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Spanning subset sums for �nite Abelian groups
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Abstract

We survey the state of research to determine the maximum size of a nonspanning subset
of a �nite abelian group G of order n. The smallest prime factor of n, denote it here by p,
plays a crucial role. For prime order, G=Zp, this is essentially an old problem of Erdős and
Heilbronn, which can be solved using a result of Dias da Silva and Hamidoune. We provide a
simple new proof for the solution when n is even (p=2). For composite odd n, we deduce the
solution, for n¿2p2, from results obtained years ago by Diderrich and, recently, by Gao and
Hamidoune. Only a small family of cases remains unsettled. c© 2001 Elsevier Science B.V. All
rights reserved.

1. Overview

Let G=(G;+) be a �nite abelian group. We let G∗:=G\{0}. Zn denotes the group
Z=nZ of integers mod n under addition. For S = {s1; : : : ; sk}⊆G, we say that S spans
G if every g∈G is a sum of distinct elements of S, i.e., g=

∑k
i = 1 �isi, where each �i

is 0 or 1. We say that S spans G nontrivially if each g∈G is a sum of one or more
elements of S, so that, in particular, there is such a sum equalling zero with not all �i
equal to zero. Note that we consider only sums with distinct elements.
We consider here the maximum size of nonspanning subsets S of G. For instance,

S = {0; 2; 4; 6} fails to span G=Z8, while inserting any additional element from G to S
now gives a set that spans G (nontrivially). However, it is perhaps surprising that there
is a nonspanning set of size 5 that fails to span the element 4 in Z8: {−2;−1; 0; 1; 2}
is one; another is {−3;−2; 0; 2; 3}. Any six elements span Z8 nontrivially. Indeed, any
�ve nonzero elements do it.
There are slightly di�erent avors of this problem, depending on whether we permit

0∈ S and whether we require S to span G nontrivially. We shall concentrate on two
versions. We de�ne w(G) to be the maximum size of a nonspanning subset S of
G, while e(G) denotes the maximum size of a subset S ⊆G∗ that fails to span G
nontrivially.
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We now give the values of w and e for nontrivial abelian groups of order n610.
We include a set S achieving w(G). We also present a set T achieving e(G), unless
(as is usually the case) it is enough to just take S with its zero element removed.

n G w S e T

2 Z2 1 {0} 1 {1}
3 Z3 2 {0; 1} 1
4 Z4 3 {0; 1; 3} 2

Z2 ⊕ Z2 2 {(0; 0); (0; 1)} 2 {(0,1),(1,0)}
5 Z5 3 {0; 1; 2} 2
6 Z6 4 {0; 1; 2; 5} 3
7 Z7 4 {0; 1; 2; 6} 3
8 Z8 5 {0; 1; 2; 6; 7} 4

Z4 ⊕ Z2 5 {(0; 0); (1; 0); (1; 1); (3; 0); (3; 1)} 4
Z2 ⊕ Z2 ⊕ Z2 4 {(0; 0; 0); (0; 0; 1); (0; 1; 0); (0; 1; 1)} 3

9 Z9 5 {0; 1; 2; 7; 8} 4
Z3 ⊕ Z3 5 {(0; 0); (0; 1); (1; 0); (1; 1); (1; 2)} 4

10 Z10 5 {0; 2; 4; 6; 8} 4

This problem of spanning subsets was brought to our attention by colleagues at the
time, Jared Wunsch and Barbara Flinn, who were investigating sums of elements in the
cyclic 2-groups G=Z2k ; in our notation, they asked for w(G). Trivially, w(G)¿2k−1;
but no good general upper bound was apparent. Examples showing that w(G)¿ 2k−1

for k =2; 3 suggested that the problem could be di�cult. We managed to solve this
problem and extend the result to determine w(G) for arbitrary abelian 2-groups (i.e.,
of order 2k). Related work was brought to our attention, especially a famous closely
related problem of Erdős and Heilbronn [5] (cf. [7]), which asks, in our notation, for
e(Zp) when p is a prime. It was then natural to formulate the problems of determining
w(G) and e(G) for general �nite abelian groups G.
In Section 2, we provide some general bounds on our parameters. We show that

