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a b s t r a c t

Let D be the ring of differential operators on a smooth irreducible affine variety X over
C, or, more generally, the enveloping algebra of any locally free Lie algebroid on X . The
category of finitely generated gradedmodules of the Rees algebra D̃ has a natural quotient
category PD which imitates the category of modules on Proj of a graded commutative ring.
We show that the derived category Db(PD ) is equivalent to the derived category of finitely
generated modules of a sheaf of algebras E on X which is coherent over X . This generalizes
the usual Beilinson equivalence for projective space, and also the Beilinson equivalence for
differential operators on a smooth curve used by Ben-Zvi and Nevins in [6] to describe the
moduli space of left ideals inD .

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

So as to appeal to a wider audience, the main theoremwill be outlined in the specific case of differential operators. Then,
the context will be expanded to the more general setting of Lie algebroids.

1.1. Main theorem: Differential operators

Let X be a smooth irreducible affine variety over C of dimension d, and let D be the ring of (algebraic) differential
operators on X . The ring D is a deformation of SymXT , which is the ring of regular functions on the cotangent bundle
of X . Therefore, one strategy to study D-modules is to take known methods for studying SymXT -modules and see if they
can be extended.
A useful technique in the study of vector bundles on a variety is to compactify them fiberwise to get a Pn-bundle over

X and then use more powerful tools on Pn than are available in the affine case. One such powerful tool is the Beilinson
equivalence, which says that the derived category of coherent sheaves on Pn is equivalent to the derived category of f.g.
modules of a certain quiver Qn. In the case of Pn-bundles, there is a similar derived equivalence to an algebra which is a
relative version of the quiver Qn. The purpose of this paper is to develop first the right notion of compactifying the algebra
D , and then to show there is an analog of the Beilinson equivalence.
The fiberwise compactification of SymXT is given by Proj( ˜SymXT ), where ˜SymXT is the Rees algebra ⊕i∈N(Sym

≤i
X T )t i,

and where t is a central variable. The algebraD has a natural filtration by the degree of the operator, so we can define the
Rees algebra D̃ := ⊕i∈ND it i. Unfortunately, there is no Proj(D̃), since D̃ is non-commutative.
However, there is an abelian category which imitates the category of coherent modules on Proj(D̃), the ‘non-

commutative projective geometry’ of Artin and Zhang [1]. Let gr(D̃) be the category of f.g. graded D̃-modules, and let
tors(D̃) denote the subcategory of gradedmodules non-zero in only finitelymany degrees. Then there is a quotient category
PD := gr(D̃)/tors(D̃), with quotient functor π . We regard this category as the category of coherent modules on the ‘non-
commutative space’ Proj(D̃).

E-mail address: gpm23@cornell.edu.

0022-4049/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.jpaa.2010.02.016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82133571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jpaa
http://www.elsevier.com/locate/jpaa
mailto:gpm23@cornell.edu
http://dx.doi.org/10.1016/j.jpaa.2010.02.016


G. Muller / Journal of Pure and Applied Algebra 214 (2010) 2124–2143 2125

Define the object T := ⊕di=0πD̃(−i) ∈ PD , where (−i) denotes a shift in the grading. Then, for any M ∈ Db(PD),
RHomPD (T ,M) is a (derived) right HomPD (T , T )-module.
It is not hard to show that the algebra E := HomPD (T , T )

op is given by
OX D1 D2

· · · Dd

0 OX D1
· · · Dd−1

0 0 OX · · · Dd−2

...
...

...
. . .

...
0 0 0 · · · OX


where matrix multiplication is defined by the mapsDn

⊗Dm
→ Dn+m. Therefore, RHomPD (T ,−) defines a functor from

Db(PD) to Db(mod(E)), wheremod(E) is the category of sheaves of f.g. left E-modules.
Main Theorem (The Beilinson Equivalence for Differential Operators). The functor RHomPD (T ,−) : D

b(PD) → Db(mod(E))
is an equivalence of triangulated categories.
The proof is in two parts. The first is to show that every object in Db(PD) can be resolved by summands of T ; this will

follow from developing an OX -relative version of Koszul duality theory. The second is to show that Ext iPD
(T , T ) = 0 for all

i > 0. This will establish T as a compact generator of PU with derived endomorphism algebra E, and the theoremwill follow
from the usual tilting theorems in this case.
The chief advantage of this result is that it relates the representation theory of D to the representation theory of E, an

algebra which is finitely generated overOX , and is much easier to study. This idea was used by Ben-Zvi and Nevins [6] when
X is a curve to relate isomorphism classes of left ideals inD to specific collections of data in Db(mod(X)). This was used to
characterize the moduli space of such ideals, generalizing earlier results of Berest and Wilson [4,5].

1.2. The main theorem: Lie algebroids

Lie algebroids are a simultaneous generalization of rings of differential operators and of Lie algebras. Studying them
can be very useful for understanding those aspects of the representation theory of Lie algebras which have an analogous
statement for the representation theory of differential operators. However, there are many interesting Lie algebroids which
are neither Lie algebras nor differential operators.
A Lie algebroid L on X is a coherentOX -modulewhich is also a sheaf of Lie algebras, togetherwith amap (the anchormap)

τ : L→ TX which is a map ofOX -modules and of sheaves of Lie algebras.1 However, instead of the bracket on L commuting
with the OX multiplication, it fails to commute in a way controlled by the anchor map: [l, fl′] = f [l, l′] + dτ(l)(f ) · l′, where
l, l′ ∈ L, f ∈ OX and dτ(l)(f ) is the directional derivative of f along the vector field τ(l). For an introduction to Lie algebroids,
see Section 2.3 or Mackenzie’s book [13].
Note that TX itself is a Lie algebroid with the identity map as anchor, and it is via this Lie algebroid that this section

generalizes the previous section. From now on, we will require that L is locally-free as a OX -module (which TX is), and its
rank will be denoted by n.
L has a notion of a representation on a OX -module, and there is a corresponding universal enveloping algebraUXL. For

L = TX , the enveloping algebra is the ring of differential operatorsD .UXL has a natural filtration, and the Rees algebra ŨXL
can be defined as the graded algebras⊕i∈NUi

XL · t
i, where t is a central variable. The categories gr(ŨXL), tors(ŨXL), and PU

all have identical definitions to the previous case.
Let T := ⊕ni=0π(UXL(−i)). The algebra E := HomPU(T , T )

op is
OX U1

XL U2
XL · · · Un

XL
0 OX U1

XL · · · Un−1
X L

0 0 OX · · · Un−2
X L

...
...

...
. . .

...
0 0 0 · · · OX

 .
Then the functor RHomPU(T ,−) goes from D

b(PU) to Db(mod(E)).

Main Theorem (The Beilinson Equivalence for Lie Algebroids). The functor RHomPU(T ,−) : D
b(PU) → Db(mod(E)) is an

equivalence of triangulated categories.
It is this theorem that will actually be proved; it will specialize to the first main theorem in the case of L = TX . However,

this generality allows other interesting corollaries, some ofwhichwere alreadywell known. The Beilinson equivalence forPn
and for Pn-bundles is reproved (but not in a substantially different way), as well as a Beilinson equivalence for the quantum
spaces of Lie algebras introduced by Le Bruyn and van den Bergh in [12]. Section 6 addresses these examples, as well as some
applications of this theorem.

1 Here and throughout the paper, TX or T will denote the tangent bundle of X over C, which is the same as the module of C-linear derivations on OX .
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The techniques of this paper can also be readily applied to a wider array of examples than this paper covers (Section 6.4
describes what properties of Ũ are necessary to make the main theorem work). It should also be noted that the results of
this paper hold in the case of non-affine X , provided the Beilinson functor is defined correctly. The necessary proofs for this
are contained in Appendix B.

