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Finite form of the quintuple product identity
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Abstract

The celebrated quintuple product identity follows surprisingly from an almost-trivial algebraic
identity, which is the limiting case of the terminating q-Dixon formula.
© 2005 Elsevier Inc. All rights reserved.
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The celebrated quintuple product identity discovered by Watson [3] (cf. [2, p. 147] also)
states that

+∞∑
k=−∞

(1 − xqk)q3(
k
2 )(qx3)k = [q, x, q/x; q]∞[qx2, q/x2; q2]∞ for |q| < 1,

(1)

where the q-shifted factorial is defined by

(x; q)0 = 1 and (x; q)n = (1−x)(1−qx)· · ·(1−qn−1x) for n = 1, 2, · · ·
with the following abbreviated multiple parameter notation

[�, �, · · · , �; q]∞ = (�; q)∞(�; q)∞ · · · (�; q)∞.

This identity has several important applications in combinatorial analysis, number theory
and special functions. For the historical note, we refer the reader to the paper [1]. In this
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short note, we shall show that identity (1) follows surprisingly from the following algebraic
identity.

Theorem. (Finite form of the quintuple product identity). For a natural number m and a
variable x, there holds an algebraic identity:

1 ≡
m∑

k=0

(1 + xqk)

[
m

k

]
(x; q)m+1

(qkx2; q)m+1
xkqk2

. (2)

In fact, performing parameter replacements m → m + n, x → −q−mx and k → k + m

and then simplifying the result through factorial-fraction relation

(−q−mx; q)m+n+1

(qk−mx2; q)m+n+1
= (−q−mx; q)m(−x; q)1+n

(qk−mx2; q)m−k(x2; q)1+n+k

= (−1)m−kq(
k
2 )−mkx2k−m

× (−q/x; q)m(−x; q)1+n

(q/x2; q)m−k(x2; q)1+n+k

we may restate the algebraic identity displayed in the theorem as the finite bilateral series
identity

1 ≡
n∑

k=−m

(1 − xqk)

[
m + n

m + k

]
(−x; q)1+n(−q/x; q)m

(x2; q)1+n+k(q/x2; q)m−k

x3kqk2+(
k
2 ). (3)

Letting m, n → ∞ in this equation and applying the relation

(q; q)∞
(x2; q)∞(q/x2; q)∞

(−x; q)∞(−q/x; q)∞
= [q, x, q/x; q]∞[qx2, q/x2; q2]∞

we derive immediately the quintuple product identity displayed in (1).
In terms of basic hypergeometric series, we remark that the finite sum identity (2) is just

the limiting case M → ∞ of the terminating q-Dixon formula (cf. [2, II-14]):

4�3

[
x2, −qx, q−m, M

−x, q1+mx2, qx2/M

∣∣∣∣q; q1+mx

M

]
= (qx2; q)m(qx/M; q)m

(qx; q)m(qx2/M; q)m
.
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