w(G) and e(G) agree to within one. An additivity result is derived that implies an
upper bound of (n=2) + 1 (resp., n=2) on w(G) (resp., e(G)) for G of order n. For
even n, this is just one above the easy lower bounds obtained by taking S to be
a subgroup of G of index 2. Groups of prime order behave rather di�erently for this
problem than groups of composite order. If n is a prime p, so that G=Zp, the possible
values of the parameters w and e were narrowed down years ago to a range of just
three values, each around 2p1=2.
In contrast, we present in Theorem 3 of Section 2 the following general lower bound

for all G of composite order n: If p denotes the smallest prime factor of composite n,
then a lower bound of (n=p)+p−2 (resp., (n=p)+p−3) is obtained on w(G) (resp.,
e(G)). In Theorem 4 we present a family of groups G for which this lower bound in
NOT sharp.
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In Section 3 we present the complete solution of our problems for groups of even
order. We show that the lower bounds of Section 2 are sharp for all su�ciently large
even n.
Groups of odd order are discussed in Section 4. From rather recent work of Dias da

Silva and Hamidoune [2] we derive in Section 4 the complete solution to the Erdős–
Heilbronn problem above for G=Zp. The rest of the paper concerns the remaining
values of n, which are the odd composites. Consider composite n with smallest prime
divisor p¿ 2. Our earlier drafts included the conjecture that the lower bounds of The-
orem 3 above must be sharp for all n¿n0(p). We then received a paper independently
addressing this problem by Gao and Hamidoune [6]. It cites fundamental work in this
same area performed years ago.
Diderrich and Mann [4] formulated another version of our problem in the early 1970s,

when they asked, for any �nite group (G;+) (not necessarily abelian), for the critical
number c(G), which they de�ne to be the minimum c∈Z+ such that for every S ⊆G∗

of size at least c, every element of G can be expressed as a nontrivial sum over some
subset of S. Thus, for abelian groups G of order n¿3, we have the general relation

e(G)= c(G)− 1:
We continue to use the w; e notation we introduced here, however: Besides making
sense even when n62, our notation has the advantage that it is natural to ask for a
characterization of the extremal sets S, which achieve e(G) yet do not span G non-
trivially (and similarly for w(G)). While it appears that w(G)= e(G) + 1 for all G of
order n¿5 (i.e., w(G)= c(G)), it is not obviously true, and it remains open in one
family of cases. So we shall work with both w and e throughout the paper.
Diderrich and Mann determined e(G) when n= |G| is even, so they essentially ob-

tained our Even Groups Theorem 5. However, we still include our proof here, since it
is shorter, simpler, and (unlike the earlier proof) self-contained. Their theorem is more
general though, as it is not restricted to abelian groups; It concerns e(G) for groups
G of even order n that contain a maximal subgroup of order n=2.
In Diderrich’s [3] paper of the same period, what is essentially our general lower

bound above for composite n, Theorem 3, is obtained. We include our proof here,
which is very similar, only for completeness. Diderrich’s main work in [3] is to consider
abelian G of order n=pq, where primes p¡q, so that G=Zpq. He proves that the
general lower bound n=p + p − 3 on e(G) is sharp for q¿ 2p. It follows that the
bounds of Theorem 3 are sharp for n=pq; q¿ 2p.
For arbitrary even n¿10, the bounds of Theorem 3 are sharp by the Even Groups