1.3. Outline of the paper

Section 2 contains (without proof) the basics of Lie algebroids and non-commutative projective geometry which will be
used throughout the paper. Section 3 is a rather technical tangent which builds up the notion of tensor product in non-
commutative projective geometry, far enough to define Fourier–Mukai transforms. Section 4 develops the Koszul theory of
Ũ and produces several kinds of canonical resolutions. Section 5 contains the proof of themain theorem. Section 6 concludes
the body of the paper by outlining some basic examples of interest, some quick applications, and explores how the scope of
the theorem can be generalized. Appendix A collects several important computations regarding the quadratic dual algebra
Ũ⊥, which are necessary for certain proofs. Appendix B deals with the case of non-affine X , as well as proving the naturality
of the constructions in this paper with respect to localization.

2. Preliminaries

2.1. Notation for graded modules

First, let us fix some notation. Let A be a graded algebra, and let M be a graded left A-module. Let M(i) denote the nth
shifting functor, so that [M(i)]j = Mi+j. If N is a graded left A-module, then HomGr(M,N)will denote the degree zero maps
from M to N , while HomA(M,N) will denote ⊕i∈ZHom(M,N(i)). If N is a graded right A-module, then N⊗AM will denote
the graded tensor, which is a graded vector space, while N }A M will denote (N ⊗A M)0, the degree zero part.

2.2. Non-commutative projective geometry

If A is a non-commutative algebra, then there is no general consensus as to what sort of object Spec(A) should be, or even
if can exist at all. However, instead of trying to build a locally ringed space to call Spec(A), we can simply work with the
category Mod(A), thought of as the category of quasi-coherent sheaves on the non-existent Spec(A). Since most questions
one might ask about a scheme can be restated as a question about its category of modules, this allows many questions of a
geometric flavor to be answered.
Now, ifA is a positively-graded algebra,we can similarly bypass the need for a space Proj(A) and instead concern ourselves

with its category of modules. We use the projective Serre equivalence as a recipe for what this category should be. Let
Gr(A) be the category of graded left A-modules, and let Tors(A) be the full subcategory of modules such that, for every
m ∈ T ∈ Tors(A), A≥n · m = 0 for some n. Let gr(A) denote the category of finitely generated graded left modules, and
tors(A) := gr(A) ∩ Tors(A). If A is commutative, then the category of quasi-coherent sheaves on Proj(A) is equivalent to the
quotient category P̂A := Gr(A)/Tors(A), while the category of coherent modules is equivalent to PA := gr(A)/tors(A).
For not-necessarily commutative A, we will think of P̂A := Gr(A)/Tors(A) as the category of quasi-coherent modules on

the undefined space Proj(A). This perspective was first put forward by Artin and Zhang in [1]. We collect the necessary facts
about P̂A below without proofs, with their page listings in [1].

• The shifting functor descends to a functor on P̂A, and so HomP̂A is well defined.
• (pg. 235) P̂A has enough injectives.
• (pg. 234) The quotient functor π : Gr(A)→ P̂A is exact.
• (pg. 234) The functor π has a right adjoint ω : P̂A → Gr(A)which is left exact. Because

ω(M) = HomGr(A)(A, ω(M)) = HomP̂A(πA,M)

ω(M) should be regarded as the ‘graded global section functor’. In this vein, Riω(M) is the analog of the ith graded
cohomology ofM .
• (pg. 234) πω(M) = M .
• (pg. 234) If A is left noetherian, then ωπ(M) = lim→ HomGr(A)(A≥n,M).
• (pg. 233) Every moduleM ∈ Gr(A) has a maximal submodule τ(M) in Tors(A). It can be explicitly defined by

τ(M) := lim
→
HomGr(A)(A/A≥n,M)

where the left A-module structure on τ(M) comes from the right A-module structure on A/A≥n. It is a left exact functor,
and its derived functors Riτ(M) coincide with the ith local cohomology ofM at the ideal A≥1, at least when A is generated
in degree 0 and 1.



G. Muller / Journal of Pure and Applied Algebra 214 (2010) 2124–2143 2127

• (pg. 241) The defining inclusion τ(M) ↪→ M and the adjunction mapM → ωπ(M) fit together to give an exact triangle
in D(Gr(A)):

Rτ(M)→ M → Rωπ(M)→ Rτ(M)[1].

In particular, we have an exact sequence

0→ τ(M)→ M → ωπ(M)→ R1τ(M)→ 0

and natural equivalences Riωπ(M) ' Ri+1τ(M) for i ≥ 1.
• (pg. 243) A module M ∈ Gr(A) is said to satisfy the χi-condition if, for all d and all j ≤ i, there is an n0 such that for all
n ≥ n0, Ext iGr(A)(A/A≥n,M)≥j is a finitely generated A-module.M has the χ-condition if it satisfies χi for all i.
• (pg. 273) (Serre Finiteness) Let A be left noetherian and satisfy χ , and let M ∈ gr(A). Then, for all i ≥ 1, Riωπ(M)d is a
finitely generated A0-module for all d, and is zero if d is sufficiently large.

In the case of A left noetherian, there is a more useful definition of Rωπ(M).

Lemma 2.2.1. Let A be left noetherian. For M ∈ Gr(A), there is an isomorphism in D(Gr(A)):

Rωπ(M) ' Rωπ(A)⊗LAM.

Proof. This follows immediately from the isomorphisms RHomGr(A)(A≥n,M) ' RHomGr(A)(A≥n, A)⊗
L
AM . �

Applying this forM = Rωπ(A),

Corollary 2.2.1. There is an isomorphism in the derived category:

Rωπ(A)⊗LARωπ(A) ' Rωπ(Rωπ(A)) = Rωπ(A).

2.3. Lie algebroid basics

The study of Lie algebroids comes from the infinitesimal study of Lie groupoids.2 However, much like Lie algebras, Lie
algebroids are intrinsically interesting, even without a corresponding Lie groupoid in mind. For a more detailed reference,
consult [13].
An (algebraic) Lie algebroid on X is an OX -module Lwith

• a Lie bracket on Lwhich makes it into a Lie algebra.
• an anchor map, an OX -module map τ : L→ T .

The bracket and theOX -module structure on L are not necessarily compatible in the simplest way3; instead, the bracket and
the OX -multiplication satisfy the relation:

[l, al′] = a[l, l′] + dτ(l)(a) · l′.

One consequence of this relation is that OX ⊕ L becomes a Lie algebras by the bracket [(r, l), (r ′, l′)] = (dτ(l)(r ′) −
dτ(l′)(r), [l, l′]). In this paper, the only Lie algebroids which will be considered are those such that L is a locally-free coherent
OX -module; this will be assumed from here on.
A Lie algebroid comes with instructions on how to commute two sections of L past each other (the bracket) and how to

commute sections of L past sections of OX (the anchor). This naturally leads to the consideration of the universal algebra
generated by L and OX which obey the given commutation relations. Let UXL be the quotient of the universal enveloping
algebra of the Lie algebraOX ⊕ L by the relations (1, 0) = 1 and (a, 0)⊗ (a′, l) = (aa′, al) (1 the unit, a ∈ OX , and l ∈ L); this
is called the universal enveloping algebra of L. The algebraUXL is the central object of study in this paper; for simplicity,
it will be denotedUwhen X and L are clear.

OX has a canonical structure of a leftU-module, by the action a · a′ = aa′ and l · a = dτ(l)(a) for a, a′ ∈ OX and l ∈ L. The
‘action on 1’ mapU → OX which sends σ to σ · 1 is a leftU-module map which presents OX as a quotient ofU as a left
module over itself. Note however, that there is no canonical rightU-module structure on OX .

U is naturally filtered by letting the image of OX be degree 0 and the image of L be degree 1. The subspace U1 is a
(not-necessarily central) OX -bimodule which fits into a short exact sequence of OX -bimodules:

0→ OX → U1
→ L→ 0.

