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Given a random graph, we investigate the occurrence of subgraphs especially rich 
in edges. Specifically, given a E [0, 11, a set of k points in a graph G is defined to be 

an a-cluster of cardinality k if the induced subgraph contains at least a 
0 

f edges, 
so that in the extreme case a = 1, an a-cluster is the same as a clique. We let 
G = G(n, p) be a random graph on n vertices with edges chosen independently 
with probability p. Let W denote the number of a-clusters of cardinality k in G, 
where k and n tend to infinity so that the expected number X of a-clusters of 
cardinality k does not grow or decay too rapidly. We prove that W is asymptotically 
distributed as 2,. whose distribution is Poisson with mean X, which is the same 
result that Bollobb and Erd& have proved for cliques. In contrast to the situation 
for cliques (a = 1) however, for all a < 1 the second moment of W blows up, i.e., 
the expected number of neighbors of a given cluster tends to infinity. Nevertheless, 
the probability that there exists at least one pair of neighboring clusters tends to 
zero, and a Poisson approximation for W is valid. o 1990 Academic PI~SS, IX 

1. INTRODUCTION 

Given a random graph G, we investigate here the occurrence of sub- 
graphs of G that are especially rich in edges. Specifically, let G = G(n, p) 
denote a random graph with vertex set V of cardinality n and edge set E 
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consisting of edges chosen independently with probability p from the set of 
all possible edges. For a E [0, 11, define an u-cluster of cardinality k to be a 
subset (Y c T/or cardinality k such that the subgraph induced on (Y contains 
at least a 0 ‘1 edges. For a > p, what is the probability that G will contain 
at least one u-cluster of cardinality k? What is the distribution of the 
number W of such clusters in G? 

The expected value X of W is straightforward to compute: The probabil- 
ity pa that a given k-set (Y is an u-cluster can be calculated from the 
binomial distribution, and does not vary with (Y. Summing over all k-sets, 
we have E W = (;)p@. For fixed p and a, suppose that k and n tend to 
infinity in such a way that X = EW is bounded away from zero and 
infinity. It seems reasonable to hope that W will tend to a Poisson random 
variable with mean A. Theorem 5 below states that this is indeed the case 
and provides an upper bound on the rate of convergence. 

For a = 1, an u-cluster is the same as a clique. For the special case of 
cliques, the size of the largest clique is found in Bollobis and Erdiis [5], and 
the Poisson convergence was proven by Bollobis [4] by means of an 
approach developed by Stein [ll] and Chen [6]. Define two cliques to be 
neighbors if they share at least two vertices. The basic method then simply 
requires showing that the expected number m of cliques which neighbor 
any given clique tends to 0 as k and n + cc. 

Contrary to our initial expectations, the corresponding statement for 
u-clusters is false if a # 1. For all 0 < p < a < 1, the expected number m 
of neighboring clusters tends to infinity, so that EW2 + co. Nevertheless, 
we show how to modify the analysis of the situation so that the Chen-Stein 
method can be used to prove Poisson convergence for W. Roughly speak- 
ing, this means that the probability of having at least one pair of neighbor- 
ing clusters tends to zero, but in the rare event when neighboring clusters 
do occur, they may occur in profusion. 

This work was motivated by a problem which arose in molecular biology. 
One of the most common and most powerful ways to infer the function of a 
newly discovered protein is to discover a striking similarity between its 
amino acid sequence (proteins can be thought of as long words written in a 
20-letter alphabet of amino acids) and that of a previously sequenced 
protein of known function. See for example the book by Doolittle [7]. We 
reasoned that more distant functional and evolutionary relationships would 
give rise to sets of proteins in which no pair displayed a dramatic similarity, 
but in which many pairs showed mild similarities. In a graph whose vertices 
were all proteins and in which edges denoted mild similarities, such sets 
would be clusters. The present work arose in the attempt to evaluate the 
statistical significance of such clusters of proteins, before attempting to 
search for biological significance. 
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The paper is organized as follows. Section 2 provides necessary back- 
ground for proving Poisson convergence. After pointing out that a given 
u-cluster can have an expected number of neighboring clusters which tends 
to infinity, Section 3 overcomes this difficulty to prove the main result. 
Section 4 discusses variations on the theme. Although unrelated to the issue 
of Poisson convergence, Section 5 show that for a < 1, the expected 
number of neighboring clusters always tends to infinity, and characterizes 
the ways in which this happens. 