Theorem. Diderrich conjectured that his lower bound on e(G) would also be sharp
for any abelian group G of order n, with smallest prime divisor p¿ 2, provided that
n=p is composite. Gao and Hamidoune’s new work [6] establishes this result, and our
conjecture above for n¿n0(p) now follows (Theorem 8).
A 1986 paper of Mann and Wou [8] takes care of the case that G=Zp ⊕ Zp, p

odd, where again the general lower bound on e(G) is sharp. The proofs of [3,8,6] are
di�cult and dependent on various earlier results in the theory.
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In Section 5 we discuss what is left to determine. It remains to deal with the cyclic
groups G=Zpq where p; q are odd primes with p6q¡ 2p. Here, we can narrow the
gap somewhat using Theorem 4 and an upper bound of Diderrich (Theorem 12). The
open cases for determining w(G) and e(G) are where p + b2√p− 2c+ 1¡q¡ 2p.
We suspect that the lower bounds of Theorem 4 are sharp for these cases.

2. General bounds

We begin by noting the close relationship between our two parameters, e(G) and
w(G).

Theorem 1. Let G be a �nite abelian group. Then e(G)6w(G)6e(G) + 1.

Proof: If a set S ⊆G fails to span G, then removing 0 from S (if it is there) gives a
nonspanning, nonzero subset. Thus, e(G)¿w(G)− 1.
If w(G)= |G| − 1, then e(G)6|G∗|= |G| − 1=w(G). Else, if w(G)¡ |G| − 1, con-

sider any S ⊆G∗ with |S|=w(G)+1. Let x∈ S. By de�nition of w, S\{x}∪{0} spans
G. In particular, it spans −x. Thus, S spans x+ (−x)= 0 nontrivially. Consequently S
spans all of G nontrivially, so e(G)¡w(G) + 1, or e(G)6w(G).

We now give upper bounds on w(G) and e(G) based on expressing elements of G
as sums of at most three elements of a spanning set. For even G, these bounds are
never o� of the actual values by more than one, in view of the general lower bound
for groups of composite order that we provide.

Theorem 2. Let G be a �nite abelian group of order n. If n is even (resp.; odd) then
for every subset S ⊆G∗ of size ¿n=2; every g∈G can be written as a nontrivial sum
of at most three (resp.; two) distinct elements of S. Hence;

w(G)61 +
n
2

and e(G)6
n
2
:

Proof: We �rst establish that whenever R is a subset of G of size greater than n=2,
then each g∈G may be written as the sum of two elements of R. To see this, note
that the sets R and g−R cannot be disjoint, since the sum of their sizes is greater than
n. Thus, there are elements x1; x2 ∈R such that g= x1 + x2. If g 6∈ 2G= {h+ h: h∈G},
these two elements are distinct.
Now �x S ⊆G∗ of size ¿n=2, and �x g∈G. If n is even, then 2G 6= G, so 2G has

at most n=2 elements. Consequently, the set S ′:= g−2G also has at most n=2 elements,
so there exists an element s∈ S\S ′. Set R=(S\{s})∪ {0}, so that |R|= |S|¿n=2. By
the argument in the last paragraph, there exist x1; x2 ∈R such that g− s= x1 +x2. Since
g−s 6∈ 2G, we have x1 6= x2. Thus, g= s+x1+x2 is the sum of three distinct elements.
If either of the xi is 0, then we delete it from the expression, and we have that g is
the sum of two or three distinct elements of S.
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On the other hand, if n is odd, set R= S ∪ {0}. Then 2|R|¿n+ 2, so R and g− R
intersect in at least two elements, i.e., we may write g= x1 + x2, with x1; x2 ∈R, in at
least two di�erent ways. But g can be written x+ x in only one way (the map x 7→ 2x
is a bijection since n is odd), so we can write g= x1 +x2 with distinct x1; x2 ∈R. Thus,
g is the sum of one or two distinct elements of S, depending on whether one of the
xi is 0.

Here are the general lower bounds, which are essentially the same as the one for
e(G) found by Diderrich [3].