2 Hence the name. It has nothing to do with objects that are more properly called algebroids (at least not when these were named); it is a pun on
‘groupoid’.
3 The simplest way would be that each are defined arrow-theoretically in the category of the other; this would be an OX -Lie algebra. They correspond
to Lie algebroids with trivial anchor map.
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The Rees algebra Ũ is the graded algebra defined as ⊕i∈NUi
· t i, where t is a central element. The Rees algebra has the

property that Ũ/(t − 1) = U. It can also be defined directly as a quotient of the tensor algebra TXU1 by the relation
∂ ⊗ ∂ ′ − ∂ ′ ⊗ ∂ = [∂, ∂ ′] ⊗ t , where ∂, ∂ ′ ∈ U1 and t denotes 1 ∈ OX ⊂ U1 (as opposed to the unit of the algebra).

Ũ/t is equal toU, the associated graded algebra ofUwhich is usually defined as⊕i∈NUi/Ui−1. Because the commutator
of a degree i element and a degree j element inU is of degree at most i + j − 1, the algebraU is commutative. In fact,U
is isomorphic to SymXL, the symmetric algebra generated by L (this is the PBW theorem for Lie algebroids). This is also
isomorphic to f ∗(OL∗), the total space of the dual bundle to L pushed forward along the bundle map f : L∗ → X .
A nice consequence of the PBW theorem for Lie algebroids is that Ũi is projective and finitely generated as both a left

and right OX -module (though not as a bimodule). This is because Ũi/Ũi−1
= U

i is f.g. projective, and so Ũi has a finite
composition sequence consisting entirely of f.g. projectives. As a consequence, Ũ satisfies the χ-condition, and so Riωπ(M)j
is a finitely generated OX -module for all i and j, as long asM is finitely generated as a Ũ-module.

3. Tensoring and Fourier–Mukai transforms

We need to generalize an important technique from commutative projective geometry to the non-commutative setting;
that of the Fourier–Mukai transform. Let X be a scheme, and let K be any module on X × X , or more generally any derived
object inDb(Mod(X×X)) (equivalently,K is a derivedOX -bimodule). Given anyM ∈ Db(Mod(X)),K⊗LXM ∈ D

b(Mod(X×X)),
and so it can be pushed forward along the projection p1 : X×X → X onto the first factor to giveRp1∗(K⊗LXM) ∈ D

b(Mod(X)).
The functor M → Rp1∗(K ⊗LX M) is called the Fourier–Mukai transform of K . These have been studied extensively, for
references check [8].

3.1. Tensor products

For A a positively-graded algebra, the categories Gr(A) and gr(A) don’t have a tensor product in the sense of a bifunctorial
map Gr(A)× Gr(A)→ Gr(A). The tensor product here is a bifunctorial map⊗A : Gr(Aop)× Gr(A)→ Gr(C). Subsequently
taking the degree zero part gives a map }A : Gr(Aop)× Gr(A)→ Vect .
Naively, one would hope that this descends to some kind of map }A : P̂Aop × P̂A → Vect . However, for this to descend to

a map on quotient categories, we would need that T}AM = M ′}AT ′ = 0 for T ∈ Tors(Aop) and T ′ ∈ Tors(A). This is just not
true; take, for example, A0}AA or A}AA0, which are both isomorphic to A0 as a vector space.
So, instead of trying to push the multiplication forward along π , we can pull the multiplication back along ω. Given

πM ∈ P̂Aop and πN ∈ P̂A, define

πM}AπN := ωπM}AωπN = (ωπM⊗AωπN)0.

As a combination of left and right exact functors, this will not in general be a left or right exact bifunctor. Nonetheless, the
natural related derived construction is (RωπM⊗LARωπN)0 (for πM ∈ D

b(̂PAop) and πN ∈ Db(̂PA)).

3.2. The category of quotient bimodules

The point of these tensoring constructions is to be able to define the Fourier–Mukai transforms on this category; however,
we still need to know where the kernels of the transforms live. Let Ae := A ⊗ Aop, which has the property that Aop-
modules are the same as A-bimodules; note that it is a bigraded algebra. LetGr(Ae) be the category of bigraded Ae-modules,
which is the same as the category of bigraded A-bimodules. Let Tors(Ae) be the subcategory of Gr(Ae) such that, for every
m ∈ T ∈ Tors(Ae), there is some n such that A≥nmA≥n = 0. Let PAe denote the quotient category Gr(Ae)/Tors(Ae).

PAe satisfies all the same properties that were listed for P̂A, or at least analogous properties.4 The only difference is the
structure of the functors ω and τ , which may be given by (where Hom now denotes a bigraded Hom)

ωπ(M) := lim
n→
HomGr(Ae)(A≥n ⊗ A≥n,M)

τ (M) := lim
n→
HomGr(Ae)((A⊗ A)/(A≥n ⊗ A≥n),M).

In certain nice cases, the derived functor Rωπ has a more useful definition.

Lemma 3.2.1. Let A be left and right noetherian. For M ∈ Gr(Ae), there is an isomorphism in D(Gr(Ae)):

Rωπ(M) ' Rωπ(A)⊗LAM⊗
L
ARωπ(A).

Proof. Consider the directed system A≥m ⊗ A≥m′ , as m and m′ run over the integers, with the maps being the natural
inclusions. This directed system has a sub-directed system A≥n ⊗ A≥n which is coinitial, in the sense that any object

4 The key properties that make this work are that Tors(Ae) is a dense subcategory, every object in Gr(Ae) has a maximal torsion-submodule, and that
Gr(Ae) has enough injectives. See [1] pg. 234, or [14] Sect. 4.4.
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A≥m ⊗ A≥m′ has a surjection from some A≥n ⊗ A≥n (for instance, n = min(m,m′)). Therefore, there is an isomorphism
of direct limits:

lim
n→
RHomGr(Ae)(A≥n ⊗ A≥n,M) ' limm→

lim
m′→
RHomGr(Ae)(A≥m ⊗ A≥m′ ,M).

By adjunction, this second RHom becomes

lim
m→
lim
m′→
RHomGr(A)(A≥m,RHomGr(Aop)(A≥m′ ,M))

= lim
m→
lim
m′→
RHomGr(A)(A≥m, A)⊗

L
ARHomGr(Aop)(A≥m′ ,M)

= lim
m→
lim
m′→
RHomGr(A)(A≥m, A)⊗

L
AM⊗

L
ARHomGr(Aop)(A≥m′ , A).

The last two equalities use that A≥m is noetherian as a left and right A-module. This final expression is then equal to
Rωπ(A)⊗LAM⊗

L
ARωπ(A). �

3.3. Fourier–Mukai transforms

Now, given any object K ∈ Db(Gr(Ae)), define the derived functor FK on Db(̂PA) by:
FK (πM) := π(Rωπ(K)⊗LARω(πM))•,0.

This has a simpler form for nice A.
Lemma 3.3.1. If A is left and right noetherian, then

FK (πM) = π(K }LA Rωπ(M)) = π(Rωπ(K) }
L
A M).

Proof. By Lemma 3.2.1 and Lemma 2.2.1, this is equal to
π(Rωπ(A)⊗LAK⊗

L
ARωπ(A)⊗

L
ARωπ(A)⊗

L
AM)•,0.

By Corollary 2.2.1, this is
π(Rωπ(A)⊗LAK⊗

L
ARωπ(A)⊗

L
AM)•,0. (1)

Applying Lemma 2.2.1 twice and using that πRωπ = π , this is equal to
π(Rωπ(A)⊗LAK⊗

L
ARωπ(M))•,0 = π(Rωπ(K ⊗

L
A Rωπ(M))) = π(K }

L
A Rωπ(M)).

