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Different WASP family proteins stimulate different Arp2/3
complex-dependent actin-nucleating activities
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domains of WASP, N-WASP, and Scar1 and found that each induces unique
kinetics of actin assembly. In cell extracts, N-WASP induces rapid actin 0960-9822/01/$ – see front matter
polymerization, while Scar1 fails to induce detectable polymerization. Using  2001 Elsevier Science Ltd. All rights reserved.
purified proteins, Scar1 induces the slowest rate of nucleation. WASP
activity is 16-fold higher, and N-WASP activity is 70-fold higher. The data
for all activators fit a mathematical model in which one activated Arp2/3
complex, one actin monomer, and an actin filament combine into a
preactivation complex which then undergoes a first-order activation step
to become a nucleus. The differences between Scar and N-WASP activity
are explained by differences in the rate constants for the activation step.
Changing the number of actin binding sites on a WASP family protein, either
by removing a WH2 domain from N-WASP or by adding WH2 domains to
Scar1, has no significant effect on nucleation activity. The addition of a three
amino acid insertion found in the C-terminal acidic domains of WASP
and N-WASP, however, increases the activity of Scar1 by more than 20-
fold. Using chemical crosslinking assays, we determined that both
N-WASP and Scar1 induce a conformational change in the Arp2/3 complex
but crosslink with different efficiencies to the small molecular weight subunits
p18 and p14.

Conclusion: The WA domains of N-WASP, WASP, and Scar1 bind actin
and Arp2/3 with nearly identical affinities but stimulate rates of actin
nucleation that vary by almost 100-fold. The differences in nucleation rate
are caused by differences in the number of acidic amino acids at the C terminus,
so each protein is tuned to produce a different rate of actin filament formation.
Arp2/3, therefore, is not regulated by a simple on-off switch. Precise
tuning of the filament formation rate may help determine the architecture of
actin networks produced by different nucleation-promoting factors.

Introduction nucleation machinery. The nucleation machinery consists
of the Arp2/3 complex, a heteromeric complex of sevenEukaryotes use a dynamic actin cytoskeleton for many

processes, including cell division, phagocytosis, intracellu- polypeptides that nucleates and crosslinks actin filaments,
and a nucleation-promoting factor that binds the Arp2/3lar trafficking, and cell locomotion [1, 2]. In response to

cellular signaling events, including the activation of Rho complex and increases its nucleation activity [3]. The
most well-studied nucleation-promoting factors are pro-family G proteins, cells construct specialized networks of

actin filaments. The first step in de novo nucleation of teins of the WASP/Scar family [4–6]. In vertebrates, this
group consists of the Wiskott-Aldrich syndrome proteinactin filaments is localization and activation of the actin-
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(WASP), its more widely expressed cousin, N-WASP, and ization (t1/2) at saturation is 42 s for WASP WA, 29 s for
N-WASP WA, and 147 s for Scar1 WA (Figure 1c). Theat least three homologs of the Dictyostelium suppressor of

cAMP receptor (Scar) protein, Scar1-3. The C-terminal correct metric for nucleation activity is the rate at which
new filaments are formed, so we determined the timeregions of the WASP family proteins (WA regions) contain
course of filament generation stimulated by the threeeither one (WASP and Scar) or two (N-WASP) actin mono-
proteins (Figure 1d). We calculated the number of grow-mer binding domains, called WASP-homology 2 (WH2)
ing filament ends at different points in a polymerizationdomains [7], and a stretch of acidic residues (A) at the
reaction (Figure 1b) from the instantaneous slope andextreme C terminus that interacts directly with the Arp2/3
concentration of unpolymerized actin and then plottedcomplex [8]. These WA regions are sufficient to stimulate
barbed-end concentration versus time (Figure 1d).Arp2/3-dependent actin polymerization, but the molecu-

lar details of the nucleation process remain a mystery. The
WASP and N-WASP generate approximately four timesWA regions are quite similar, and it has been generally
as many filaments over the course of a polymerizationassumed that their activities are equivalent.
reaction as Scar1 (Figure 1d). The initial rates of nucle-
ation in the presence of WASP and N-WASP, however,We show here that the WASP/Scar family proteins induce
are much more than four times the rate induced by Scar1.conformational change(s) in Arp2/3, and in vitro WA do-
In the presence of WASP and N-WASP, the polymeriza-mains from different WASP/Scar family proteins initiate
tion reaction comes to plateau within 60 s, while Scar1dramatically different kinetics of actin polymerization.
does not generate a detectable number of filaments forThe maximal nucleation activity is determined by the
more than 50 s.acidic Arp2/3 binding region, not by the number of actin