2. BACKGROUND ON POISSON CONVERGENCE 

A beautiful and powerful method for proving convergence to a Poisson 
distribution was given by Chen [6], who adapted the differential method of 
Stein, developed for the normal distribution [ll]. Our approach is drawn 
from a recent paper of Arratia, Goldstein, and Gordon [l] which describes, 
generalizes, and applies these methods. 

Let I be an arbitrary index set. For each LY E I, suppose we have a 
Bernoulli random variable X, with pa = P( X,, = 1) = 1 - P( X, = 0) > 0, 
and suppose that we have a “neighborhood of dependence” B(a) c I such 
that X, is independent of all of ( Xs)s E I-B(oj. When X, = 1, we speak of 
an event occurring at a. Let 

w= c x,, X=EW= cp,. 
ae:I acr 

Let Z, denote a Poisson random variable with mean X, i.e., let P(Z, = k) 
=e -‘Ak/k!, for k = O,l, 2,. . . . We denote the variation distance between 
the distributions of W and,Z, by 

IL(W) - L(Z,) 1 = 2 
A c (:I$, ) 

Jp(w E 4 - p(zx E A) 1, 

which also may be viewed as the twice the minimal value of P( W # Z,), 
over all realizations of both random variables on the same probability 
space. Define 

b, = c c paps 
asr /3EE((I) 

b, = c c PaPslaY where psln = E( XslXu = 1). 
ac1 c##/Y?EB(ol) 

Arratia, Goldstein, and Gordon [l] prove the following results (in fact, 
they give somewhat stronger statements allowing weak dependence of X, 
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on Xs for /I 4 B(a)): 

THEOREM 1. With notation as above, 

(L(W) - L(G) 1 < 2(bl + b,)(l - e-“)/A, 
IP(W = 0) - e-‘I < (b, + b,)(l - e-‘)/A. 

Furthermore, they show that when the Poisson approximation can be 
established by the above machinery, the entire dependent family of events 
can be viewed as a small perturbation of a family of independent events 
having the same individual probabilities: 

THEOREM 2. Consider the given dependent events as a process with values 
in {O,l}‘; i.e., consider X = (XO)aEI. Let Y = (Yu)ac, be a process with 
independent components and the same marginals: Va, EX, = EY,. It is 
possible to realize X and Y on a single probability space so that 

P(X Z Y) I 2(b, + b, + cp,z). 

In many applications, there is sufficient symmetry that the following 
three quantities do not vary with the choice of (Y E I: p,, IB(a)I, and 
m=C a+BEB(njpB,a. In these situations we have b, = (EW)jB(a)l/lIl 
and b, = (E W)m. Given an infinite series of examples in which X = E W 
stays bounded away from infinity, Poisson convergence follows at once 
provided only that ]B(a)l/]1] + 0 and m + 0. Since the first condition is 
usually trivial to verify, the proof of Poisson convergence reduces to 
calculating m, the expected number of events neighboring a given event. 

Consider the number of l-clusters (i.e., cliques) of size k in a iandom 
graph G = G( n, p). The Poisson approximation here can also be estab- 
lished using inclusion-exclusion; see Spencer [lo, pp. 21-221. The following 
argument, using the Chen-Stein method, appears in Bollobb [4]. Let I be 
the set of all k-sets of vertices of G, let B(a) be the set of all k-sets 
intersecting (Y in at least two points and let X, be the indicator of the event 

that the k-set (Y is a clique. Setting W = C o1 E IXa, we have E W = (;)p(:). 
If k and n tend to infinity so that X = EW satisfies Ailk + 1, we can easily 
show that W converges to a Poisson random variable with mean X by 
estimating the quantities ]B(cw)]/]ll an d m. The condition on the growth 
of EW implies that 

k 
n- 

ip 
-(k-1)/2 
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and hence 

Since ]&a) ]/]Z] is the probability that two random k-sets intersect in at 
least two elements, it is at most (k12)($/(;)= W4/n2) + 0. The 
expected number m of cliques which intersect a given clique ~1 can be 
decomposed as m = C, < j < kmj, where mj is the expected number of 
cliques which meet (Y in exactly j points. Now, 

Thus, 

m k-l = k(n - k)p“-’ = O(k3/n), 

mkp2 - (1/2)k2n2p2k-3 = O(k6/n2), 

m2 = (VP)( ‘;)( z 1 l;)/(l) = Wk4/n2). 
By examining the ratio of successive terms in the sequence m2, 

?twekh 
mk-2, mkel, we see that the m2 and mkp2 dominate all the terms 

them. Thus, Theorem 1 implies that ]L( W) - L( 2,) ] = 
O((log n)3/n) = O(k3/n). 