Instead, we could apply Lemma 3.2.1 to Eq. (1) to get
π(Rωπ(K)⊗LAM)•,0 = π(Rωπ(K) }

L
A M).

This concludes the proof. �
Given any exact triangle A → B → C → A[1] in Db(Gr(Ae), there is an associated exact triangle of functors

FA → FB → FC → FA[1], in the sense that for any πM ∈ Db(QGr(Ae)), there is an exact triangle:
FA(πM)→ FB(πM)→ FC (πM)→ FA(πM)[1].

Therefore, a functor FK may be resolved by other, simpler functors by resolving πK into simpler objects in Db(Gr(Ae)).

3.4. The identity functor as a Fourier–Mukai transform

Even the identity functor on Db(̂PA) arises as a Fourier–Mukai transform. Let ∆̃ be the bigraded A-bimodule such that
∆̃i,j = Ai+j, where Ak = 0 in negative degrees. ∆̃ has the property that ∆̃ }A M = (∆̃⊗AM)•,0 = M for allM ∈ Gr(A). As an
immediate corollary, ∆̃ is flat as a right A-module. If A is noetherian, the Fourier–Mukai transform F∆̃(M) isπ(∆̃}ARω(M)),
which is π(Rω(M)) =M. Therefore, F∆̃ is the identity functor.
However, ∆̃ is not the only object in Gr(Ae) whose corresponding Fourier–Mukai transform is the identity. After all, all

that matters is the image under π in PAe . Let ∆ be the bigraded A-bimodule such that ∆i,j = Ai+j when i ≥ 0 and j ≥ 0,
and zero otherwise. There is a natural inclusion ∆ ↪→ ∆̃, and (∆̃/∆)i,j = 0 if i ≥ 0 and j ≥ 0. ωπ(∆̃/∆) = 0, and so
π(∆) = π(∆̃). Then, the Fourier–Mukai transform F∆ is also the identity.
The point of this is now that producing a resolution of ∆ in Gr(Ae) will give a resolution of the identity, which in turn

will give a resolution of any object.

4. Koszul duality for Lie algebroids

The goal now is to show that any object in PU can be resolved by sums of objects of the form πŨ(−i), for 0 ≤ i ≤ d. This
will be accomplished by developing the Koszul theory for the algebraU over X . The two main results of this will be:

• A canonical projective resolution of OX as a left Ũ-module, called the left Koszul resolution.
• For any πM ∈ QGr(Ũ), a projective resolution of πM , called the Beilinson resolution.



2130 G. Muller / Journal of Pure and Applied Algebra 214 (2010) 2124–2143

The key observation is that the definition of the universal enveloping algebra gives a surjective map TXU1
→ Ũ, whose

kernel is generated by elements of degree 2 in TXU. A relatively quadratic algebra over X is an algebrawith a surjectivemap
from TXB for some OX -bimodule B, whose kernel is generated in degree 2. The motivating case is that of quadratic algebras
over Spec(C) (the non-relative case), where there is an elaborate theory of Koszul resolutions and duality. This section is an
extension of those techniques to the current setting.

4.1. The quadratic dual algebra

Let R be theOX -bimodule which is the kernel of the mapU1
⊗X U1

→ U2. Note that R is the degree 2 part of the kernel
of TXU1

→ Ũ, which generates the whole kernel as a two-sided ideal. By the definition of the universal enveloping algebra,
this is the OX -bimodule generated by ∂ ⊗ ∂ ′ − ∂ ′ ⊗ ∂ − [∂, ∂ ′] ⊗ 1 for ∂, ∂ ′ ∈ U1.
From now on, for M any right OX -module, let M∗ denote the left OX -module Hom−X (M,OX ) (as right OX -modules)5;

analogously, forM any left OX -module, let ∗M denote the right OX -module HomX−(M,OX ). WhenM is a OX -bimodule,M∗
and ∗M are also OX -bimodules, which are potentially non-isomorphic.
Let J i be ∗(Ui) , which is called the bimodule of i-jets. Since the Ui are finitely generated and projective as right OX -

modules, there is an isomorphism ∗(U1
⊗X U1) ' ∗(U1)⊗X

∗(U1) ' J1 ⊗X J1. The mapU1
⊗X U1

→ U2 then induces
an inclusion J2 ↪→ J1⊗X J1, which can be characterized as the subset of rightOX -module mapsU1

⊗X U1
→ OX which kill

R ⊂ U1
⊗X U1.

Now, let Ũ⊥ denote the quotient of the tensor algebra TX J1 by the two-sided ideal generated by J2 as sitting inside the
degree 2 part. The algebra Ũ⊥ is called the Koszul dual, or the quadratic dual algebra.6 In Appendix A.2, it is shown that
Ũ⊥ = Ext•

Ũ−
(OX ,OX ), where Ext is the graded Ext; arguably, this is where it draws all its important properties.

Appendix A contains proofs of several interesting results about Ũ⊥; however, we only need the following facts.

• (Corollary A.1.1) For all i, Ũ⊥i is finitely generated projective as a left and right OX -module.
• (Corollary A.1.2) For i > n+ 1 or i < 0, Ũ⊥i = 0.
• (Corollary A.1.3) Let ωL be ΛnXL

∗, the top exterior power of the dual to L. Then (Ũ⊥i)∗ = ω∗L ⊗X Ũ⊥(n+1−i) and
∗(Ũ⊥i) = Ũ⊥(n+1−i) ⊗X ω

∗

L .

4.2. The left Koszul complex

The Koszul dual algebra now lets us construct a canonical resolution of the left Ũ-module OX , which will be important
for the coming steps.
The multiplication mapmŨ⊥ : Ũ

⊥i−1
⊗X J1 → Ũ⊥i induces a right dual map

m∨
U⊥
: (Ũ⊥i)∗ → (Ũ⊥i−1 ⊗X J1)∗ ' (J1)∗ ⊗X (Ũ⊥i−1)∗ ' U1

⊗X (Ũ
⊥i−1)∗.

Define a composition map,

ki : Ũ(−i)⊗X (Ũ⊥i)∗ → Ũ(−i)⊗X U1
⊗X (Ũ

⊥i−1)∗ → Ũ(−i+ 1)⊗X (Ũ⊥i−1)∗

where the first map is the abovemapm∨
U⊥
, and the secondmap is themultiplicationmapmU : Ũ(−i)⊗XU1

→ Ũ(−i+1).
Let K i(X,L) (or K

i when X and L are clear) denote the left Ũ-module Ũ(−i)⊗X (Ũ⊥i)∗. Note that K i = 0 if i < 0 or i > n+ 1.

Theorem 4.2.1. The map ki : K i → K i−1 makes K • into a complex of left Ũ-modules called the left Koszul complex.

Proof. The square of the Koszul boundary, k2, ismUm∨U⊥mUm∨U⊥ . However, the middle two maps can be commuted, since
they involve disjoint terms in the tensor product. Therefore, k2 = (mU)

2(m∨
U⊥
)2, which is the composition

Ũ(−i)⊗X (Ũ⊥i)∗ → Ũ(−i)⊗X U1
⊗X U1

⊗X (Ũ
⊥i−2)∗ → Ũ(−i+ 2)⊗X (Ũ⊥i−2)∗.