Theorem 3. Let G be an abelian group of order n; a composite number. Let p be
the smallest prime divisor of n. Then

w(G)¿
n
p
+ p− 2 and e(G)¿

n
p
+ p− 3:

Proof: By Theorem 1, it su�ces to show the �rst inequality. It su�ces to exhibit a
nonspanning S ⊆G with |S|=(n=p) + p− 2. We may write G=Zn1 ⊕ · · · ⊕Znr with
p | n1. Then G has the subgroup H of index p, H =Zn1=p ⊕Zn2 ⊕ · · · ⊕Znr . The map
�(x):=H + x projects G onto its quotient G=H =Zp. Let S contain H =�−1(0) and
any p− 2 elements of �−1(1). Then S fails to span any elements of �−1(p− 1).

The lower bounds in Theorem 3 are not sharp in general, by a variation of the
Erdős–Heilbronn example (cf. Section 4).

Theorem 4. Let p; q be primes such that 2¡p6q6p + b2√p− 2c + 1; and let
n=pq and G=Zn. Then

w(G)¿|S|= n
p
+ p− 1 and e(G)¿

n
p
+ p− 2:

Proof: For a=(p+ q)=2− 1, take S = {−a;−a+ 1; : : : ; a}. Then S does not span the
element (pq− 1)=2. To show this, we need to check that

1 + 2 + · · ·+ a= a
2 + a
2

¡
pq− 1
2

;

which reduces after some manipulation to

(q− p)2 − 2(q− p) + (4− 4p)¡ 0:

Since each term is divisible by 4, this becomes

(q− p)2 − 2(q− p) + (8− 4p)60:
By the quadratic formula, this holds if and only if

q− p6b
√
4p− 7c+ 1;
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or, equivalently (see the proof of Theorem 7),

q− p6b2
√
p− 2c+ 1:

Note that such q exist for in�nitely many p.

3. Even groups theorem

Theorems 2 and 3 in the previous section determine e(G) and w(G) to within 1 for
groups G of even order n. Values for n610 were listed in Section 1. That the lower
bounds are the actual values for all larger n is a principal result of the paper. As noted
in the Introduction, this theorem can also be deduced from earlier work of Diderrich
and Mann [4].

Theorem 5 (Even Groups Theorem). If G is an abelian group of even order n¿10;
then

w(G)=
n
2

and e(G)=
n
2
− 1:

Proof: The groups of even order n, 106n618, were checked by computer, as well as
directly by hand. We omit the lengthy, but routine, details.
Now assume n¿ 18 is even, and G is an abelian group of order n. In view of

Theorems 1 and 3, it su�ces to prove that e(G)6(n=2)− 1. Let S be a subset of G∗

of size n=2. Let T = S ∪ {0}.
Now �x a subgroup H of index 2. Then, for any g∈G, H +2g=H , so that 2g∈H .

Also, the sets T and g − T cannot be disjoint, because of their sizes, so g has a
representation as t1 + t2 with ti ∈T . If g 6∈ H , since 2g∈H , it means that t1 6= t2 in its
representation g= t1 + t2. Tossing away 0, if it is one of the ti’s, we have expressed g
as a subset sum in S.
So from now on, we assume g∈H , and split the proof into three cases according

to k:= |T ∩ H |.
Case 1. k¿(n=4)+3. By Theorem 2, S ∩H spans H , so in particular, g is a subset

sum.
Case 2. 36k ¡ (n=4)+3. Consider the collection of sums h+ j with h∈T ∩H and

j∈T ∩ (G\H). These k(|T | − k) sums belong to G\H , so some element v occurs in
this collection with multiplicity at least⌈

k(|T | − k)
|G\H |

⌉
=

⌈
k((n=2) + 1− k)

n=2

⌉
¿

⌈
3((n=2)− 2)

n=2

⌉
=3:

