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The intestinal epithelium is equipped with sensing receptor mechanisms that interact with luminal
microorganisms and nutrients to regulate barrier function and gut immune responses, thereby
maintaining intestinal homeostasis. Herein, we clarify the role of the extracellular calcium-sensing
receptor (CaSR) using intestinal epithelium-specific Casr�/� mice. Epithelial CaSR deficiency dimin-
ished intestinal barrier function, altered microbiota composition, and skewed immune responses
towards proinflammatory. Consequently, Casr�/� mice were significantly more prone to chemically
induced intestinal inflammation resulting in colitis. Accordingly, CaSR represents a potential thera-
peutic target for autoinflammatory disorders, including inflammatory bowel diseases.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction junction (AJ) comprise the apical junctional complex. In addition,
The single layer of epithelium composing the intestinal mucosa
acts as a barrier to impede the passage of toxins, pathogens, and
foreign antigens, while selectively allowing the transport of
electrolytes, essential nutrients, and water from the intestinal
lumen into peripheral circulation [1]. Molecules pass through the
intestinal epithelial monolayer by two routes: transcellular,
through the apical and basolateral membranes of a cell; and para-
cellular, via the intercellular space between adjacent cells [2]. It is
the function of apical junctional complexes to seal off the paracel-
lular pathway of transport. The tight junction (TJ) and the adherens
desmosomes, located basolaterally beneath the AJ, strengthen the
bond between adjacent epithelial cells by facilitating cellular
proximity and TJ assembly [3]. These epithelial barriers are not
absolutely impermeable, and intestinal epithelia have TJs with
lower resistance than do other types of epithelia, such as that of
the gallbladder, which compartmentalize irritating bile acids from
the rest of the abdominal cavity [3]. Unfortunately, these low resis-
tance TJs are prone to leakage, and emerging data suggest that the
pathogenesis of inflammatory bowel disease (IBD) is related to
three fundamental and self-perpetuating circumstances: compro-
mised intestinal barrier function; exposure of intestinal luminal
contents to leukocytes in the lamina propria; and uncontrolled
inflammatory immune responses [1].

Importantly, it has recently been shown that the gut epithelium
serves as a ‘‘communicator’’ between the luminal flora and the
subepithelial immune system comprised of innate and adaptive
immune components, including dendritic cells (DCs) and lympho-
cytes [4]. The epithelium expresses an array of pattern recognition
receptors (PRRs), and disruption of these epithelium-derived bac-
teria-sensing/modulating mechanisms can result in uncontrolled
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immune responses [5–9]. Resident gut commensal bacteria can
also shape local mucosal and systemic immunity by providing crit-
ical signals that maintain gut homeostasis [10]. Previous studies
have demonstrated that nutrients can modulate the composition
of the gut microbiota, epithelial cell function, and host immunity
[11–19]. For nutrient-dependent signaling, the gut epithelium is
equipped with various nutrient-sensing mechanisms; however,
their importance in gut bacteria-sensing, epithelial cell function,
and immune homeostasis remains largely unknown.

One such nutrient-sensing receptor is the extracellular calcium-
sensing receptor (CaSR) [20]. CaSR is a G protein-coupled nutrient-
sensing receptor that is widely expressed in a range of tissues and
species [21,22] to regulate calcium homeostasis [20] and osmotic
balance [22–24]. Epithelial cells along the entire gastrointestinal
(GI) tract express the CaSR [25–30]. Although previous investiga-
tions have studied the role of GI CaSR in fluid transport, intestinal
epithelial differentiation, growth, and nutrient sensing [30,31],
local and systemic consequences of alterations in CaSR signaling
have not been detailed.

Here, we investigated additional roles of the CaSR in the intes-
tinal mucosae using intestinal epithelium-specific receptor knock-
out mice (Casr�/�). We show that CaSR plays a key role in the
maintenance of intestinal barrier function, gut microbiome compo-
sition, and in the control of intestinal and systemic immune
responses.
2. Materials and methods

2.1. Mice

C57BL/6 mice lacking Casr expression in intestinal epithelial
cells (Casr�/�) and their Casr+/+ littermates were bred and main-
tained in-house at the University of Florida Communicore Animal
Facility. Casr�/� mice were generated as previously described
[31]. Briefly, Casrflox/flox mice were bred with transgenic mice
expressing Cre Recombinase under the control of the villin 1 pro-
moter and genotyped prior to all experiments after a minimum
of two generations. Mice were used at 5–10 weeks of age in accor-
dance with the Animal Welfare Act and the Public Health Policy on
Humane Care. All procedures were approved by the Institutional
Animal Case and Use Committee (IACUC) at the University of
Florida.