The map (m∨
U⊥
)2 is the map

HomX−(Ũ⊥i,OX )→ HomX−(Ũ⊥i−2 ⊗X J1 ⊗X J1,OX )

right dual to multiplication. Everything in the image of this map necessarily kills Ũ⊥i−2 ⊗X J2 ⊂ Ũ⊥i−2 ⊗X J1 ⊗X J1, which
translates to the image of (m∨

U⊥
)2 being contained in R⊗X (Ũ⊥i−2)∗. Then, it is clear that the multiplication map (mU)

2 kills
anything in Ũ(−i)⊗X R⊗X (Ũ⊥i−2)∗. Therefore, k2 = 0. �

5 Hom−X will denote the Hom as right OX -modules, when there is also a left OX -structure. Similarly, HomX− will denote the Hom as left OX -modules.
6 Note that we have made an asymmetric choice, in looking at the dual of U1 as a left OX -module, rather than as a right OX -module. Then, perhaps,
this should be called the left Koszul dual. This choice was motivated by the fact that J1 has much nicer properties than (U1)∗ , which results in a nicer
presentation of Ũ⊥ . However, the right Koszul dual algebra would still have been sufficient for the purposes of this paper.
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The construction of the left Koszul complex commutes with localization in the natural way, as per the following lemma.

Lemma 4.2.1. Let X ′ ⊂ X be an open subscheme of X, and L′ the localization of L. Then the left Koszul complex K •
(X ′,L′) of the Lie

algebroid (X ′, L′) is equal to the localization of the left Koszul complex K •(X,L).

Proof. This is Lemma B.2.1 in the Appendix. �

We are finally ready for the most meaningful fact about the Koszul complex, that it resolves OX as a left Ũ-module.

Theorem 4.2.2. The natural quotient map K 0 = Ũ→ OX makes K • into a resolution of OX ; that is, the complex K • is exact in
positive degrees, and its cohomology in degree zero is exactly the image of the augmentation map.

Proof. The strategy of the proof will be a succession of cases of increasing generality.

• X = Spec(k) (k a field), L abelian. This is the classical case of Koszul duality for SymkL andΛkL. A proof can be found in
[15], page 114.
• X a regular local ring, L abelian.BecauseX is local, Lbeing projective implies that it is free, specifically that L = OX⊗kL/m
where k is the residue field. The Rees algebra Ũ is isomorphic to the symmetric algebra SymXL = OX ⊗k SymkL/m. The
quadratic dual algebra Ũ⊥ is then the corresponding exterior algebra AltXL∗ = OX ⊗k AltkL∗/m. The left Koszul complex
K •(X,L) is thenOX ⊗k K •(Spec(k),L/m), where L/m is the Lie algebroid restricted to the residue field k. Since the theorem is true
for K •(Spec(k),L/m) by the previous case, it is then true here.
• X arbitrary, L abelian. Let π : Xp → X be the localization at some prime p, and let Lp = π∗L. By the lemma before the
theorem, π∗K •(X,L) = K

•

(Xp,Lp). Since localization is exact, we have that

π∗H i
(
K •(X,L)

)
= H i

(
π∗K •(X,L)

)
.

The two facts together imply thatπ∗H i
(
K •(X,L)

)
= H i

(
K •(Xp,Lp)

)
. The previous case of the theorem implies that this second

group vanishes for i > 0, and is isomorphic to OXp for i = 0. Since this fact is true at any prime p, it is true everywhere,
and so the theorem is true.
• X arbitrary, L arbitrary. Consider a family of Lie algebroids (X, Lh̄), h̄ ∈ C, where the bracket [−,−]h̄ := h̄[−,−] and
τh̄ := h̄τ . In this notation, L1 is the original Lie algebroid, and L0 is the Lie algebroid with zero bracket and anchor. Notice
that, for h̄ 6= 0, the Lie algebroid Lh̄ is isomorphic to L = L1, by the scaling map l → h̄−1l for l ∈ L. Therefore, the
Koszul complex K •(X,Lh̄) with parameter h̄ is isomorphic to K

•

(X,L) away from h̄ = 0. By the previous case of the theorem,
the theorem is true for L0. Since the cohomology must be constant in some neighborhood of h̄ = 0 and the complexes
are isomorphic for all other h̄, the theorem is true for all h̄, in particular h̄ = 1. �

SinceU⊥i is a f.g. projective rightOX -module, then (U⊥i)∗ is a f.g. projective leftOX -module. Therefore, K i is a projective
left Ũ-module, and the left Koszul resolution is a projective resolution of OX as a Ũ-module.
There is also a right Koszul complex K •right whose terms are (Ũ

⊥i)∗ ⊗X Ũ(−i), with boundary right dual to the
multiplication map U1

⊗X Ũi−1
→ Ũi. This is again a projective resolution of OX , this time as a right Ũ-module. The

proofs are analogous.

4.3. The Koszul bicomplex

The next step is to combine the left and right Koszul complexes into a Koszul bicomplex, which can then be used to
extract a resolution of the diagonal.
Let Ki,j be the Ũ-bimodule Ũ(−i) ⊗X (Ũ⊥(i+j))∗ ⊗X Ũ(−j). The left Koszul boundary map acts on the first two terms,

and sends Ki,j to Ki−1,j; the right Koszul boundary map acts on the last two terms, and sends Ki,j to Ki,j−1.

Lemma 4.3.1. These two boundary maps, kleft and kright , makeKi,j into a bicomplex of Ũ-bimodules called theKoszul bicomplex
(making sure to obey the Koszul sign rule for commuting odd-degree maps).

Proof. It is immediate that the two boundaries square to zero themselves. Thus, all that remains to check is that (kleft+kright)
squares to zero, which by the Koszul sign rule is equivalent to kleft and kright commuting.
Since multiplication in Ũ⊥ is associative, the multiplication map J1⊗X Ũ⊥i−2⊗X J1 → Ũ⊥i doesn’t depend on the order

of multiplication. Dualizing gives the desired fact that kleft and kright commute. �

The terms of the Koszul bicomplex are bigraded Ũ-bimodules, and so an element in this complex can have a graded
bidegree (it’s bigrading as a Ũ-bimodule) as well as a homological bidegree (which term of the bicomplex it is in). The
space of elements with graded bidegree (p, q) and homological bidegree (i, j) will be denoted Ki,jp,q, and it is equal to
Up−i
⊗X (Ũ

⊥(i+j))∗ ⊗X Uq−j.
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4.4. The resolution of the diagonal

We can now produce a resolution of the diagonal. Define the complexK∆ to be such thatK i
∆ = ker(dr : K

i,0
→ Ki,−1),

together with the boundary dl inherited from K. Because K0,−1 = 0, we have thatK0
∆ = K0,0 = Ũ⊗X Ũ.

Recall from the previous section the diagonal object∆ ∈ Gr(Ũe), a bigraded Ũ-bimodule. There is a canonical surjection
Ũ⊗X Ũ→ ∆, which in bidegree (p, q) is the multiplication mapUp

⊗X Uq
→ Up+q.

Theorem 4.4.1. The canonical surjectionK∆ → ∆ makesK∆ into a resolution of ∆. Accordingly, the complexK∆ is called a
resolution of the diagonal.

Proof. First, we show that the mapK0
∆ → ∆ gives an augmentation of the complex; that is, it kills the image ofK1

∆ inK0
∆.

By definition,K1
∆ is the kernel of

Ũ(−1)⊗X U1
⊗X Ũ→ Ũ(−1)⊗X Ũ(1).

This map is given by multiplying the last two terms. However, since the composition map K1
∆ → K0

∆ → ∆ is given by
multiplying all the terms ofK1

∆ together, and because multiplication inU is associative, this composition must be zero.
Now, define the truncated Koszul bicomplex K̂i,j to be equal to Ki,j when j ≥ 0, and 0 otherwise. For a fixed graded

bidegree (p, q), the term K̂i,jp,q vanishes for i > p, j > q or i+ j < 0. Therefore, in any fixed graded bidegree, the bicomplex K̂
is bounded. This means that both the horizontal-then-vertical spectral sequence and the vertical-then-horizontal spectral
sequence converge to total cohomology of K̂.
Taking horizontal cohomology first, the rows are all right Koszul complexes tensored with Ũ, and so we get

E i,j1 =
{
Ũ(j)⊗X OX (−j) if j = −i ≥ 0

0 otherwise

}
.