binding WH2 domains or by the affinity of the activator.
Because Arp2/3 requires filamentous actin for maximalWe constructed a mathematical model to both describe
activity, it is formally possible that the difference in poly-the mechanism of Arp2/3 activation and to provide a con-
merization kinetics is caused by a different dependencevenient metric for Arp2/3 activity. We incorporated all
on preformed actin filaments. To address this, we usedof the measured rate and equilibrium constants for the
fluorescence microscopy and measured the degree ofinteractions between actin, Arp2/3, and the WASP family
Arp2/3-dependent filament branching in the presence ofproteins along with an additional activation step. The
Scar1 WA and N-WASP WA. If N-WASP activity is moremodel contains only three floating parameters and more
rapid because it can generate new filaments without aaccurately describes Arp2/3-dependent polymerization
preexisting mother filament, we would expect N-WASPthan a previously proposed model based on barbed-end
WA activity to produce less filament branching than Scar1branching [9]. The observed differences between the ac-
WA. In contrast, we find that N-WASP WA induces ativities of Scar1 WA and N-WASP WA domains can be
slightly higher degree of filament branching (see Figureaccounted for by varying the rate constant governing the
S1 in the Supplementary material available with this arti-activation step.
cle online). In particular, N-WASP generates a signifi-
cantly larger number of highly branched structures con-Results
taining two or more branches each. This is consistent withWASP and N-WASP stimulate Arp2/3-dependent actin

polymerization much more rapidly than Scar1 N-WASP stimulating filament formation by a more rapid
filament-dependent mechanism. We fluorescently la-We tested the ability of N-WASP WWA (a construct con-

taining both WH2 domains) and Scar1 WA (a construct beled and imaged filaments produced by N-WASP and
Scar1 WA at times when the reactions contained equalcontaining only one) to stimulate actin polymerization in

Acanthamoeba extracts doped with pyrene actin. Previous polymer mass. The reduced branching in the presence of
Scar1 WA, therefore, may reflect increased debranchingstudies have shown that the addition of GTP�S to these

extracts stimulates actin polymerization [10] via the acti- at the longer time required for Scar1 to generate the same
polymer mass as N-WASP. Also, the slower activity ofvation of Rho family GTPases. N-WASP WWA induces

actin polymerization even more efficiently than GTP�S Scar1 means that spontaneous nucleation makes a larger
relative contribution to filament number.(Figure 1a). However, no amount of added Scar1 WA

induces detectable polymerization.
Arp2/3-dependent filament formation is not a linear func-
tion of time, so it is difficult to quantitatively compareTo understand the differences between N-WASP and

Scar1, we directly compared the abilities of the proteins the initial nucleation rates. To better understand the nu-
cleation reaction and to obtain a more satisfying quantita-to induce Arp2/3-dependant actin polymerization using

purified proteins. At saturating concentrations, the maxi- tive comparison of the activities of nucleation-promoting
factors, we constructed a mathematical model of Arp2/3-mal activities of N-WASP WA, WASP WA, and Scar1

WA are significantly different (Figure 1b,c). With 50 nM dependent nucleation (Figure 2). Our model requires the
assembly of one actin monomer, one nucleation-promot-Arp2/3 and 2 �M actin, the time to half-maximal polymer-
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Figure 1

WASP family proteins induce dramatically different kinetics of actin polymerization data, and solid lines are fits to the kinetic model shown
nucleation in cell extracts and with purified components. (a) The in Figure 2 using rate constants from Tables 1 and 2. Polymerization
addition of N-WASP WWA to Acanthamoeba extract induces actin conditions: buffer: 50 mM KCl, 1 mM MgCl2, 1 mM EGTA, 1 mM DTT,
polymerization similar to GTP�S, but the addition of Scar1 WA does 0.2 mM ATP, and 10 mM imidazole (pH 7.0); temperature: 25�C.
not. Extracts were diluted 1:10 into buffer doped with 4.5 �M pyrene (c) Time to half-maximal polymerization of 2 �M actin with 50 nM
actin and either no activator (open circle), 200 �M GTP�S (solid Arp2/3 and either WASP WA (solid circle), N-WASP WA (solid
circle), 115 nM Scar1 WA (aa 438–559) (open square), or 110 nM square), or Scar1 WA (open square) as a function of activator
N-WASp WWA (aa 400–501) (solid square). Conditions: dilution concentration. At saturating concentrations, the half-times are �5 s
buffer: 50 mM KCl, 1 mM MgSO4, 1 mM EGTA, 1 mM DTT, 1.0 mM for N-WASP WA, �42 s for WASP WA, and �120 s for Scar1 WA.
ATP, and 10 mM imidazole (pH 7.0); temperature: 25�C. (b) The (d) The time course of Arp2/3-dependent filament formation in the
maximal activity of WASP WA and N-WASP WA is faster than the presence of N-WASP WA (solid square), WASP WA (solid circle),
maximal activity of Scar1 WA. Identical pyrene actin polymerization and Scar1 WA (open square). Polymerization curves similar to those
reactions were carried out using 2 �M actin (10% pyrene labeled) in (a) were analyzed by plotting the concentration of actin filaments
and 50 nM Arp2/3 complex with either 280 nM Scar1 WA versus time. Data from three separate polymerization experiments were
(aa438–559) (solid square), 310 nM N-WASP WA (aa422–501), or averaged for each condition. The error bars represent the standard
310 nM WASP WA (aa418–502). The points indicate deviation.