3. MAIN RESULTS 

Unfortunately, the proof above does not extend automatically to a-clus- 
ters: for certain values of p < a < 1, the expected number m of clusters 
neighboring a given cluster tends to infinity. To see this, we recall the large 
deviation theory of the binomial distribution. See, e.g., Bahadur [3] or 
Arratia and Gordon [2] for a background reference. 

Let C,, . . . , C, be independent, identically distributed Bernoulli variables 
with P(C, = 1) = p. We have, for p < a < 1, with 

pl-a 
).E -- 

al-p E (OJ), 

P(C, + *** +c,2aq - &(2~0(1 - a)t)-“2exp( -tZZ([at]/t, p)) 
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and for j = 0, 1,2,. . . , 

P(C, + **a +C, = [at] + jlC, + *a* +C, 2 at) + ri(l - r), 

where H( a, p) is the relative entropy between a p-coin and an u-coin, 

f+, P) = (a)Ma/P) + 0 - a)bd(l - a)/0 -p)). 

Let G = G(n, p) be a random graph and fix a E ( p, 1). As before, let I 
be the set of all k-sets of vertices of G, let B(a) be the set of all k-sets 
intersecting a in at least two points, and let X, be the indicator of the 
event that the k-set a is an u-cluster. Setting W = & EIXa, we have 
A = EW = ( ;)P(C1 + . . . + C, 2 at) with t = (t). If k and n tend to 
infinity so that X1ik -+ 1, then 

k 
n- e exp (2) 

and consequently 

logn - (k/2)H(u, P). (3) 

We can compute a lower bound on the expected m of u-clusters neigh- 
boring a given u-cluster a as follows. For some subset fixed y C a of 
cardinality j, suppose that the subgraph induced on y is a clique. The 

probability that this will occur is at least a (3 . Now, if j = [(fi)k + 11, 
then y contains (:I> 43 edges and therefore every k-set /3 E I 
with a n /3 = y is an a-cluster. The contribution to m arising in this 
fashion from such subsets of cardinality j is at least m’ = 

(5)( :;:)a(:). We have 

(log m’)/( i) - H(a, p)(l - 6) - a&% a). 

Since H(u, p) + cc as p --) 0, we can choose p sufficiently small that 

(log m?/(t) d ten s to a positive limit and thus m’ --f KJ. The straightfor- 
ward generalization of the Poisson convergence proof therefore fails, at 
least for certain values of a and p. In Section 5, we will show that m --, 00 
whenever a < 1. 

To summarize: subsets y of an a-cluster a which contain a high propor- 
tion of edges make it relatively easy for a very large number of k-sets 
containing y to be u-clusters; even though such subsets are exceeding rare, 
they contribute enough neighboring clusters when they do occur to cause 
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m + cc. To get around this problem, we define the notion of a “balanced” 
cluster, and use this in steps 1 and 2 of the proof of Theorem 3. 

There is a second way in which the expected number m of a-clusters 
neighboring a given u-cluster (Y blows up: a cluster may contain a single 
vertex which is not rich in connections to the rest of the cluster, so that 
there are many ways to find a neighbor B of cu in which that one vertex is 
replaced by some other. In Section 5, we characterize the set of (p, a) for 
which this contribution tends to infinity. To get around this problem, we 
supplement the notion of “balanced” with two more restrictions on the 
configuration of edges in a cluster, in the definition below of a “good” 
cluster. Step 3 in the proof of Theorem 3 corresponds to this problem. 

Given a function b : [0, l] + [O,l], a k-set (Y will be called b-balanced if, 
for all subsets y c (Y of cardinality j, the subgraph induced on y contains at 
most b( j/k)( i) edges. (Thus, all a-clusters are l-balanced, where 1 de- 
notes the constant function with value 1.) 

Let a function b(.), a value of a’ E (p, a), and a sequence ci, c2,. . . 
with ck + cc be given. We will say that an u-cluster (Y is “good” if it 
satisfies the following requirements: 

1. (Y is b-balanced. 
2. For each vertex u in (Y, at least a’k of the possible k - 1 edges to 

the other vertices of (Y are in G. 