In other words, we can write v= hi + ji, for i=1; 2; 3, such that the hi (resp., ji) are
distinct elements of T ∩ H (resp., T ∩ (G\H)). Since g − v 6∈ H , and since as above
T and (g − v) − T are not disjoint, we can write g − v= h + j with h ∈ T ∩ H and
j ∈ T ∩(G\H). Pick i so that hi 6= h and ji 6= j (which is possible since there are three
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choices for i). Then we have g= h+ j + hi + ji, which is a sum of distinct elements
of T . Omitting 0 as one of the terms, if present, gives a subset sum from S.
Case 3. k62. Now T contains G\H , with the possible exception of a single element

r. Fix v ∈ T ∩ (G\H). The (n=2)3 sums x1 + x2 + x3 with each xi ∈G\H assume each
value in G\H with equal multiplicity. In particular, g − v can be represented (n=2)2
ways as such a sum. Exactly n=2 of these sums have x1 = x2, since for any x∈G\H
we get a unique such representation using x= x1 = x2 by choosing x3 = g− v− x − x.
Similarly, n=2 of these sums have x1 = x3, and n=2 have x2 = x3. Also, n=2 of these
sums have x1 = v, since for any x2 ∈G\H we have a unique choice for x3. Similarly,
n=2 sums have x2 = v, and n=2 have x3 = v. The same holds with v replaced by r. Thus,
there remain at least

(n=2)2 − 9(n=2)= n(n− 18)=4¿ 0

sums x1 + x2 + x3 equalling g− v with distinct xi ∈G\H not equal to either v or r. So
there exists a subset sum representation g= x1 + x2 + x3 + v.

4. Groups of odd order

The case of prime order p, G=Zp, is exceptional for our spanning set problem.
Erdős and Heilbronn [5] observed that the residues

a1 = 1; a2 = − 1; : : : ; ak =(−1)k−1b(k + 1)=2c

fail to span the element (p− 1)=2 if k ¡ 2(p1=2 − 1). On the other hand, they proved
that any set of ¿3(6p)1=2 nonzero residues span Zp.
Olson [9] gave an upper bound that left a range of at most three possible values

each for e(Zp) and w(Zp). About 25 years later, Dias da Silva and Hamidoune [2]
applied very di�erent methods to obtain the following remarkable result:

Theorem 6 (Dias da Silva and Hamidoune [2]). Let S ⊆Zp with cardinality cp + 1;
where cp= b(4p − 7)1=2c. Then every element of Zp can be written as a sum of
b(cp + 1)=2c elements of S.

Dias da Silva and Hamidoune observed that for in�nitely many primes p, the bound
implied by their theorem for the Erdős–Heilbronn problem (e(Zp)) is sharp. They used
the Erdős–Heilbronn construction above (for even k). But, in fact, Theorem 6 leads to
a complete solution of the Erdős–Heilbronn problem. This was pointed out by Barbara
Flinn. We also provide a slightly nicer formula for cp.

Theorem 7. For primes p¿3;

w(Zp)= cp and e(Zp)= cp − 1 where cp= b2
√
p− 2c:
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Proof: Careful application of Theorem 6 yields that the stated formulas are upper
bounds on w(Zp) and e(Zp). Now to achieve these bounds, let i be the maximum
integer such that the set

A= {−i;−i + 1; : : : ; i − 1; i}
fails to span all of Zp. Let S =A, unless the larger set A∪{i+1} also fails to span Zp,
in which case we take the larger set for S. (For instance, we take S = {−2;−1; 0; 1; 2; 3}
when p=11. Although it does span (p− 1)=2=5, it fails to span 7.) One can check
this construction gives |S|= cp, so that S achieves w(Zp). Deleting 0 gives a set that
achieves e(Zp).
Regarding cp, since

2(p− 2)1=2 = (4p− 8)1=26(4p− 7)1=2;
we have

b2(p− 2)1=2c6b(4p− 7)1=2c= cp:
Further, equality holds here, unless 2(p− 2)1=2¡cp, which means that

4p− 8¡c2p64p− 7;
which is impossible, since modulo 8, 4p− 7 ≡ 5 is not a quadratic residue.