ing factor, and one Arp2/3 complex on the side of an stable ends elongate rapidly, so we approximate that the
activation step is irreversible (this is a standard assumptionactin filament. This assumption is justified since Arp2/3
in modeling of both actin and microtubule nucleationis monomeric, binds to the sides of preexisting actin fila-
[15]). To describe the entire time course of polymeriza-ments [11], and nucleates new daughter filaments from
tion, we coupled our nucleation model to a multistep modelthese mother filaments [4, 12, 13]. Also, the nucleation-
of spontaneous polymerization described earlier [12].promoting factors used in these studies are monomeric

and contain an actin monomer binding site required for
activity [7]. Our data and those of Marchand et al. [14] We used independently determined values for all parame-
suggest that assembly of these components is insufficient ters in the model, except three: the rate constant describ-
for filament formation and that an additional activation ing the activation step and the forward and reverse rate
step is required. We modeled this activation step as a constants for binding of the Arp2/3 activator-actin com-
first-order conversion of the assembled nucleation ma- plex to actin filaments. Marchand et al. [14] suggested

that the binding of WASP increases the affinity of Arp2/3chinery into a stable barbed end (Figure 1e). Once formed,
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Table 2Figure 2

Activation rate constants for nucleation-promoting factors used
in this study.

kact (s�1) Fold/Scar1 WA

Scar1 WA 5 � 10�4 1
WASP WA 0.008 16
N-WASP WA 0.034 68

The rate constants were determined by nonlinear least-squares fittingA schematic representation of the mathematical model for dendritic
of the dendritic nucleation model (Figure 2) to curves of multiple concen-nucleation used in this study. First, a ternary complex is assembled
trations of actin polymerized in the presence of 50 nM Arp2/3 andbetween Arp2/3, actin, and a nucleation-promoting factor (NPF). This
saturating concentrations of each factor. Conditions are the same as incomplex can assemble via one of two pathways, 1a and 2a or 1b
Figure 1b.and 2b. The ternary complex binds to the side of an actin filament (3)

and undergoes a first-order activation reaction that converts it into
an actin nucleus (4). This model with the parameters in Tables 1 and
2 was used to fit the polymerization data in Figure 1b and in the suggest that the chimeric proteins bind two actin mono-
Supplementary material (Figure S2). The activation step is the point mers (Figure S3). We tested the maximal nucleating
at which nucleation activity is regulated (see Table 2). activities of saturating concentrations of the chimeric

proteins and found that additional actin binding sites do
not increase maximal activity (Figure 3b). Second, we
compared the activities of N-WASP WWA and N-WASPfor actin filament, and we suspect that binding of an
WA. Using pointed-end elongation assays, we determinedactin monomer increases the affinity even further. We
that N-WASP WWA appears to bind two actin monomers,determined values for these constants by global fitting
while N-WASP WA and Scar1 WA bind one monomerof data sets collected with various Arp2/3 activators at
each, with similar affinities (Figure 3c). Using pyrenedifferent actin concentrations (Table 1; Figures 1b and
actin assembly, we determined that N-WASP WWA isS2a,c,e). The different activities of N-WASP WA, WASP
actually a less-efficient nucleation-promoting factor thanWA, and Scar1 WA can be accounted for by varying a
N-WASP WA (Figure 3d).single parameter, the activation rate constant, kact. We,

therefore, used kact as a metric to describe differences
The extreme C-terminal acidic domain of N-WASP is thebetween the activities of nucleation-promoting factors.
primary determinant of rapid nucleation activityThe activation rate constant for Scar1-induced nucleation
To find determinants of rapid nucleation, we subdividedis 5 � 10�4sec�1. WASP-induced nucleation is 15-fold
the WA regions of N-WASP and Scar1 into four stretchesmore rapid, and N-WASP-induced nucleation is 70-fold
of 14–20 amino acids: the actin binding WH2 domain (W),more rapid (Figure 1b and Table 2).
a probable linker region (L), the cofilin homology domain
(C), and the Arp2/3 binding acidic domain (A). We con-

The number of actin monomers bound by a nucleation-
structed N-WASP-Scar1 chimeras between these domainspromoting factor is not a significant determinant of
(Figure 4a) and tested their maximal activities at saturat-activity in vitro
ing concentrations. Replacement of the 15 amino acidThe active domains of N-WASP WA and Scar1 WA used
acidic domain of Scar1 with the 20 amino acid acidicabove (Figures 1 and 2) each contain one actin binding
domain of N-WASP (Chimera A) is sufficient to increaseWH2 domain. Full-length N-WASP, however, contains two
the nucleation activity more than 20-fold (Figure 4a andWH2 domains, so we asked whether the additional actin
data not shown). None of the chimeras were exactly asbinding site further increases the activity of N-WASP.
effective as N-WASP WA itself, suggesting that the proxi-We directly examined the role of the additional WH2
mal WH2 domain may contain an additional determinantdomain in two ways; first, we fused the WA domain of
of rapid nucleation.Scar1 to an additional WH2 domain either from Scar1

or N-WASP (Figure 3a). Pointed-end elongation assays
The effect of swapping acidic domains is remarkable be-
cause their sequences are very similar and C-terminal

Table 1 domains of N-WASP and Scar1 have the same affinity for
the Arp2/3 complex [16]. The most obvious difference is