3. The number of edges in (Y is less than a 0 ‘; + ck. 

Let X,l be the indicator that cu is a “good” u-cluster, and let IV’ = 
C, E ,X& so that 0 I W’ I W. Our strategy is to show, for an appropriate 
choice of the parameters of “goodness,” that the second moment of W’ is 
well-behaved (Theorem 3), so that a Poisson approximation for W’ can be 
established by the Chen-Stein method, and that P(W # W’) + 0 (Theo- 
rem 4). 

THEOREM 3. There exists a function b : [0, l] + [0, 11, andfir each E > 0 
there exists a’ E (p, a), such that, if A’ik + 1, the bounds b, and b, for the 
Chen-Stein method applied to W’ satisfy 

b, + b2 = O(An-l+e). 

More precisely, we have b, + b, = O(Xn-‘k3ek(H(a,p)-H(“‘,*))). 

Proof: Suppose that we are given b(e), and that (Y is a b-balanced 
a-cluster of cardinality k. Let m’ be the expected number of /!I E I which 
are also b-balanced u-clusters, so that b, I Am’, and for j = 2,. . . , k - 1, 
let rn; be the contribution to m’ arising from those j? such that 1 (Y n /31 = j. 
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For any positive v1 and v2, we first show how to define the function b(x) 
on the interval [vi, 1 - v2] c (0,l). We then show how to choose vi such 
that we may take b(x) = 1 on the domain (0, vi). In the third step we show 
how to choose v2 and a’ to take care of the contributions from j E 
[v2k, k - 11. 

Step 1. Let [vi, 1 - VJ c (0,l) be given. Let j be an integer such that 
x = j/k E [vi, 1 - vJ. Suppose that all subsets of (Y having cardinality j 

induce at most b(x)(i) edges. Let fi E I with y = (Y n /3 of cardinality j. 

Since the subgraph induced on y contains at most b(x)(i) edges, the 

induced subgraph on /3 must contribute an additional u (;) - W( ;) 

edges out of a potential t = (t) -(i) edges in order for p to be an 
a-cluster. Since each of these potential edges actually occurs with probabil- 
ity p, we have, with C, denoting p-coins, 

m(< (:)j~?)P[C,+ .*.+C,ka(i) -b(x)(i)]. 

Taking logarithms and dividing by (i), we have an upper bound uj 
satisfying 

(log m;> i ii 1 I uj - (1 - x)H(a, p) 

-(l - x2)2+ - b(x)x2)/(1 - x2), p). 

If we had b(x) = a, the right-hand side above would be strictly negative. 
We can therefore choose a constant a, > a to be the value of b(x) for all 
x E [vi, 1 - v2], so that the right-hand side is less than -6 < 0. Thus, 

m’ = o(e-cc)) = qnp”W ), for some constants c, c’ > 0. There are at 
m&t k such values of j to consider, for a total contribution to m’ that is 
@I-1). 

Step 2. Again, let /? E I with y = a n /3 of cardinality j = xk. Even if 
the subgraph induced on y is a clique (i.e., allowing b(x) = l), the induced 
subgraph on /3 must contribute an additional a 

potential ( :) - (i) 
(9 -(:) edges out of a 

edges in order for /3 to be an u-cluster. Counting as 
before, we have an upper bound uj satisfying 

(logm;)/(k/2) I uj - k[(l - x)H(u, p) 

- (1 - X2)H((U - x2)/(1 - x2), p)]. 
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Let h(x) denote the expression in square brackets, considered as a function 
of x. Then h(O) = 0 and h’(O) = - H( a, p). For any E > 0, we can choose 
or sufficiently small that for j = 2,. . . , vlk, 

logm$/(k/2) I oj - h(j/k)k < -tjH(u, p) ’ -:H(u, p). 

Since (log yI -‘)/( k/2) - -H(a, p), we have rn$ + . . . +rn;+ = o(n-‘). 

Step 3. Consider mkpl, which involves replacing a single vertex of (Y. 
The new vertex, in order to form a “good” cluster with the rest of (Y, must 
contribute at least a’k out of a possible k - 1 edges to the other vertices of 
(Y. The probability of this is at most e-kH(o’,J’). Thus 

rnkel I k(n - k)e-kH(“‘*p) - e-2k3n-le(k-1)H(a,p)e-kH(o’,p) 

Given E > 0, we can choose a’ close enough to a so that this upper bound 
is O(n-‘+‘). 

The same argument shows that for fixed d = 1,2,. . . , we have, with the 
same choice of a’, that m j-d = O(n-d+e), and there is a value v2 < 1 such 
that mj = O(n-‘), uniformly in j = v2k,. . ., k - 2. Thus rnkel is the 
term which makes the dominant contribution to our upper bound on b,. 

