0

1
2
1
2

1 + δu
1
4 + δp

δu
1
4 + δp

−np
−2nu − 1

2 np

10 GFFLO
u

0
0

0
0

1
0

− 1
2

− 1
2

δu
1
4 + δp

1 + δu
1
4 + δp

−np
−2nu − 1

2 np

11 GFFLO
u

0
0

0
0

1
0

− 1
2

1
2

δu
1
4 + δp

1 + δu
1
4 + δp

np
2nu − 1

2 np

12 GFFLO
u

0
0

0
0

1
0

1
2

− 1
2

1 + δu
1
4 + δp

δu
1
4 + δp

np
2nu − 1

2 np

13 GFFLO
p

0
0

0
0

0
1

1
2
0

1
4

1
4 + δp

1
4

1
4 + δp

0
1
2 np

14 GFFLO
p

0
0

0
0

0
1

− 1
2

0

1
4

1
4 + δp

1
4

1
4 + δp

0
1
2 np

15 GFFLO
p

0
0

0
0

0
1

1
2
1

1
4 + δu

9
4 + δp

1
4 + δu

1
4 + δp

−2np
−4nu − 3

2 np
u

u

1
1
2

1
1
2

1
1
2

1
1
2

1
2

1
2

1
2
5
2
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θu,p 1/λs s νs

5
2

1
2 + 2δp

− 1
2 nu 1 2 + np

c

0
0

0 – –

0
2 + 2δp

np 0 1 − 4np
c

0
2 + 2δp

−np 0 1 − 4np
c

θp 1/λs s νs

1
2 + 2δp 0 0 − 1

2 + np
c

5
2 + 2δp np 1 3

2 − 3np
c

5
2 + 2δp −np −1 3

2 − 3np
c

5
2 + 2δp 0 1 3

2 + np
c

0 0 – –

2 + 2δp np 0 1 − 4np
c

2 + 2δp −np 0 1 − 4np
c

2 0 1 1
Table 2 (continued)

No. CF N+
u

N+
p

N−
u

N−
p

�Nu
�Np

Du
Dp 2�+

u,p 2�−
u,p δu,pc

16 GFFLO
p

1
0

0
0

0
1

− 1
2

0

9
4

1
4 + δp

1
4

1
4 + δp

0
1
2 np

17 GFFLO
n

0
0

0
0

0
0

0
0

0
0

0
0

0
0

18 GFFLO
n

0
0

0
0

0
0

0
1

0
1 + δp

0
1 + δp

0
−2np

19 GFFLO
n

0
0

0
0

0
0

0
−1

0
1 + δp

0
1 + δp

0
−2np

No. CF N+
p N−

p �Np Dp 2�+
p 2�−

p δpc

24 GFP
p 0 0 1 0 1

4 + δp
1
4 + δp

1
2 np

25 GFP
p 0 0 1 1 9

4 + δp
1
4 + δp − 3

2 np

26 GFP
p 0 0 1 −1 1

4 + δp
9
4 + δp − 3

2 np

27 GFP
p 1 0 1 0 9

4 + δp
1
4 + δp

1
2 np

28 GFP
n 0 0 0 0 0 0 0

29 GFP
n 0 0 0 1 1 + δp 1 + δp −2np

30 GFP
n 0 0 0 −1 1 + δp 1 + δp −2np

31 GFP
n 1 0 0 0 2 0 0
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the FFLO-like oscillation terms arise from Type III excitations, i.e. backscattering for bound 
pairs and unpaired fermions. The charge density correlation function Gn(x, t) is presented in the 
rows 17–19 in Table 2.

In the phase FP, the pair–pair correlation function Gp acquires the quantum number �Np = 1. 
We present the result of the long distance asymptotics of pair–pair correlations in the rows 24–27 
in Table 2. The leading term of the pair–pair correction reads

Gp ≈ A4

|x + ivpt |θp4
, θp4 = 1

2
+ np

c
, (6.14)

where A4 is a constant. This shows that the exponent θp4 is smaller than that in the phase FFLO. 
In this phase the pair–pair correlation dominates the quantum correlation. Finally, we present the 
charge density–density correlations

Gn = 〈G|n̂(x, t)n̂(0,0)|G〉 = n2 + An2g(x, t), (6.15)

with the correlation

g(x, t) = cos(2πnpx)

|x + ivpt |θ1
, θ1 = 2 − 4np/c, (6.16)

where An2 is constant. The related quantum numbers are listed in the rows 28–31 in Table 2.