Rate constants for the mathematical model of dendritic nucle-
a three acidic amino acid insertion found in WASP andation, as seen in Figure 2.
N-WASP, but absent in Scar1-3. We examined the role

Step k� k� kd Source of this sequence on the nucleation rate by constructing
Scar1(547 DED) WA, which has an insertion of these1a/2b 5.5 �M�1s�1 3.0 s�1 0.55 �M [13, 15, 18]

1b/2a 1.0 �M�1s�1 0.4 s�1 0.4 �M [13, 18] three acidic amino acids in the same register as WASP
3 8.6 �M�1s�1 0.01 s�1 1 nM Least-squares fitting and N-WASP (Figure 4b). Scar1(547 DED) WA has an
Rate constant subscripts refer to reaction numbers in Figure 2. activity equal to that of Chimera A. Another mutation,
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Figure 3

The actin monomer binding activity of N-WASP and Scar1 is not 1 mM EGTA, 1 mM DTT, 0.2 mM ATP, and 10 mM imidazole (pH
a major determinant of nucleating activity. (a) Chimeric Scar1 7.0); temperature: 25�C. (c) Comparison of actin monomer binding
constructs with additional actin binding WH2 domains. The by N-WASP WWA, N-WASP WA, and Scar1 WA protein constructs.
shaded boxes are N-WASP sequences, and dark lines and empty Pointed-end elongation assays were carried out in the presence of
boxes are Scar1 sequences. Mutant #1 (Scar1 aa497–516 plus varying concentrations of N-WASP WWA (solid square), N-WASP
Scar1 aa487–559), Mutant #2 (N-WASP aa404–422 plus Scar1 WA (open square), and Scar1 WA (solid circle). Solid lines are
aa497–559), Mutant #3 (N-WASP aa404–432 plus Scar1 curves fit to the data. Dashed lines are theoretical curves representing
aa487–559); (W): WH2 domain, (A): acidic domain. The symbols at infinitely tight binding to either one (right line) or two (left line) actin
the right indicate maximal activity at saturating concentrations for monomers. Polymerization reactions and data analysis were carried
each protein. (b) Additional WH2 domains do not increase the maximal out as described previously [16]. (d) Removal of the N-terminal
activity of Scar1 WA. Pyrene actin polymerization reactions carried WH2 domain increases the maximal activity of N-WASP in vitro. Pyrene
out using 2 �M actin (10% pyrene) and 50 nM Arp2/3 complex alone actin polymerization reactions contained 2 �M actin (10% pyrene),
(solid triangle), or with either 520 nM Scar1 WA (open square), 1.8 50 nM Arp2/3 complex, and either 520 nM Scar1 WA (aa438–559)
�M Mutant #1 (open triangle), 1.8 �M Mutant #2 (solid square), 1.8 (open square), 375 nM N-WASP WWA (aa400–501) (solid circle),
�M Mutant #3 (solid circle), or 375 nM N-WASP WWA (open or 310 nM N-WASP WA (aa422–501) (open circle). Conditions are
circle). Polymerization conditions: buffer: 50 mM KCl, 1 mM MgSO4, the same as in (b).

conversion of leucine 558 to glutamic acid produces a lar crosslinks, we raised polyclonal antibodies against the
smaller but reproducible increase in activity. We conclude p14 and p18 subunits of the Acanthamoeba Arp2/3 complex.
that the three acidic amino acid insertion at position 547 Together with our previously described antibodies against
accounts for most of the effects of swapping acidic do- Arp2, Arp3, p40, and p35 [11, 17], the new reagents allow
mains (Figure 4c). for more accurate identification of crosslinked Arp2/3 sub-

units.
Both N-WASP and Scar1 induce a conformational
change in the Arp2/3 complex

Upon binding, N-WASP WWA and Scar1 WA induceThe results above are consistent with a model in which
formation of a new intramolecular crosslink in the Arp2/3the nucleation-promoting factors stimulate Arp2/3 activity
complex. We first detected the crosslinked species as aby an allosteric mechanism. We looked for conformational
new band recognized by monospecific antibodies againstchanges within the Arp2/3 complex by chemical crosslink-

ing with EDC/NHS. To better characterize intramolecu- the p18 subunit (Figure 5a, band 1) that does not bind
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Figure 4 monoclonal anti-his6 antibodies that recognize the affinity
tag on Scar1 WA and N-WASP WWA. Therefore, this
band appears to be a specific intramolecular crosslink
within the Arp2/3 complex that occurs only upon binding
of N-WASP or Scar1. The crosslinked band is also not
recognized by antibodies against Arp3, Arp2, p40, p35,
or p14. Therefore, it represents either an intrasubunit
crosslink that dramatically alters the electrophoretic mo-
bility of p18 or an intersubunit crosslink between p18 and
p19 (for which we do not have a monospecific antibody).
A p18/p19 crosslink is consistent with previous two-hybrid
results [8], so we propose that, upon binding, N-WASP
WWA and Scar1 WA induce a conformational change in
the Arp2/3 complex that brings crosslinkable residues of
p18 and p19 into contact.