Q.E.D. 

THEOREM 4. Suppose that b(x) : [0, l] + [0, l] with b(e) = 1 on [0, vl) 
U (1 - v2, l] and b(e) = u0 > a on [vl, v2], that u’ E (p, a), and that 
ck/k + 00, Ck/k2 + 0. For some constant S > 0 (depending only on a, p, 
and b), 

P( W # W’) = O(n-‘). 

More precisely, P( W f W’) = O(Xke-kHc”‘* “‘). 

Proof: Since A = EW is assumed to satisfy A1lk + 1, and 0 I W’ I W 
with E(W - W’) = X P( X,l = 0 (X, = l), it suffices to show that P( X,l = 
O]X, = 1) --) 0 exponentially fast in k. The contribution to this conditional 
expectation from unbalanced but otherwise good subsets of size j = xk is 
less than 7 P(C, + . * 

0 
a + C, > u,t - ck), where the Ci are u-coins, and 

t = (i). Taking logarithms and dividing by (i), and using cJk2 + 0, we 

get the limit -x2H(u,, a) < 0, so the entire contribution from unbalanced 
subsets decays faster than exponentially in k. The contribution to the 
conditional probability that X,l = 0 from single vertices which have fewer 
than u’k edges to the rest of (Y is less than kP(C, + . . . + Ck-, < u’k) < 
ke-kH(“‘*o). The contribution to the conditional probability due to the total 
number of edges exceeding a 0 t by ck or more decays faster than exponen- 
tially in k since ck/k + 00. Q.E.D. 
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We have now proven the main results. 

THEOREM 5. Let 0 < p < a I 1. Suppose that G = G(n, p) is a random 
graph on n vertices with edges chosen independentb with probability p. Let W 
denote the number of a-clusters of cardinal@ k in G, where k and n tend to 
infmity in such a way that the expected number X = EW of a-clusters of 
cardinality k satisfies A’jk + 1. Then W has asymptotically a Poisson distribu- 
tion, and the total variation distance, between the entire collection of depen- 
dent events, X = (X,),, r and a process X’ with the same marginal but 
independent coordinates, tena to zero. 

Proof Combining theorems 1, 3, and 4, we have that 1 L(W) - L( 2,) 1 
I b, + b, + P(W # W’) = O(n- k e 1 3 kH(a,p)-H(a’,p) + ke-H(“‘,a) ). Using 
relation (2) we see that this upper bound has the form 1 L(W) - L( Z,) 1 = 
O(k2n8), where the optimal choice of a’ relative to a and p leads to an 
explicit value 6 = 6( p, a) E (0,l). Using Theorem 2 instead of Theorem 1 
leads to a similar upper bound on the total variation distance between the 
original and decoupled families of events, X and X’. Q.E.D. 

Just as in the study of cliques in random graphs, corresponding to a = 1, 
when k and n satisfy (2) changing k by 1 causes X to change by a factor 
which is of the same order as k. Thus, as n + co along the integers, it is not 
possible to pick k = k(n) such that X stays bounded away from zero and 
infinity. These considerations motivate the following theorem, which is an 
easy corollary of the theorem above. 

THEOREM 6. Suppose further that n --) m, and k = k(n) is such that the 
expected number of a-clusters of cardinality k stays bounded away from 
infinity, while the expected number of a-clusters of cardinality k - 1 tends to 
infinity. If cl,(G) denotes the cardinality of the largest a-cluster in G, then 

IP(cl,(G(n, p)) = k - 1) - e-‘I + 0, 

IP(cl.(G(n, p)) = k) - (1 - e-‘)I + 0. 

4. VARIATIONS ON THE THEME 

Certain variations on the basic theme arise naturally in the context of 
applications to the problem of evaluating the significance of patterns of 
protein similarities in molecular biology. We omit the proofs, which are 
relatively straightforward modifications of the arguments given above. 
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THEOREM 7. Let G = G(n, p) be a random graph, let p < a I 1 and let 
c be a fixed positive integer. Define a flag to be any pair (v, e), consisting of a 
vertex v and an edge e from v. Suppose that every flag (v, e) in G is randomly 
assigned one of c colors. A subgraph H is said to be nicely colored if, for all 
vertices v E H, the flags in H containing v are all the same color. Let W 
denote the number of nicely colored subgraphs of cardinality k containing at 
least a ‘; 

0 edges, where k, n + 00 so that with t = i 
0 

and C,, C,, . . . 

independent, (0, l)-valued with mean p/c=, 
C, 2 at) satisJies (E W)l/k 

EW = ck(;)P(CI + a.+ + 
+ 1. Then W has asymptotically a Poisson distri- 

bution. 