2.2. Ex vivo transepithelial electrical resistance (TEER), short-circuit
current (ISC), transepithelial conductance (GT), and permeability
measurements of intestinal tissues

Differences in electrogenic ion transport in the colons of Casr+/+

and Casr�/� mice were quantified by measuring the short circuit
current responses of freshly isolated colonic tissues mounted in
modified Ussing chambers (Physiologic Instruments, San Diego,
CA), as previously described [32,33]. Intestinal permeability was
assessed using 4 kDa fluorescein isothiocyanate dextran, as
described previously [34].

2.3. Lamina propria leukocyte (LPL) preparation

Colonic lamina propria (LP) cells were isolated as previously
described [35], with minor modifications. Digestion buffer con-
sisted of DMEM (GIBCO�, Life Technologies) containing 0.25 mg/
mL collagenase type VII (Sigma–Aldrich), 0.125 U/mL Liberase TM
Research Grade (Roche Applied Science, Indianapolis, IN), 10 mM
HEPES, 0.1 M CaCl2 (Sigma–Aldrich), and 5% FBS (3 � 10 min diges-
tions). Cells obtained from the digestions were combined and
stained for flow cytometry-based analyses.
2.4. Flow cytometry and antibodies

Single cell suspensions obtained from processed spleens and
MLNs, and LP lymphocytes were stained with LIVE/DEAD Aqua
Dead Cell Stain Kit� (Molecular Probes�, Life Technologies). Mouse
Fc Blocking Reagent (Miltenyi Biotec, Auburn, CA) was used
prior to staining with combinations of the following antibodies
or their corresponding isotype controls from eBioscience (San
Diego, CA), Biolegend (San Diego, CA), BD Pharmingen, or R&D
Systems (Minneapolis, MN): CD45-(30-F11)-eFluor650NC, CD11c-
(N418)-BV605, CD11b-(M1/70)-PE-Cy7, CD11b-(M1/70)-APC-Cy7,
F4/80-(BM8)-PB, GR1-(RB6-8C5)-APC-Cy7, I-A/I-E MHCII-(2G9)-
FITC, I-A/I-E MHCII-(2G9)-PE, CD3-(145-2C11)-APC-Cy7, CD4-
(RM4-5)-BV605, CD8-(53-607)-PE-Cy7, PD-1-(29F.1A12)-BV421,
Pro-IL-1b-(NJTEN3)-APC, TNFa-(MP6-XT22)-PerCP-eFluor710, IL-6-
(MP5-20F3)-FITC, IFNc-(XMG1.2)-PerCP-Cy5.5, IL-17A-(TC11.18H10.1)-
PE, FoxP3-(FJK-16A)-PE, IL-1R-(JAMA-147)-PE. Prior to intracellular
staining, cells were fixed and permeabilized with BD Cytofix/
Cytoperm™ (BD Biosciences). A BD LSRFortessa™ (BD Biosciences)
cell analyzer was used to acquire stained, fixed cells. Data were
analyzed with FlowJo software (Tree Star, Ashland, OR).

2.5. Real-time PCR

For global gene expression changes, RNA was isolated from the
tissues specified with Aurum™ Total RNA Kit (Bio-Rad). iScript™
Select cDNA Synthesis Kit (Bio-Rad) was used for reverse transcrip-
tion and the obtained cDNA used for quantitative PCR by SYBR�

Green Dye gene expression assay on a Bio-Rad CFX96™ Real time
system; n = 8/group. The reaction was carried out in 10 ll final vol-
ume with an initial denaturation at 95 �C, followed by temperature
cycling of 95 �C 30 s, 60 �C 30 s and 72 �C 30 s; 40 cycles were
totally performed. For microbiota composition, ZR Fecal DNA Mini-
Prep™ Kit (Zymo Research, Irvine, CA) was used to extract total
fecal DNA per the manufacturer’s instructions. Real-time PCR anal-
ysis was performed on 2 ng of total DNA template (SsoAdvanced™
SYBR� Green Supermix, Bio-Rad) to target variable regions of bac-
teria group-specific 16S rRNA sequences [36]; n = 8/group. Groups
were normalized to the housekeeper Eubacteria group to
determine the relative abundance. Primers used can be found in
Table S1.