7. Equation of state and quantum criticality

The 1D fermionic systems usually exhibit a rich resource of Luttinger liquids and show a 
novel magnetism in term of spin-change separation scenario, see recent review [46]. In order to 
understand large spin cold atoms in 1D, it is very important to investigate the low temperature 
behavior of Luttinger liquids. We will prove that the Luttinger liquids of different pairing states 
comprise a universal low energy physics of the model. In general, the specific heat can be written 
in terms of sound velocities of the liquid phases, i.e. cL = (πT L/3) 

∑
α 1/vα , where the summa-

tion carries out over all the Fermi velocities in the charge and spin sectors. This result is valid for 
the temperature below a crossover temperature T ∗, i.e. T � T ∗. Here the crossover temperature 
can be determined from the equation of states [52]. Near a critical point and for the temperature 
T � T ∗, the system lies in the critical regime, where the crossover temperature characterizes the 
energy gap T ∗ ∼ μ − μc and/or T ∗ ∼ H − Hc. In the critical regime, universal scaling behav-
ior of thermodynamical properties is expected to distinguish quantum criticality with the critical 
dynamic exponent z = 2 from the Luttinger liquid criticality of z = 1 [39].

For strong coupling regimes, only charge rapidities are left at the ground states for the phases 
FF, FFLO and FP. For low temperatures, the spin wave contributions to the dressed energies of 
these phases can be analytically derived. In the same fashion as the SU(2) Fermi gas [39], we 
can express the TBA equations of the dressed energies as

εα(k) = rαk2 − μα −
∑
β

Kαβ ∗ ε
β
−(k) + fα(k), α = u,p. (7.1)

Here rα is viewed as the effective mass of the corresponding charges. For the unpaired atoms, 
ru = 1 and for the pairs, rp = 2. In the above equations, fα denotes the contributions of spin wave 
bound states to the dressed energies of the charge degree of freedoms. However, for h � T , the 
spin contribution term fα will exponentially decay as e−h/T and it is negligible in low energy 
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physics. Follow the method proposed in [39], for the strong interaction regime, we find the fol-
lowing equation of states

pα = r
1
2
α T

3
2

2π
1
2

F 1
2

(Aα

T

)(
1 −

∑
β

D
(3)
αβ pβ

c3rαrβ

)
+ O(c−5). (7.2)

Here the effective chemical potentials Aα is given by

Aα = μα −
∑
β

2D
(1)
αβ

rβc
pβ −

∑
β

D
(3)
αβ T

5
2

2r
3
2
β π

1
2 c3

F 3
2

(Aβ

T

)
, (7.3)

and D(a) are constants resulted from the strong coupling expansion of the integral kernels K . 
Fj (Aα/T ) are Fermi–Dirac integrals which can also be written as polylogarithm functions [39]. 
D(1) = D(3) = 0 in the phase FF. In the FLLO phase, we have

D(1) =
(

0 2
2 1

)
, D(3) = −

(
0 8
8 1

)
. (7.4)

In the FP phase, these constants are given by D(1) = −D(3) = 1. By iteration with pα and the 
effective chemical potentials Au,p, we obtain a close form of the equation of sates for the FFLO 
phase as

p = T
3
2√

2π
F

p
1
2

{
1 + 4T

3
2√

2πc3

[
F u

1
2
+ 1

16
F

p
1
2

]}

+ T
3
2

2
√

π
F u

1
2

[
1 + 4T

3
2√

2πc3
F

p
1
2

]
+ O(c−5), (7.5)

where Fα
j = Fj (Aα/T ) and renormalized chemical potentials Au,p are given by

Au = μ1 − 2T 3/2

√
2πc

F
p
1/2 + 2T 5/2

√
2πc3

F
p
3/2,

Ap = μ2 − 2T 3/2

√
πc

F u
1/2 − T 3/2

√
2πc

F
p
1/2 + T 5/2

2
√

πc3
F u

3/2 + T 5/2

4
√

2πc3
F

p
3/2. (7.6)