THEOREM 8. The results of Theorem 5, Corollary 6, and Theorem 7 
remain true if G is chosen: (i) at random from the set of all graphs on n 
vertices with constant valence [ pn]; (ii) at random from the set of all graphs 
on n vertices with [p(z)] edges; (iii) by randomly choosing, for each ver- 
tex, a set of [xn] edges incident with the vertex, with x E (0,l) satisfying 
2x-x==p. 

5. THE EXPECTED NUMBER OF NEIGHBORS TENDS TO INFINITY 

As above, let m denote the expected number of a-clusters neighboring a 
given a-cluster. What necessitated the additional work above was the 
recognition that m + cc for certain values of a and p. We close by briefly 
characterizing the ways in which this occurs, in particular showing that 
m + cc for all a # 1. 

There are two different effects that can cause m + m. The first, corre- 
sponding to step 1 in the proof of Theorem 3, involves a contribution to m 
that grows like exp(ck2), due to unbalanced subsets of a given cluster. The 
second, corresponding to Step 3 in the proof of Theorem 3, is a contribu- 
tion that grows like eck, due to single vertices in a given cluster which are 
not rich enough in connections to the rest of the cluster and thus are easily 
replaced. 

First we identify the constant c in the contribution to m that grows like 
exp(ck2), due to unbalanced subsets of a given cluster. Let (Y be an 
a-cluster and let mj denote the contribution to m arising from B E I such 
that y = (Y n p has cardinality j. Step 2 in the proof of Theorem 4 shows 
that we may neglect those mj with j/k E (0, rl). 

We can compute mj, for cases where x = j/k is bounded away from 1, 
as follows. For all choices of y and /3 - y, consider all choices for the 
number U of edges in the subgraph induced on y and the number V of 
additional edges contributed by the subgraph induced on /I subject to the 
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condition that U + I/ 2 u 0 4 . Thus, 

Since j/k is bounded away from 0 and 1, we can use the large deviation 
estimates for the binomial. Writing x = j/k, y = u/(i), and z = 

u/( (‘;) - (;)), we have 

(logm)/(:) -+ maxF,,,(x~~~z)~ 
where 

F,,,(x, y, z) = H(a, p)(l - 4 - KY, 4x2 - fh P)(l - x2), 

and the maximum is taken over the set {(x, y, z): yx2 + z(1 - x2) 2 a, 
0 I x I 1, a I y I 1, p I z I a }. Let la, p denote this maximum. Thus, 
f o p > 0 implies m + 00, and the coefficient c of k2 in the exponential 
growth rate of m is $fa, p. 

It is easy to verify that for all 0 < p < u < 1, we have f,,, > 0. First, 
fix p < z < a so that H(z, p) < H( a, p)/3. Take y = a + E(U - z) and 
x2 = l/(1 + E). As E + 0 we have F,Jx, y, z) - H(u, p)~/2 + 0 - 
H(z, p)~, so that for sufficiently small positive E, F,,,(x, y, z) > 0 for a 
point (x, y, z) in the desired region. 

We analyze the growth of rnkel as follows. Consider the contribution 
that arises when the number U of excess edges in the cluster above the 
minimum number a 0 ‘1 is about ck, and the number D of edges between a 
particular vertex and the rest of the cluster is about bk. With Ci denoting 
p-coins, the contribution just described is approximately 

k(n - k)P(U> ck)P(D < bk)P(C, + e.0 +Ckpl 2 (b - c)k). 

Taking the limit of l/k times the logarithm of this contribution yields 

H(u, p)/2 - [cH’(a, p) + fJ(b, a) + H(b - c, P)]. 

In the region p I b - c I b I a, the expression in brackets is minimized 
with c = 0. This indicates that excess edges in the cluster as a whole do not 
play the dominant role in this contribution. With 

g a,p = way PI/2 - ,jna [fJ(b, 4 + Nb, P)], 
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we have that if g,,, > 0 then m --, cc, and if g,,p < 0 then mkpl goes to 
zero. A similar analysis applies to mkpj whenever j/k + 0. 

Thus we understand why the expected number of clusters which neighbor 
a given cluster tends to infinity. Of course, even when the expected number 
of neighbors is large, the Poisson convergence result above implies that the 
actual number of neighbors is 0 with probability tending to 1. 
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