2.6. 16S ribosomal DNA sequencing

Fecal DNA was amplified by Illumina Miseq compatible primers,
targeting the 16S rDNA V4-V5 region for microbiome analyses.
Amplicons were purified by QIAquick Gel extraction kit (Qiagene,
Madison, WI) and quantified by Qubit� 2.0 Fluorometer (Invitro-
gen, Grand Island, NY) and Kapa SYBR fast qPCR kit (Kapa Biosys-
tems, Inc., Woburn, MA). Equal amounts of amplicons were
pooled with 10% of Phix control. Miseq v2 reagent kit (Illumina,
Inc., San Diego, CA) was used to run the pooled samples on the Illu-
mina Miseq. Data were analyzed as previously described [37].

2.7. Dextran sulfate sodium (DSS)-induced colitis

Casr+/+ and Casr�/� mice received 3% DSS in the drinking water
for 7 days to induce colitis. Disease progression, including weight
loss and diarrhea, was monitored throughout the study. Body con-
dition scoring (BCS) of the mice, as determined by a veterinarian,
was used as criteria for early termination of the experiment.
Despite severe colitis, none of the mice reached a BCS requiring
euthanasia. Mice were sacrificed at day 13 and the colons isolated
for analyses. Tissues were fixed, sectioned, and stained with hema-
toxylin and eosin (H&E) by Histology Tech Services (Gainesville,
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FL). Sections were analyzed/scored blindly by a boarded veterinary
pathologist (JLO). Colitis was graded based on 7 parameters (0–17).
Namely, degree of inflammation in the LP (0–3), goblet cell loss
(0–2), abnormal crypts (0–3), crypt abscess (0–1), mucosal erosion
and ulceration (0–1), submucosal spread to transmural involve-
ment (0–3), and neutrophil numbers at 40x magnification (0–4).
Stool consistency was scored as follows: 0 = normal, 1 = pasty,
2 = watery, 3 = watery with perianal staining.

2.8. Statistical analyses

Unless stated otherwise, representative data indicate mean ±
S.E.M. Significance was determined by two-tailed unpaired t tests
for two group comparisons (GraphPad Prism 6 for Mac OS X, La
Jolla, CA).

3. Results

3.1. Intestinal CaSR contributes to intestinal barrier function integrity

The evaluation of intestinal permeability ex vivo using Ussing
chambers revealed that Casr�/� mice showed reduced transepithe-
lial resistance (TEER), and higher transepithelial conductance (GT)
and passive transport of FITC-conjugated dextran (Fig. 1A–C).
Interestingly, significant alterations in short-circuit current (ISC)
and ion transporter transcript measurements, indicative of defec-
tive transcellular transport, were not observed between the two
groups (Fig. 1D), suggesting that the CaSR exclusively affects the
paracellular transport pathway. Apical junctional complexes, such
as TJs, primarily maintain the epithelial barrier; TJs involve com-
plex interactions between approximately 40 proteins, including
the transmembrane proteins, occludins and claudins. These pro-
teins are anchored to the actin filaments and myosin light chain
through the zonula occludens (ZO) family. Consistent with a defec-
tive intestinal epithelial barrier, Casr-�/� mice had a decreased
colonic expression of TJ molecules, particularly claudin-2, a major
component of TJs (Fig. 1E). We then investigated a range of ion
transporter-associated genes and found that Casr�/� mice also
exhibited a significantly increased expression of myosin light-
chain kinase-1, an enzyme that controls contractility of the peri-
junctional actomyosin rings and epithelial permeability (Fig. 1F).