N-WASP and Scar1 crosslink to different small molecular
weight subunits of the Arp2/3 complex
As reported previously, the binding site for N-WASP
WWA and Scar1 WA involves contacts with the Arp2,
Arp3, and p40 subunits of the Arp2/3 complex [16].
N-WASP WWA and Chimera A, both of which initiate
rapid filament formation, crosslink to p14 (Figure 5a, band
4, and Figure 5b) and p18 (Figure 5a, band 3, and Figure
5b). The relative intensity of band 3 is different when
probed with the anti-his6 or the anti-p18 antibodies. This
difference probably reflects a change in the accessibility
of the epitopes for the p18 antibody in the p18/N-WASP
WWA crosslink.

Scar1 crosslinks to the p18 subunit but does not detectably
crosslink to p14. In a previous study, we did not detect
a connection between Scar1 and p18 [16]. Reliable detec-
tion of this interaction was made possible by our new
antibodies and supports a previous study that found an
association between Scar1 WA and the p21ARC subunit
(the mammalian homolog of amoeba p18) of the mamma-
lian Arp2/3 complex in a yeast two-hybrid screen [8].

Discussion
One of the major conclusions of this study is that the
nucleation activity of the Arp2/3 complex can be tuned
to different values by different WASP family proteins.
N-WASP WA stimulates actin polymerization in Acanth-
amoeba extracts and, in assays with components purified

The acidic domain of N-WASP is the major determinant of maximal from Acanthamoeba, promotes rapid actin nucleation fol-
nucleation activity. (a) N-WASP/Scar1 chimeras used in this study.
Scar1 WA and N-WASP WA were subdivided into four segments:
WH2, a LINKER region, a C segment that includes the cofilin
homology domain, and the extreme C-terminal ACIDIC domain. Three conserved insertion of three amino acids (shaded amino acids) not
chimeras were constructed between the N-WASP and Scar1 found in the Scar proteins. The acidic domain of Scar1(547 DED)
versions of these segments: Chimera A (Scar1 aa497–544 plus WA is also shown. (c) Insertion of the three acidic amino acids (DED)
N-WASP aa484–501), Chimera CA (Scar1 aa497–528 plus at Scar1 position 547 increases the nucleation rate of Scar1 WA.
N-WASP aa468–501), and Chimera LCA (Scar1 aa497–514 Pyrene actin assembly assays contained 2 �M actin (10% pyrene
plus N-WASP aa450–501). The shaded boxes represent N-WASP labeled), 50 nM Arp2/3 complex with either 520 nM Scar1 WA
sequences, and the clear boxes represent Scar1 amino acids. The (solid square), 520 nM Scar1(L558E) WA (open circle), 430 nM
table on the right shows the maximal activity at saturating Scar1(547 DED) WA (open square), or 310 nM N-WASP WA (solid
concentrations for each protein. (b) Alignment of the acidic domains circle). Polymerization conditions are the same as in Figure 1b.
of several WASP family proteins. WASP and N-WASP contain a
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Figure 5

N-WASP WWA and Scar1 WA induce a conformational change in EDC/NHS (50 mM KCl, 1 mM MgSO4, 1 mM EGTA, 1 mM DTT, 0.2
the Arp2/3 complex. (a) Band 1 is a new intramolecular crosslink mM ATP, and 10 mM imidazole [pH 7.0]) was added to 1 �M Arp2/3
between the p18 and p19 subunits that does not contain N-WASP complex alone or with either 12 �M Scar1 WA or 5 �M N-WASP
or Scar1 but only appears when these proteins interact with the WWA for 45 min at room temperature. (b) Replacing the acidic
Arp2/3 complex. N-WASP WWA and Scar1 WA have different domain of hScar1 with that of N-WASP produces the same pattern
associations with the p14 and p18 subunits. Scar1 WA associates of chemical crosslinks as N-WASP WWA. A total of 345 nM Arp2/3
strongly with the p18 subunit of the Arp2/3 complex (band 2), whereas complex was mixed with either 4 �M Scar1 WA, 4.4 �M Chimera A,
N-WASP WWA makes a weak contact (band 3). N-WASP WWA or 2 �M N-WASP WWA under the same conditions as in (a).
interacts with the p14 subunit of the Arp2/3 complex (band 4), while Chimera A and N-WASP both crosslink to the p14 subunit of the
Scar1 WA fails to associate with this subunit. Band 5 is a previously Arp2/3 complex and fail to make a strong contact with the p18
described intramolecular crosslink between the p14 and p19 subunits subunit.
of the Arp2/3 complex [11]. Crosslinking reaction conditions: 2 mM
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lowing a short lag time. Scar1 WA stimulates a 70-fold used by Yamaguchi et al. is actually due to a difference
in their affinities for Arp2/3.slower rate of nucleation in vitro and is unable to stimulate