Therefore, the spectral sequence collapses on the first page, and we have

H0(Tot(K̂)) =
∞⊕
j=0

Ũ(j)⊗X OX (−j), H 6=0(Tot(K̂)) = 0.

Taking vertical cohomology first, the rows are either left Koszul complexes tensored with Ũ, or they are left Koszul
complexes which have been brutally truncated. Therefore,

E i,j1 =

OX (j)⊗X Ũ(−j) if j = −i ≥ 1
K i
∆ if i ≥ 0, j = 0
0 otherwise

 .
Therefore, the spectral sequence collapses on the second page, and we have

H0(Tot(K̂)) = H0(K∆)⊕

(
∞⊕
j=1

OX (j)⊗X Ũ(−j)

)
, H i6=0(Tot(K̂)) = H i(K∆).

Comparing the two results,K∆ is exact outside degree zero, and we have that

H0(K∆)⊕

(
∞⊕
j=1

OX (j)⊗X Ũ(−j)

)
=

∞⊕
j=0

Ũ(j)⊗X OX (−j).

Looking in graded bidegree (p, q), we have that H0(K∆) = Up+q if and only if p, q ≥ 0. Therefore, the map H0(K∆)→ ∆

induced by the augmentation is an isomorphism. �

The power of this theorem comes from the structure ofK∆. To see this structure, defineΩ iR to be the kernel of the i-th
boundary in the right Koszul complex:

dr : (Ũ⊥i)∗ ⊗X Ũ(−i)→ (Ũ⊥i−1)∗ ⊗X Ũ(−i+ 1).

Since Ũ⊥j = 0 for j > n+ 1,Ω jR = 0 for j > n. It is clear from the definition ofK∆ thatK i
∆ = Ũ(−i)⊗X Ω iR(i).

Corollary 4.4.1. The resolution of the diagonal then has the form:

∆← Ũ⊗X Ũ← Ũ(−1)⊗X Ω1R (1)← · · · ← Ũ(−i)⊗X Ω iR(i)← · · · ← Ũ(−n)⊗X ΩnR (n).

There is a mirror image version of this, whereK∆ is replaced by ker(dl : K0,i → K−1,i). Defining

Ω iL := ker
(
dl : Ũ(−i)⊗X (Ũ⊥i)∗ → Ũ(−i+ 1)⊗X (Ũ⊥i−1)∗

)
,

all the same arguments work to show that the following is also a resolution of the diagonal:

∆← Ũ⊗X Ũ← Ω1L (1)⊗X Ũ(−1)← · · · ← Ω iL(i)⊗X Ũ(−i)← · · · ← ΩnL (n)⊗X Ũ(−n).
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4.5. The Beilinson resolution

The resolution of the diagonal then gives a resolution for every object πM in QGr(Ũ).

Theorem 4.5.1. Every object π(M) ∈ QGr(Ũ) has a resolution of the form:

π
(
Ũ⊗LX Rωπ(M)0

)
← · · ·π

(
Ũ(−i)⊗LX

(
Ω iR(i) }

L
Ũ
Rωπ(M)

))
← · · · .

Proof. The resolution of the diagonal gives a complex of Fourier–Mukai transforms. Applying each of these to some
πM ∈ QGr(Ũ), we get

F∆(πM)← FŨ⊗X Ũ(πM)← · · · ← FŨ(−i)⊗XΩ iR(i)(πM)← · · · FŨ(−n)⊗XΩ
n
R (n)
(πM).

The first object is πM , by the design of∆. The Fourier–Mukai transform is

FŨ(−i)⊗XΩ iR(i)(πM) = π(Rωπ(Ũ(−i)⊗X Ω
i
R(i))⊗

L
Ũ
Rωπ(M))•,0.

By Lemma 3.2.1,

= π
(
Rωπ(Ũ)⊗L

Ũ

(
Ũ(−i)⊗LX Ω

i
R(i)

)
⊗
L
Ũ
Rωπ(Ũ)⊗L

Ũ
Rωπ(M)

)
•,0

which simplifies to

π
(
Rωπ(Ũ(−i))⊗LX

(
Ω iR(i) }

L
Ũ
Rωπ(M)

))
= π

(
Ũ(−i)⊗LX

(
Ω iR(i) }

L
Ũ
Rωπ(M)

))
. �

Note that
(
Ω iR(i) }

L
Ũ
Rωπ(M)

)
is a derived object in Db(Coh(X)). Since X is affine, every object in Coh(X) can be resolved

by copies of the structure sheaf OX . This means that Ũ(−i) ⊗LX
(
Ω iR(i) }

L
Ũ
Rωπ(M)

)
is quasi-isomorphic to a complex

consisting of copies of Ũ(−i). Therefore,

Corollary 4.5.1. Every object πM ∈ QGr(Ũ) has a resolution consisting of sums of the objects πŨ, πŨ(−1), . . . , πŨ(−n).

5. The Beilinson equivalence

The previous section proved that any πM ∈ PU has a finite resolution by finite sums of the objects πŨ, πŨ(−1), . . .
and πŨ(−n). Therefore, there is always a surjection T⊕i → πM for large enough i; and so T is called a generator for the
category PU. The next question is the structure of RHomPU(T , T ).

5.1. The relative Gorenstein property

The vanishing of the higher Ext ’s from T to itself will follow from the following property, which should be regarded as
relative version of the Gorenstein property for graded algebras. Recall that ωL := ΛnXL

∗.

Lemma 5.1.1 (The Relative Gorenstein Property).

Ext i
Ũ−
(OX , Ũ) =

{
ωL(n+ 1) i = n+ 1
0 otherwise.

Proof. Resolve OX by the left Koszul resolution K •. Using Corollary A.1.3, which says that (Ũ⊥i)∗ = ω∗L ⊗X Ũ⊥(n+1−i) and
∗(Ũ⊥i) = Ũ⊥(n+1−i) ⊗X ω

∗

L ,

HomŨ−(K
i, Ũ) = HomŨ−(Ũ(−i)⊗X (Ũ

⊥i)∗, Ũ)

= HomŨ−(Ũ(−i)⊗X ω
∗

L ⊗X Ũ⊥(n+1−i), Ũ)

= HomX−(ω∗L ⊗X Ũ⊥(n+1−i),OX )⊗X Ũ(i)

=
∗(Ũ⊥(n+1−i))⊗X ωL ⊗X Ũ(i)

= ωL ⊗X (Ũ
⊥(n+1−i))∗ ⊗X Ũ(i).

Since the dualitymap is adjoint to themultiplicationmap, the boundarymap on this complex is the right Koszul differential.
Therefore,

RHomŨ−(OX , Ũ) = ωL(n+ 1)[−n− 1] ⊗X K
•

right .

Since K •right is a resolution of OX , the theorem follows. �
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5.2. The derived endomorphism algebra of T

The relative Gorenstein property is the key lemma in computing the structure of RHomPU(T , T ). We then have the
following lemma.

Theorem 5.2.1. For i > 0, Ext iPU
(T , T ) = 0, and

HomPU(T , T ) =


OX U1 U2

· · · Un

0 OX U1
· · · Un−1

0 0 OX · · · Un−2

...
...

...
. . .

...
0 0 0 · · · OX

 .
Proof. Replacing T = ⊕ni=0πŨ(−i) gives that

RHomPU(T , T ) = RHomPU(⊕
n
i=0πŨ(−i),⊕ni=0πŨ(−i))

=

⊕
0≤i,j≤n

RHomPU(πŨ(−i), πŨ(−j))

=

⊕
0≤i,j≤n

RHomPU(πŨ, πŨ(i− j))

=

⊕
0≤i,j≤n

RHomgr(Ũ)(Ũ,RωπŨ(i− j))

=

⊕
0≤i,j≤n

[Rωπ(Ũ)]j−i.