3.2. Defect in epithelial CaSR signaling leads to gut microbe imbalance

A mutual interaction exists between the gut microbiota and the
epithelial cells comprising the intestinal barrier, and both
Fig. 1. (2 columns) Gastrointestinal epithelial barrier dysfunction in Casr�/�mice. Intestin
of steady-state Casr�/� mice and wild-type controls; n = 10 mice/group. Heat maps were
(A), transepithelial conductance (B), passive transport of FITC-conjugated dextran (C),
transporter-associated gene expression of isolated colon tissues measured by Real-Time P
controls.
populations can influence the other. To assess if the breakdown of
intestinal epithelial integrity in Casr-�/�mice alters the distribution
of microbiota between either side of the epithelial barrier, we used
a combination of real-time PCR and Illumina Miseq to analyze the
microbiota of steady-state Casr�/� and wild-type mice. No signifi-
cant differences were observed between the overall richness and
diversity of the two gut microbial communities (Fig. 2A and B).
However, deeper analyses indicated significant changes in compo-
sition. For instance, at the phylum level, we noted an outgrowth in
the minor group Deferribacteraceae (Fig. 2C), which was previously
found to correlate with inflammatory responses in the colons of Cit-
robacter rodentium-infected mice [38], a model of bacterial colitis.
Concurrently, beneficial lactobacilli were decreased in Casr�/�mice
(Fig. 2D). Moreover, the relative abundance and distribution of the
Gram-positive Clostridium coccoides was significantly altered in
Casr�/� mice, with depletion noted in the lumen and enrichment
in the subepithelium (Fig. 2E). Consistent with enhanced bacteria
translocation and dissemination in host tissues, Casr�/� mice had
significantly decreased epithelial expression of Reg3b and Reg3g,
which encode secreted C-type lectins that bind and protect against
translocation and dissemination of Gram-negative [39] and
Gram-positive bacteria [40,41], respectively (Fig. 3B).

3.3. Enhanced intestinal inflammation and immune cell activation in
Casr�/� mice

Dysbiosis of the intestinal microbiota may lead to pathogenic
inflammatory immune responses locally and systemically. Indeed,
gene array analyses of the distal colon of wild-type and
Casr�/� mice demonstrated a marked increase in the expression
of a range of PRRs and cytokine-encoding genes in the colons of
Casr�/� mice (Fig. 3). To distinguish between proinflammatory
responses in the intestinal epithelium due to attenuated CaSR sig-
naling versus responses induced in resident immune cells, we
examined colonic leukocytes by flow cytometry. Data show that
colonic CD11b+ DCs upregulated their costimulatory molecules
and proIL-1b and its receptor in Casr�/� mice (Fig. 4A andB). As fur-
ther evidence of chronic intestinal inflammation in Casr�/� mice,
higher IL1R and programmed cell death (PD)1 were significantly
expressed on CD4+ and CD8+ T cells (Fig. 5A andB).

We then investigated differences in systemic immune
responses in these mice. We found a selective expansion of
CD11b+ DCs in the mesenteric lymph nodes (MLNs) and spleens
of Casr�/� mice (Fig. S1A and B). Moreover, higher numbers of
Gr-1+CD11b+ neutrophils were noted in the spleens of Casr�/� mice
(Fig. S1C). Similar to the colon, splenic CD11b+ DCs were
al barrier integrity (A–D) and gene expression measured by Real-Time PCR (E and F)
developed from the mean fold change in expression (Casr�/�/WT) calculated. TEER

and short-circuit current (D) of colons measured ex vivo. Tight junction- and ion
CR (E and F). Data are shown as mean +/� S.E.M. ⁄P < 0.05, ⁄⁄P < 0.01 compared with



Fig. 3. (1.5 columns) Increased inflammation in the colons of Casr�/�mice. Gene expression profile of the distal colons of Casr�/� and Casr+/+ littermate controls; n = 10 control
mice and n = 20 Casr�/� mice. Data are shown as mean +/� S.E.M. ⁄P < 0.05, ⁄⁄P < 0.01, ⁄⁄⁄P < 0.001 compared with WT. Heat maps were developed from the mean fold change
in expression (Casr�/�/WT) calculated.