actin polymerization in extracts. This difference is not
Several metrics have been used to describe the nucleationdue to a different dependence on preformed actin fila-
activity of the Arp2/3 complex, including the time to half-ments, but it appears to be a difference in the kinetics
maximal polymerization [16], the total number of actinof the nucleation reaction. Previously [10], we showed
filaments generated during an assay [14], and the maximalthat, because of filament capping, the number of free
rate of polymerization [20]. Each suffers from drawbacksbarbed ends in amoeba extracts is directly proportional
that limit its use for quantitative comparisons. The timeto the rate of nucleation, so we conclude that the maximal
to half-maximal polymerization is a model-independentnucleation rate initiated by Scar1 WA cannot overcome
metric useful for plotting dose curves and determiningfilament capping and disassembly activities in amoeba
relative nucleation activities but cannot be used for abso-extracts.
lute quantitative comparisons. The total number of fila-
ments generated in a polymerization assay is limited byYamaguchi et al. [18] noted a similar difference in the

activities of N-WASP WWA and Scar1 WA but attributed the depletion of actin monomers and is not linear with
time. Consequently, the total number of filaments gener-it to the difference in the number of actin binding sites.

That study, however, did not compare the activity of an ated in a polymerization assay is not proportional to the
nucleation rate. This is most clearly seen in Figure 1d,N-WASP WWA construct, containing two actin binding

sites, to an N-WASP WA construct, which contains only in which the total number of filaments generated by
N-WASP is only four times greater than that generatedone. In the present study, this control experiment (Figure

3d) rules out the number of actin binding sites as a deter- by Scar1. At early time points, however, say 0–50 s, the
difference in filament numbers is clearly much greater.minant of rapid nucleation by N-WASP WA. Yamaguchi

et al. [18] report that the addition of WH2 domains to The appropriate model-independent metric of nucleation
activity is, therefore, not total filament number but theScar1 WA enhances nucleation activity, a result that dis-

agrees with our findings. Several technical differences rate of filament formation (Figure 1d). Comparisons based
could account for this. First, the proteins used in our on the maximal polymerization rate suffer from a similar
study are untagged or tagged with six histidines, while problem.
the proteins used in the Yamaguchi study were fused to
glutathione-S-transferase (GST). Higgs et al. [19] showed A previous study [13] reported no significant difference
that WASP family protein constructs fused to GST have in the activities of WASP WA and Scar1 WA. The authors
significantly different activities compared to untagged compared the activity of bovine Arp2/3 stimulated with
proteins. Also, GST fusion proteins are generally dimers, WASP WA to that of Acanthamoeba Arp2/3 stimulated with
so a GST-WWA construct could potentially bind four Scar1, so comparison was not direct. Also, the authors
actin monomers and two molecules of Arp2/3, further used total filament number as a metric of activity and
confusing the relationship between nucleation and actin found that, depending on Arp2/3 concentration, Scar1 WA
binding. Second, the two studies use different linker se- stimulation produced 50%–80% as many filaments as
quences between WH2 domains (see the legend to Figure WASP WA. According to our analysis, a 2-fold difference
3a,b). To make a Scar1 WWA construct, Yamaguchi et al. in filament number can correspond to a much higher
fused amino acids 466–519 to amino acids 494–559. In difference in the rate of filament formation. So, while our
the present study, we built an analogous construct by observations are not inconsistent with those of Blanchoin
fusing amino acids 497–516 to amino acids 487–559. We et al., our analysis indicates a larger difference in the
chose these boundaries to maintain the spacing between activities of Scar1 and WASP than these authors ap-
WH2 domains found in N-WASP. We also tested the preciated.
C-terminal WH2 domain and linker sequence from
N-WASP and used a quantitative assay (pointed-end elon- To better quantitate Arp2/3 activity, we constructed a

complete kinetic model of Arp2/3-dependent filamentgation) to verify that our WWA constructs bind two actin
monomers (see the Supplementary material, Figure S3). formation. Nucleation by activated Arp2/3 requires one

molecule each of Arp2/3 and nucleation-promoting factor,Third, in the present study, we used saturating concentra-
tions of Scar1 (W)WA proteins, so that our comparison of an Arp2/3 binding site on the side of a filament, and an

actin monomer. The model fits the data well at multiplenucleation activities was insensitive to the affinity of the
constructs for Arp2/3. Yamaguchi et al. used 100 nM Arp2/3 and actin concentrations and provides a metric,

the activation rate constant, for quantitatively comparingN-WASP/Scar1 (W)WA and 60 nM Arp2/3 complex. In
our experiments, 100 nM N-WASP or Scar (W)WA is not the activities of different nucleation-promoting factors.

Unlike other metrics discussed, our model-based metricsufficient to saturate the activity of 60 nM Arp2/3 com-
plex. So, one possibility is that the apparent difference is largely independent of assay conditions (e.g., the con-

centrations of actin and Arp2/3) and can be used to com-in activities between the Scar1 WA and WWA constructs
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pare results from different laboratories and different nu- Intracellular pathogens that spread from cell to cell by
recruiting components of the host cell cytoskeleton maycleation-promoting factors.
have already discovered the difference between N-WASP
and Scar1. Vaccinia virus and Shigella recruit N-WASP