The derived object Rωπ(Ũ) fits into an exact triangle in Db(gr(Ũ))

Rτ(Ũ)→ Ũ→ Rωπ(Ũ)→ .

However, the relative Gorenstein property can be used to show that Rτ(Ũ) vanishes above graded degree −n − 1, and
outside cohomological degree n+ 1.

Lemma 5.2.1. (Rkτ(Ũ))j = 0 if j > −n− 1 or if k 6= n+ 1.

Proof. For any i, there is a short exact sequence of Ũ-modules:

0→ Ui(−i)→ Ũ/Ũ≥i+1 → Ũ/Ũ≥i → 0

whereUi(−i) is the left OX -moduleUi concentrated in degree i, and given a Ũ-module structure by allowing Ũ≥1 to act
trivially. Applying Homgr(Ũ)(−, Ũ) to this sequence gives an exact triangle of derived objects

RHomŨ(Ũ/Ũ
≥i, Ũ)→ RHomŨ(Ũ/Ũ

≥i+1, Ũ)→ RHomŨ(U
i(−i), Ũ)→ .

Note thatRHomŨ(U
i(−i), Ũ) = ∗(Ui)⊗XRHomŨ(OX , Ũ)(i). From the relative Gorenstein property, (R

kHomŨ(OX , Ũ))j
= 0 for j > −n− 1 or for k 6= n+ 1, and in these cases, the above triangle implies an isomorphism for all i

(RkHomŨ(Ũ/Ũ
≥i, Ũ))j ' RkHomŨ(Ũ/Ũ

≥i+1, Ũ)j.

However, in the case of i < 0, these RkHom’s vanish, and so they vanish for all i. Therefore,

(Rkτ(Ũ))j = lim
i→∞

RkHomŨ(Ũ/Ũ
≥i, Ũ)j = 0. �

It immediately follows that Rωπ(Ũ)k ' Ũk
= Uk for k ≥ −n, and so

RHomPU(T , T ) =
⊕
0≤i,j≤n

Uj−i.

Therefore, the higher Exts vanish completely, and the endomorphism algebra of T is given by the above algebra. �

5.3. Equivalence to Db(Mod(E))

Let E denote (Homqgr(T , T ))op, the opposite algebra. Now, given any πM ∈ PU, RHomqgr(T , πM) has a right action by
Homqgr(T , T ) by composition, and so it is a left E-module. In this way, the functor RHomqgr(T ,−) defines a functor from
Db(PU) to Db(mod(E)).
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This functor can be expressed in terms of the functor Rωπ . After all, as derived right OX -modules,

RHomPU(T , πM) = RHomPU(⊕
n
i=0πŨ(−i), πM)

=

n⊕
0=i

RHomPU(πŨ(−i), πM)

=

n⊕
0=i

RHomgr(Ũ)(Ũ,RωπM(i))

=

n⊕
0=i

[Rωπ(M)]−i.

The extra structure needed to make
⊕n
i=0[Rωπ(M)]−i into a derived left E-module is the collection of action maps

Ũj−i
⊗X [Rωπ(M)]−j → [Rωπ(M)]−i

which come from Rωπ(M)’s left Ũ-module structure.
Either way one writes it, it defines an equivalence of derived categories.

Main Theorem. The functor RHomqgr(T ,−) =
⊕n
0=i[Rωπ(−)]−i defines an equivalence of triangulated categories (in fact, of

dg categories)

Db(PU) ' Db(mod(E))

with inverse given by T ⊗LE −.

Proof. The theorem will follow from the following lemma.

Lemma 5.3.1. LetA be an abelian category, and let T be an object inA which is:

• Compact: The functor HomA(T ,−) commutes with direct sums.
• Generator: For any object M ∈ A, there is a surjection T⊕I → A for some index set I.
• Finite dimension: There is some i such that Ext jA(T ,M) = 0 for all j > i and M ∈ A.
• Ext iA(T , T ) = 0 for i > 0.

Then RHomA(T ,−) defines a quasi-equivalence of dg categories (and hence an equivalence of triangulated categories)

Db(A) ' Db(mod(End(T )op))

with inverse T ⊗LEnd(T )op −.

Proof. Theorem 4.3 in [9] (see also Theorem 8.7 in [10]) provides a a quasi-equivalence of dg categories Db(A) '
Perf (Mod(End(T )op)), where Perf (Mod(E)) is the category of perfect complexes. However, by the finite dimensionality,
the image of the functor takes bounded complexes to bounded complexes. Therefore, Perf (Mod(End(T )op)) '

Db(mod(End(T )op)). �

The compactness of T is immediate, becauseπ is a compact functor and T isπ of a f.g. object. The fact that T is a generator
was Corollary 4.5.1. The Beilinson resolution proves that Rωπ has finite homological dimension (though it does not give a
sharp bound), and so then RHomqgr(T ,−) does as well. Finally, the vanishing of higher Exts was Theorem 5.2.1. �

One interpretation of this theorem is that an object πM ∈ PU can be completely determined by knowing Rωπ(M) in
degrees−n to 0, together with knowing the action maps

Ũj−i
⊗X [Rωπ(M)]−j → [Rωπ(M)]−i.

In fact, any object in Db(PU) can be constructed by giving n + 1 objects N−i ∈ Db(OX ), together with action maps
Ũj−i
⊗X N−j → N−i which are required to be associative in the natural way.
This can even be an effective method for constructing objects in PU, provided one has some method of ensuring that

the higher cohomologies vanish. This was the method used in [6] to construct the moduli space of left ideals in the ring of
differential operators on a curve.

6. Examples and applications

The generality of Lie algebroids means that this theorem encompasses a wide array of different examples. We review
some of these examples now.
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6.1. Example: Polynomial algebra

This is the case X = Spec(C), and L abelian. L is then a vector space with trivial Lie bracket. If {x1, x2, . . . xn} is a basis for
L,U is C[x1, x2, . . . , xn] and Ũ = C[t, x1, x2, . . . xn]. Therefore, PU = mod(Pn), by the projective Serre equivalence. Then
the main theorem becomes the derived equivalence of Pn and the algebra

C C⊕ L C⊕ L⊕ Sym2L · · · C⊕ L⊕ · · · ⊕ SymnL
0 C C⊕ L · · · C⊕ L⊕ · · · ⊕ Symn−1L
0 0 C · · · C⊕ L⊕ · · · ⊕ Symn−2L
...

...
...

. . .
...

0 0 0 · · · C

 .
This algebra is usually written as the path algebra of a quiver Qn, called the nth Beilinson quiver. The equivalence
Db(mod(Pn)) ' Db(mod(Qn)) is the original Beilinson equivalence, and was proven in the seminal paper [3].

6.2. Example: Enveloping algebra of a lie algebra

This is the case X = Spec(C), and L = g, some Lie algebra. The enveloping algebra is then the usual enveloping algebra
Ug of the Lie algebra, and Ũg is the homogenization. The categories qgr(Ũg)were first introduced by [12] under the name
quantum space of a Lie algebra. The main theorem becomes the derived equivalence of this category and the algebra

C (Ug)1 (Ug)2 · · · (Ug)n

0 C (Ug)1 · · · (Ug)n−1

0 0 C · · · (Ug)n−2

...
...

...
. . .

...
0 0 0 · · · C

 .
This algebra again can be written as the path algebra of a quiver, which will look like the nth Beilinson quiver with its
relations deformed by the Lie bracket.

6.3. Example: Differential operators

In this case, X is any irreducible smooth affine variety, and L is the tangent bundle T . Then,U isD , the ring of differential
operators, and Ũ is D̃ , the Rees algebra of the differential operators. The category PD is then derived equivalent to the
algebra

OX D1 D2
· · · Dd

0 OX D1
· · · Dd−1

0 0 OX · · · Dd−2

...
...

...
. . .