Fig. 2. (2 columns) Gut microbiota composition of Casr�/� mice. Microbiota composition alterations due to CaSR deficiency in healthy mice; n = 10 control mice and n = 20
Casr�/�mice. (A) Microbial evenness, diversity, and species richness in mice tested. Left: The species evenness index was calculated using the formula J0 = H0/H0max, where H0 is
the Shannon diversity index and H0max is the maximal value of H0 . Middle: The Shannon diversity index was used to estimate microbial diversity for each group. Right: The
Chao richness index was used as a measure of species richness. (B) Unweighted UniFrac analyses were used to calculate distances between samples obtained from the two
groups and three-dimensional scatterplots were generated by using principal coordinate analysis (PCoA). (C) Bacteria genera most enriched or depleted in Casr�/� mice, as
measured by linear discriminant analysis (LDA). (D and E) Changes in abundance of specific bacteria and potential dissemination were measured by Real-Time PCR. Data are
shown as mean +/� S.E.M. ⁄P < 0.05, ⁄⁄P < 0.01 compared with control mice.
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Fig. 4. (1.5 columns) Activation of proinflammatory innate immune responses in Casr�/� mice. (A) Cell surface expression of CD40, CD80, CD86, and B7-H1 in
CD45+MHCIIhiCD11c+F4/80�CD11b+ colonic DCs was analyzed by flow cytometry. Gray tinted line = isotype control; blue line = WT; red line = Casr�/� mice. (B) Production of
the proinflammatory cytokine IL-1b and expression of its receptor in colonic DCs. Data represent observations from two independent experiments and are shown as mean +/�
S.E.M. ⁄P < 0.05, ⁄⁄P < 0.01, ⁄⁄⁄P < 0.001 compared with WT. n = 5 mice/group.
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significantly activated, as evident by proIL-1b production (Fig. S2A
and B). In addition, IL-10+ was significantly reduced in splenic DCs
of Casr�/� mice (Fig. S2B). DCs isolated from the MLNs of Casr�/�

mice yielded similar trends, but no statistically significant differ-
ences (Fig. S3). Also, as in the colon, CaSR deficiency resulted in
IL1R and PD1 upregulation in splenic and mesenteric CD4+ T cells
(Fig. S4).

Intestinal IL1R signaling in CD4+ T cells has previously been
found to promote Th17 responses [42]. We found that IL-17A+ as
well as IFNc+ CD4+ T cells were increased in the MLNs of Casr�/�

mice (Fig. S5). Notably, despite the chronic intestinal inflammation
observed in intestinal epithelium-specific Casr�/� mice, the fre-
quency of FoxP3+ regulatory T cells (Tregs) was not decreased in
these mice (Fig. S6); in fact, the number of Tregs was significantly
increased in the MLNs of Casr�/� mice (Fig. S6B), perhaps as a com-
pensatory mechanism to counteract the preexisting inflammation.

3.4. Casr�/� mice are more susceptible to DSS-induced colitis

Considering the notion that intestinal barrier dysfunction and
imbalanced microbiota may contribute to enhanced susceptibility
of Casr�/� mice to autoinflammatory diseases (e.g., IBD), the DSS
acute induced colitis model was employed [43]. DSS promotes
mucosal destruction independent of the intestinal microbiota,
but the intestinal microbiota is thought to modify responsiveness
and susceptibility to this chemical [44,45]. Casr�/� mice demon-
strated more severe colitis with delayed recovery compared to
their littermate counterparts, as demonstrated by weight changes
and stool consistency at the endpoint of the experiment (Fig. 6A
and B). Consistently, wild-type mice were able to recover from
colitis, as shown by the gross morphology and histopathology of
the colons at day 13 post-DSS (Fig. 6C and D). In contrast, Casr�/�

mice still displayed severe colonic inflammation and mucosal dam-
age (Fig. 6C and D), indicating that the intestinal CaSR plays a key
role in the regulation of induced-inflammation.

4. Discussion

We demonstrate that CaSR is a key molecule expressed in gut
epithelial cells that contributes to the preservation of intestinal
epithelial cell integrity, and maintenance of immune homeostasis
in the gut, the disruption of which results in intestinal



Fig. 5. (1.5 columns) Colonic T cell phenotype in Casr�/�mice. Cell surface expression of IL1R (A) and PD-1 (B) on CD4+ and CD8+ T cells was analyzed by flow cytometry. Data
represent observations from two independent experiments and are shown as mean +/� S.E.M. ⁄P < 0.05 compared to WT. n = 5 mice/group.