A model proposed by Pantaloni et al. [9] suggests that [23, 24], and Listeria monocytogenes uses ActA [25, 26],
three actin monomers are required for Arp2/3-dependent which has a nucleation activity indistinguishable from that
nucleation. We tested this branched polymerization model of N-WASP [16]. To date, no intracellular pathogen has
against our mathematical model of dendritic nucleation been found to recruit Scar1 or express a factor with Scar1-
(see the Supplementary material). The branched poly- like activity. The rate of filament formation stimulated
merization model can accurately fit data collected at vary- by a nucleation-promoting factor may be a significant
ing Arp2/3 concentrations [9] but cannot fit either sponta- determinant of its use in actin-based pathogen motility.
neous or Arp2/3-mediated actin polymerization at varying
actin concentrations (see the Supplementary material, Why have cells evolved multiple nucleation-promoting
Figure S2b,d,f). Three factors contribute to this failure; factors that stimulate different rates of Arp2/3-dependent
first, spontaneous nucleation is modeled as actin dimeriza- actin filament formation? We propose that the rate of actin
tion, and all filaments are treated as actin dimers in equi- filament formation initiated by the Arp2/3 complex plays
librium with monomers. This disagrees with previous a role in determining the three-dimensional architecture
work indicating that the critical nucleus for actin polymer- of an actin-based structure. Several studies have shown
ization is a trimer [21, 22] and means that the dimerization that the expression of different nucleation-promoting fac-
rate constants in the model have no clear physical mean- tors produces different effects on cell morphology and
ing. Second, the branched polymerization model proposes the organization of the actin cytoskeleton [27, 28]. It is
that three actin monomers combine with Arp2/3 to make a unclear how many of these differences are due to activa-
new daughter filament. This gives the Arp2/3-dependent tion of collateral signaling pathways or recruitment of
nucleation reaction a third-order dependence on the actin nonidentical sets of actin binding proteins and how many
monomer concentration, which appears to be much too are due to intrinsic differences in the activity of the nucle-
high. And, third, the branched polymerization model does ation machinery. The relationship between actin network
not contain a separate activation step. A first-order activa- architecture and the dissociation rates of actin crosslinking
tion step following the assembly of Arp2/3, activator, and proteins has been well studied [29, 30], but the connection
actin decreases the dependence of the nucleation rate on between filament nucleation rate (especially in the pres-
actin and Arp2/3 at high concentrations. Pantaloni et al. ence of crosslinking proteins) and network architecture
[9] also noted that the specific activity of Arp2/3 decreased is still mysterious. Evidence for a connection between
at high concentrations but proposed that a complex of nucleation rate and cellular architecture has come from
Arp2/3, N-WASP WA, and an actin monomer self-associ- the study of mutations associated with human disease.
ates to form a nonproductive dimer. There is no experi- Derry et al. [31] found that mutation of arginine 477
mental evidence for this, while inclusion of a first-order of WASP to lysine is associated with thrombocytopenia.
activation step is supported by available data [14]. Marchand et al. [14] report that this mutation does not

alter the affinity for Arp2/3, but decreases nucleation-
promoting activity. In that study, WASP WA (R477K)Nucleation requires an activation step that can be sepa-
generated half as many filaments as wild-type WASP WA.rated from actin and Arp2/3 binding (Figure 2). Three
According to our kinetic model, this decrease in filamentlines of evidence suggest that this step represents a confor-
number probably corresponds to a 10-fold decrease in themational change on the Arp2/3 complex. First, by chemi-
nucleation rate. WASP (R477K), therefore, should stillcal crosslinking, we detect a shift in Arp2/3 subunit inter-
nucleate filaments as rapidly as Scar1. The effect of theactions upon binding of Scar1 and N-WASP. Second,
WASP (R477K) mutation in vivo suggests that a higherdifferences in nucleation activity are not correlated with
nucleation rate is essential for proper function of WASP.differences in affinity for Arp2/3 or actin. And, third, se-
The specific determinants of actin network architecturequence differences that alter the kinetics of nucleation
in vivo obviously require further study.lie within the Arp2/3 binding site and affect crosslinking

to Arp2/3 subunits. If tethering an actin monomer to
Materials and methodsArp2/3 was sufficient for nucleation, we would expect
Protein purificationmutations affecting activity to either alter the affinity for
All Scar1, WASP, N-WASP, and chimeric proteins were constructed

actin or Arp2/3 or to affect the geometry and flexibility by PCR with a proofreading polymerase using human Scar1, human
WASP, and rat N-WASP as templates. All clones were verified by se-of the tether. Based on our data, we suggest that the
quencing. Scar1 WA (aa438–559) was expressed with a C-terminalactivation step is a conformational change on Arp2/3 and
his6 tag that was left intact in the purified protein. Scar1 WA (aa443–559)that the number of acidic residues at the C terminus of
was expressed as a GST fusion protein and was purified by standard

WASP family proteins determines the stability of the ac- methods. The GST tag was removed by protease digestion, and the
cleaved product was further purified by either gel filtration on Superdex-tive conformation.
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S200 or by chromatography on MonoQ resin (Pharmacia). For MonoQ in [12] and was optimized by fitting to polymerization curves. All rate
constants are identical to those in [12], with the following exceptions:purification, we loaded protein onto the resin in 10 mM Tris (pH 8.0),

1 mM DTT and eluted with a gradient of 0–0.5 M KCl. Cleaved Scar k�1 � 2.49 � 106, and k�2 � 2.32 � 105. To fit data in the presence
of activated Arp2/3, we coupled the spontaneous polymerization modelWA eluted as a single symmetrical peak between 390–430 mM KCl.