The proof of Dias da Silva and Hamidoune of Theorem 6 employed exterior algebra
(Grassmann derivatives) and the representation theory of the symmetric group. We
found a simpler proof that avoids representation theory, but we do not include it
here, since a paper of Alon et al. [1] already appeared that includes a proof avoiding
representation theory.
Then what can we say about groups of composite odd order? The previous version

of the paper contained the conjecture that equality holds in Theorem 3 for n¿n0(p).
This we now con�rm in light of the evidence recently brought to our attention by Gao
and Hamidoune:

Theorem 8. Let p be a prime. If n¿ 2p2 has smallest prime divisor p; then for any
abelian group G of order n,

w(G)=
n
p
+ p− 2 and e(G)=w(G)− 1:

Further; these bounds are exceeded by at most one for smaller values of n.

Proof: We now go through the earlier results on the critical number and apply them
to w(G) and e(G) to derive Theorem 8.

Besides obtaining the general lower bound that corresponds to our Theorem 3, Dider-
rich determined e(G) to within one for groups of order a product of two primes:
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Theorem 9 (Diderrich [3]). Let G be an abelian group of order pq; where p; q are
primes with p6q. Then

p+ q− 36e(G)6p+ q− 2:
Moreover; if q¿2p; then e(G)=p+ q− 3.

For n=pq and q¿p, the only possibility for G here is Zpq. For q¿2p, we see
that e(G) achieves its lower bound; The lower bound on w(G) in Theorem 3 is one
higher, so by Theorem 1, w(G) also achieves its lower bound for these values. For
n=pq and p6q¡ 2p, Theorems 1, 3, and 9 imply that e and w are within one of
their lower bounds.
For p= q, besides the cyclic group Zp2 , there is the group G=Zp ⊕ Zp, which

Mann and Wou considered for p¿ 2:

Theorem 10 (Mann and Wou [8]). Let p be an odd prime. Then

e(Zp ⊕ Zp)= 2p− 3:

Applying this result, we �nd that for Zp ⊕ Zp, it again holds that w and e equal
their lower bounds.
Gao and Hamidoune made a major breakthrough on this problem in 1998 by re-

solving the case (conjectured by Diderrich) that n has three or more prime factors
¿ 2:

Theorem 11 (Gao and Heilbronn [6]). Let G be an abelian group of odd order n. Let
p be the smallest prime divisor of n. Suppose n=p is composite. Then

e(G)= (n=p) + p− 3:

Once again, the lower bounds on w and e are sharp for these groups. Theorem 8
now follows.

5. Further research

To complete the determination of w(G) and e(G), it remains to consider the case
G=Zpq, where primes p; q satisfy p6q¡ 2p. The Even Groups Theorem 5 takes
care of p=2. Our lower bounds in Theorem 4, which exceed the bounds of Theorem
3 by one, are sharp, in view of Diderrich’s upper bound in Theorem 9.

Theorem 12. Let p; q be primes such that 2¡p6q6p + b2√p− 2c + 1; and let
G=Zpq. Then

w(G)=p+ q− 1 and e(G)=p+ q− 2:
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For q above the threshold in Theorem 12, we still cannot pin down the exact values
of w and e:

Theorem 13. Let p; q be odd primes such that p+ b2√p− 2c+1¡q¡ 2p; and let
G=Zpq. Then

p+ q− 26w(G)6p+ q− 1 and p+ q− 36e(G)6p+ q− 2:

Only for the groups described in Theorem 13 do we not yet know the precise values
of w(G) and e(G). In view of the relationship between w(G) and e(G) in Theorem 2,
there are three possibilities left for each n in Theorem 13: Both parameters equal their
lower bounds, both equal their upper bounds, or both equal p + q − 2. We suspect
that the lower bounds are again sharp here, since the simple construction for small q
that forces both to reach their upper bounds no longer works in the range described in
Theorem 13.
Besides closing this gap, work is needed to determine the nonspanning sets S ⊆G

which achieve w(G) or e(G).
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