This spin-3/2 Fermi gas exhibiting rich quantum phase transitions provides an ideal model 
to investigate quantum criticality of large spin interacting fermions. The phase diagram Fig. 2
has multifold critical points. In particular, the chemical potential and external field could drive 
the system from one phase to another as these parameter pass across the phase boundaries in 
the phase diagram Fig. 2 at T = 0. All phase transitions in Fig. 2 are of the second order. Near 
the critical point, thermodynamical properties evolve into certain universal scaling forms as tem-
perature tends to zero. Below a crossover temperature (see the upper panel of Fig. 8 below) the 
quantum criticality of the Luttinger liquid gives the dynamical exponent z = 1. However, be-
yond the crossover temperature, a non-relativistic quadratic dispersion leads to the free fermion 
criticality with z = 2, where new band excitations are involved [24,25,39,53].
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Fig. 6. (Color online.) Universal scaling behavior of the density n at the quantum criticality for h/c2 = 0.55: (a) at the 
phase transition V–FF and (b) at the phase transition FF–FFLO.

For γ � 1 and h � T � |μ −μc|, the density and compressibility satisfy the universal scaling 
function

n − n0,i = T d/z+1−1/vzFi[(μ − μci )/T 1/vz],
κ∗ − κ∗

0,i = T d/z+1−2/vzGi[(μ − μci )/T 1/vz], (7.7)

where we find d/z + 1 − 1/vz = 1/2, 1/vz = 1 with d = 1, critical exponent z = 2 and correla-
tion length exponent v = 1/2. In the above equation, i = 1, 2, 3, 4 denote the four phase transition 
boundaries of V–FF, V–FP, FF–FFLO and FP–FFLO. For i = 1, 2, both the background density 
n0,i and the compressibility κ0,i are zero. For i = 3, 4, we have

n0,3 = 1

2π
α, n0,4 = 2

π
β
(

1 − 1

π
β + 1

π2
β2
)
,

κ0,3 = 1

2π

1

α
, κ0,4 = 2

π

1

β

(
1 − 3

π
β + 6

π2
β2
)
,

α =
{

2α1(h − hP)
[
1 + 2

3π
(2α1(h − hP))

1
2

]} 1
2
,

β =
{

2α1(hP − h)
[
1 + 2

π
(2α1(hP − h))

1
2

]} 1
2
, (7.8)

where hP = α2εp/2 is the magnetic field at the four phases (V, FF, FP and FFLO) coexistence 
point. In the above equations the scaling functions Fi(x) and Gi (x) are

Fi (x) = �i

F−1/2(x)

2
√

π
, Gi (x) = �i

F−3/2(x)

2
√

π
, i = 1,4,

Fi (x) = �i

F−1/2(2x)√
2π

, Gi (x) = �i

F−3/2(2x)√
2π

, i = 2,3, (7.9)

where the coefficients

�1 = �2 = �1 = �2 = 1,

�3 = 1 − 2

π
α + 1

π2
α2, �4 = 1 − 8

π
β + 17

π2
β2,

�3 = 1 + 1
α − 1

α2, �4 = 1 + 2
β − 10

β2. (7.10)

2π 2π2 π π2
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Fig. 7. (Color online.) Universal scaling behavior of compressibility κ at the quantum criticality for h = 0.05: (a) at the 
phase transition V–FP and (b) at the phase transition FP–FFLO.

Let us define the dimensionless density ñ = n0T
−1/2 and compressibility κ̃∗ = κ∗T 1/2, then 

we have the scaling forms

�ñ = ñ − ñ0,i =Fi (�μ/T ), �κ̃∗ = κ̃∗ − κ̃0,i = Gi (�μ/T ), (7.11)

where �μ = μ − μci . We observe that these physical quantities intersect at the critical point. 
This intersection nature can be used to map out quantum criticality of the model through the 
trapped gas at finite temperatures [39], also see experimental study of the quantum criticality for 
the 2D Bose atomic gases [54–57].