Using mass spectrometry, we determined that the protein was 13,077 to the Arp2/3-mediated polymerization model in Figure 2 and varied k�3,
k�3, and kact, as described in the Results.Da, close to the predicted molecular mass of 13,061 Da. We saw no

difference in activity between Scar WA purified by glutatione affinity
Arp2/3-mediated polymerization model (Figure 2): 1a, A � N ↔ AN;alone or in combination with the additional chromatographic steps (un-
1b, R � N ↔ NR; 2a, AN � R ↔ ANR; 2b, A � NR ↔ ANR; 3, ANR �published data). N-WASP WWA (aa400–501) was expressed with an
P ↔ ANRP; 4, ANRP ↔ F; 5, AN � F → N � F.N-terminal his6 tag that was removed by protease digestion following

protein purification. The WH2-addition protein constructs were ex-
Symbols represent: A: actin monomer, N: nucleation-promoting factor,pressed with C-terminal his6 tags and were purified by standard methods.
R: Arp2/3 complex, P: polymeric actin, F: actin filament barbed end.WASP WA (aa418–502), N-WASP WA (aa422–501), and N-WASP
Reaction 5 describes the addition of WH2-bound actin monomers toWA/Scar1WA protein chimeras were expressed as GST fusions and
free barbed ends. We chose k�5 � 10 �M�1s�1. Together with ourwere purified by standard methods. The GST tag was removed by prote-
model of spontaneous polymerization, this reaction accounts for thease digestion.
experimental observation that binding of an actin monomer to a WH2
domain inhibits spontaneous nucleation but has little effect on barbed-Arp2/3 from Acanthamoeba castellani was purified either by conventional
end elongation [16, 19, 23]. Data sets and Berkeley Madonna modelchromatography, as described previously [9, 16, 32], or by a combination
files described in this paper are available on request.of conventional and affinity chromatography. In the second purification

scheme, Acanthamoeba were lysed by N2 cavitation in sucrose lysis
buffer (5 mM dithiothreitol [DTT], 1 mM ATP, 2 mM EGTA, 0.5 mM Antibody preparation
benzamidine, 1 mM phenyl-methyl-sulfonyl fluoride [PMSF], 0.2 M su- Acanthamoeba Arp2/3 complex was prepared as described above. The
crose, 20 mM Tris [pH 8.0]), centrifuged at low (10,000�g for 15 min) p14 and p18 subunits were resolved by SDS-PAGE, excised from the
and high (140,000�g for 1 hr), and chromatorgaphed sequentially on gel, and injected into chickens using the specified protocol (Covance).
DEAE cellulose (Whatman) and C-200(m) (Millipore) preequilibrated IgY antibodies were isolated from chicken eggs using the EggStract
with 10 mM Tris (pH 8.0), 0.5 mM DTT, 1 mM ATP, 0.1 mM CaCl2. IgY purification kit (Promega). These IgY were further purified by gel
Arp2/3 binds to neither resin at pH 8.0, so we loaded the flowthrough filtration using S-300.
onto an N-WASP-affinity matrix made by coupling his6-tagged N-WASP
WA to CH-Sepharose by standard methods. The column was washed Chemical crosslinking
with 20–50 column volumes and then eluted with 0.5 M KCl. Eluate Proteins were dialyzed into 50 mM KCl, 1 mM MgSO4, 1 mM EGTA,
was then passed over phenyl-sepharose resin to remove remaining con- and 10 mM imidazole (pH 7.0) at 25�C to facilitate crosslinking. The
taminants. Arp2/3 purified by the second protocol was measurably more indicated protein concentrations were mixed with freshly prepared
active than Arp2/3 purified solely by conventional chromatography. For 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC)
this reason, we used Arp2/3 purified by this protocol for almost all and N-hydroxysuccinimide (NHS) for 30 min at room temperature. Sam-
experiments in the paper. The exception is experiments shown in Figure ples were methanol/chloroform precipitated and analyzed by Western
3 for which we used Arp2/3 purified by conventional chromatography. blotting with monospecific antibodies against the Arp2/3 complex sub-

units or anti-his6 antibody to recognize the affinity tag on N-WASP WWA
Actin was purified according to [33] and [12] and was pyrene labeled and Scar1 WA.
as described in [34]. Acanthamoeba extract used in polymerization exper-
iments was prepared as in [10]. Supplementary material

Supplementary material including a comparison of mathematical models
Actin polymerization for dendritic nucleation, as described in this study, and branched poly-
Actin polymerization assays were preformed according to [16] using the merization as proposed by Pantaloni et al. [9] is available at http://
protein concentrations and conditions specified in the figure legends. images.cellpress.com/supmat/supmatin.http. In addition, there is a com-
Raw fluorescence data were converted to concentrations of polymeric parison of the actin binding activities of Scar1 WA and WWA constructs.
actin, and data sets were corrected for instrumental and assay dead
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