Fig. 6. (1.5 columns)Casr�/� mice are highly susceptible to DSS-induced colitis. Casr�/� and Casr+/+ littermate controls were given 3% DSS in the drinking water for 7 days.
Disease progression was scored by weight loss (A), diarrhea (B), gross inflammation of the colon (C), and histopathology (D). Data are shown as mean +/� S.E.M. ⁄P < 0.05,
⁄⁄P < 0.01 compared to WT. n = 5 mice/group. 20� magnification.
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inflammation. Recently, it was shown that ‘‘global’’Casr�/parathy-
roid hormone (Pth)� double knockout mice had chronic intestinal
inflammation, with increased neutrophil infiltration, myeloperoxi-
dase activity, tumor necrosis factor receptor 1(TNFR1) expression
[46], and susceptibility to DSS [47]. However, given the global nat-
ure and multiple factors involved in that study, it was difficult to
ascertain the cause of the inflammation. Nonetheless, the study
suggested that intestinal CaSR may be anti-inflammatory. Indeed,
activation of CaSR by its dietary agonists, calcium, spermine, or
tryptophan, reduced inflammation (Tang & Cheng, unpublished
observations), whereas inhibition of the receptor by depletion of
dietary calcium enhanced gut inflammation in animal models of
induced colitis [48]. Interestingly, while gut-specific CaSR detects
nutrients and is potentially anti-inflammatory, the CaSR in murine
bone marrow-derived macrophages/monocytes is pro-inflamma-
tory in that it detects the ‘‘danger signal’’ (i.e., Ca released as a
result of tissue injury) and activates the NLRP3 inflammasome
[49]. Thus, role of CaSR in inflammation appears to be cell-type
specific.

Nutrient availability and nutrient-sensing in the host signifi-
cantly contribute to gut homeostasis and the immune responses
induced [48,50–61]. In the present study, we demonstrate that a
single deficiency in epithelial CaSR altered the composition of the
gut microbiota, with Casr�/� mice having significantly increased
Deferribacteraceae and reduced abundance of lactobacilli and
C. coccoides (cluster XIVa of the genus Clostridium), despite identi-
cal environmental conditions. Clostridium cluster XIVa species are
beneficial commensal bacteria that induce butyrate production,
Treg development, maintenance of barrier function, and competi-
tion with pathogens in gut colonization. The specific depletion of
commensal Clostridia, together with the outgrowth of small groups
such as Deferribacteraceae, may thus contribute to the disruption of
mucosal homeostasis and subsequent activation of local immune
responses seen in Casr�/� mice. Indeed, depletion of Clostridia has
been consistently associated with chronic inflammation in patients
with IBD [62–65] and atopy [66], whereas Deferribacteraceae was
shown to correlate with the level of inflammatory responses in C.
rodentium-infected mice [38]. Whether these changes are a cause
or a consequence of inflammation, or consequent to the downregu-
lation of the anti-inflammatory CaSR, requires further investigation.

The immune responses observed in Casr�/� mice suggest that
intestinal epithelial CaSR deficiency leads to a shift in local and sys-
temic innate and T cell immune responses from a status character-
ized by regulation to one that is highly stimulated. However, since
the expression of PD1, a molecular signature of T cell exhaustion
[67], was significantly enhanced on T lymphocytes, the activated
immune phenotype displayed in the immune cells of Casr�/� mice
may not necessarily indicate active, effective immunity, but evi-
dence of chronic intestinal inflammation. In further support of
chronic inflammatory responses, Th1 and Th17 responses were
elevated in Casr�/� mice. Interestingly, FoxP3+ Tregs were not
decreased, but were increased in Casr�/� mice, particularly in the
MLNs. Nonetheless, the quality of these Tregs warrants further
investigation, as studies have highlighted the plasticity of these
cells toward a proinflammatory phenotype [68]. Therefore, consid-
ering the heightened state of inflammation in Casr�/� mice, it is
conceivable that Casr�/� mice-derived FoxP3+ Tregs may be func-
tionally defective. This state of chronic inflammation rendered
Casr�/� mice highly susceptible to DSS-induced colitis, indicating
that, in addition to defective intestinal barrier function and
increased inflammation, CaSR deficiency may also result in
impaired wound healing in the gut.

In summary, the present study demonstrates that attenuated
CaSR signaling in the gut epithelium leads to enhanced permeabil-
ity of the epithelial barrier, resulting in translocation and dissem-
ination of luminal bacteria and activation of local and systemic
innate and adaptive proinflammatory immune responses. The sub-
sequent excessive gut inflammation disrupts the intestinal milieu
and impairs gut homeostasis, thereby contributing to susceptibility
to autoinflammatory diseases, such as IBD. Thus, the CaSR may
serve as a potential therapeutic target for a range of autoinflamma-
tory intestinal disorders, including IBD and colon cancer.
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