We plot the critical properties of the density for the phase transitions V–FF and FF–FFLO 
in Fig. 6. Whereas the critical properties of compressibility for the phase transitions V–FP and 
FP–FFLO are presented in Fig. 7. Universal scaling behaviors of the density and compressibility 
read off the dynamical critical exponent z = 2 and correlation critical exponent ν = 1/2.

In Fig. 8 we further demonstrate the quantum criticality near the phase transition from vacuum 
into FFLO at the fixed magnetic field h = εb . This phase transition involves a sudden change of 
the densities of states of the spin-2 pairs and single spin-3/2 atoms. At low temperatures, we 
obtain the scaling functions

ñ ≈ 1

2
√

π

[
F− 1

2

(μ − μc

T

)
+ 2

3
2 F− 1

2

(2(μ − μc)

T

)]
,

κ̃∗ ≈ 1

2
√

π

[
F− 3

2

(μ − μc

T

)
+ 2

5
2 F− 3

2

(2(μ − μc)

T

)]
, (7.12)

where μc = −1.5εp. Indeed we find that the scaling functions of density and compressibility 
(7.12) read off the dynamic critical exponent z = 2 and correlation length exponent ν = 1/2 by 
comparing with the universal forms given in [58]. In Fig. 8, we confirm these universal scaling 
forms though numerical solution of the TBA equations (3.15). Similarly, entropy, magnetization, 
specific heat and susceptibility can also map out the quantum criticality of the model.

8. Conclusion

In conclusion, we have proposed a 1D integrable spin-3/2 fermionic gas of cold atoms with 
spin SO(4) symmetry. The symmetry, conserved quantities and integrability of this model has 
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Fig. 8. (Color online.) Upper panel: quantum criticality of the phase transition V–FFLO near the critical point μc =
−1.5εp for the fixed h = εp and c > 0, where C denote the classical region, QC means the quantum critical regime and 
TLL is the Luttinger liquid. The white dashed lines indicate the crossover temperature. Lower left (right) panel: density 
(compressibility) vs. μ at different temperatures. The solid lines denote the analytical result from (7.12) and the dot lines 
show the numerical solution from the TBA equations (3.15).

been studied by means of the BA We have shown that the integrable SO(4) symmetry spin-3/2
Fermi gas exhibits the spin singlet and quintet Cooper pairs in the two sets of SU(2) ⊗ SU(2)

spin subspaces. The Bethe ansatz equations and finite temperature thermodynamical equations 
have been derived for the model in an analytical way. In particular, using the Bethe ansatz exact 
solutions we have thoroughly investigated spin pairing, full phase diagrams, equation of states, 
elementary excitations, correlation functions, magnetism and quantum criticality of the model. 
We have also shown that the SO(4) symmetry Fermi gase possesses various phases of Lut-
tinger liquids with novel a magnetism. It is particular interesting that in the pure paired phase, 
breaking a 2-string of ν leads to four spin-1 spinons in spin excitations. The Luttinger liquid 
physics and universal scaling behaviors of thermodynamical properties in regard of different 
spin states provide insights into understanding the large spin phenomena in the 1D interacting 
fermions.

Moreover, long distance asymptotics of various correlation functions have been calculated 
by using conformal field theory. In particular, the FFLO-like pair–pair correlations exist in the 
mixed phase of spin-2 pairs and single spin-3/2 atoms. Furthermore, the density profiles of the 
trapped gas has been also discussed in the context of a experimental setting with ultracold atoms. 
It turns out that the trapping center can be a mixture of different types of spin pairs and unpaired 
single atoms accompanied by the multiple shells involving the fully-polarized spin-2 pairs, the 
FFLO state, and the FF phase. Our results open to further study of the non-SU(κ) symmetry 
interacting fermions of ultracold atoms in theory and experiment.
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