...
0 0 0 · · · OX

 .
Not much else can be said in this level of generality. However, for a powerful application of this in the form of curves, see
Section 6.6.

6.4. Non-examples

It is worth noting that Ũ is not the most general class of graded algebra for which the techniques here work, and for
which a similar version of the main theorem applies. For example, let PPh̄ denote the algebra over C generated by w1, w2,
andw3, subject to the relations

[w1, w3] = [w2, w3] = 0, [w1, w2] = 2h̄w23.
One can check that this is not the homogenization of any universal enveloping algebra of a Lie algebra.
However, in [11], a similar Koszul theory is developed, as well as a similar Beilinson equivalence, which is then used for

a monad-theoretic construction of the moduli space of certain kinds of modules.
Another non-example of a relatively quadratic algebra which has an identical Koszul theory and Beilinson transform is

the Ũop, the opposite algebra of the enveloping algebra of a Lie algebroid. This is equivalent to showing that the category of
graded right Ũ-module has a quotient PU which satisfies all the theorems of this paper. Every proof in this paper works in
this case, occasionally with slight modification (actually, the proof of the relative Gorenstein property is a little bit shorter).
So then, what is the most general setting where the proofs in this paper work? The answer is that the proofs in this

paper will work for any relatively quadratic algebra A, such that

• A is Koszul, in that the left and right Koszul complexes are resolutions of OX .
• A⊥ is a finitely generated projective left and rightOX -module and relatively Frobenius overOX . That is, Corollaries A.1.1–
A.1.3 hold.
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The results can be generalized in a different direction, by extending algebras to sheaves of algebras on a non-affine X . See
Appendix B for details.

6.5. Application: Grothendieck group

An immediate application of the derived equivalence is computing the Grothendieck group K(PU) of the category PU,
because theGrothendieck group depends only on the bounded derived category. Furthermore,K(mod(E)) is easy to compute
because, like a quiver, it can be shown that the Grothendieck group depends only on the diagonal part of E (the vertices)
and not on the above diagonal part (the arrows).

Lemma 6.5.1. K(mod(E)) = K(coh(X))⊕(n+1).

Proof. Let M ∈ mod(E), and let e−i denote the idempotent in E which is 1 ∈ OX in the (n + 1 − i, n + 1 − i) entry in the
matrix. Recall thatM can be described by the OX -modulesM−i := eiM ∈ coh(X), together with a collection of action maps
U1
⊗X M−i → M−i+1. Note thatM has a filtration by submodulesM≥−i := (

∑i
j=0 e−i)M , with the action maps the same as

M where they aren’t necessarily zero. The successive quotientsM≥−i/M≥−i+1 = M−i, and so [M] =
∑n
i=0[M−i]. Therefore,

K(mod(E)) is generated by the class of modules of the formM−i for someM .
Let N and N ′ be two OX -modules, and let e−iN and e−iN ′ be the corresponding E-modules. Then [e−iN] = [e−iN ′] only

if [N] = [N ′] in K(coh(X)). Furthermore, [e−iN] = [e−jN ′] for i 6= j only if both are the zero class. Therefore, the group
K(mod(E)) decomposes into K(coh(X))⊕(n+1), where [M] goes to ([M0], [M−1], . . . [M−n]). �

Corollary 6.5.1. K(PU) ' K(coh(X))⊕(n+1).

Explicitly, under this isomorphism, [πM] goes to

([Rωπ(M)0], [Rωπ(M)−1], . . . , [Rωπ(M)−n]).

This decomposition can be used to define the notion of a K(coh(X))-valued ith Chern class for an object in PU. Let the i-th
Chern class of πM be defined as

n∑
j=0

(
i
j

)
[Rωπ(M)−j] ∈ K(coh(X))

where
(i
j

)
= 0 if j > i. In the case of Pn, this will coincide with the usual Chern class of a module.

6.6. Application: Ideals inU

So far, the study of the category PU has been motivated by its appealing properties (the main theorem, for instance), and
by its close but nebulous relation with the study ofmod(U). We now briefly illustrate an example of the latter, by showing
how left ideals inU can be studied via this method.
A left ideal I ⊂ U comes naturally equipped with a filtration, as a restriction of the filtration onU. This translates into a

short exact sequence in gr(Ũ):

0→ Ĩ→ Ũ→ Ũ/I → 0.

We then wish to study I by studying π̃ I , but we need to be able to recover I from π̃ I .

Lemma 6.6.1. ωπ̃ I ' Ĩ .

Proof. By the exact sequence

0→ τ (̃I)→ Ĩ → ωπ̃ I → R1τ̃ I → 0,

it suffices to show that τ̃ I = R1τ (̃I) = 0. Note that for any filtered U-module M , t acts as an inclusion on M̃ . Therefore,
Homgr(Ũ)(Ũ/Ũ

≥n, M̃) = 0, and so τ M̃ = 0. This means that τ̃ I = 0.
Now, apply Rτ to the sequence

0→ Ĩ → Ũ→ Ũ/I → 0.

Since τŨ = R1τ(Ũ) = 0 by Lemma 5.2.1, we know that R1τ (̃I) = τ(Ũ/I), but τ of anything which is the homogenization
of a filtered module is zero. Therefore, R1τ (̃I) = 0. �

Thiswas the approachusedby [6] to characterize ideal classes in the ring of differential operators on a curveX . The general
idea is to characterize which derived E-modules came from ideal classes, and show that every such derived E-module came
from an ideal class.

Theorem 6.6.1 ([6], Theorem 4.3)). Let I be an ideal inD for X a smooth curve. Then

(1) (Rωπ(̃I))−1 = V [−1], where V is a finite-length sheaf on X.
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(2) (Rωπ(̃I))0 = Cone(i : J → V ), where J is some ideal on X and i is some OX -module map.
(3) The action map a : D1

⊗X (Rωπ(̃I))−1 → (Rωπ(̃I))0 restricts on OX to the natural map{V
↑

0

}
→IdV

→0

{V
↑

J

}
.

Furthermore, any choice of such V , J , i and a will determine a derived E-module which corresponds to an ideal under the inverse
Beilinson equivalence.

Appendix A. The quadratic dual

This appendix collects and proves the important facts about the quadratic dual algebra, Ũ⊥.

A.1. The structure of the quadratic dual

This section explores the structure of Ũ⊥ as an algebra. First, note that J1 fits into a short exact sequence ofOX -bimodules,

0→ L∗ → J1 → OX → 0.

The ‘action on 1’ mapU → OX is a map of leftU-modules. It restricts to a map of left OX -modules e : U1
→ OX , and so

it determines an element e ∈ J1 and its image in Ũ⊥. Since e acts as the identity on OX ⊂ U1, its image under the map
J1 → OX is the identity in OX .
Next, define the L-exterior derivative µ : L∗ → L∗ ⊗X L∗ = (L⊗X L)∗ by

µ(σ)(l⊗ l′) :=
1
2

[
dτ(l)(σ (l′))− dτ(l′)(σ (l))− σ([l, l′])

]
.

The name comes from the case when L = T , where µ : T ∗ → T ∗ ⊗X T ∗ is the usual exterior derivative.
Finally, a quick rundown on the explicit form of some definitions for those who haven’t had the luxury to work out

examples.

• The way the OX -bimodule structure on J1 = ∗(U1)was defined, (ae)(∂) = e(∂a).
• From the isomorphism ∗(U1)⊗X

∗(U1) = ∗(U1
⊗X U1), for σ , σ ′ ∈ ∗(U1), (σ ⊗ σ ′)(∂ ⊗ ∂ ′) = σ ′(∂ · σ(∂ ′)).

• From the definition ofU, we see that for ∂ ∈ ker(e) and a ∈ OX , then [∂, a] = dτ(∂)(a).

Lemma A.1.1. The element e ∈ Ũ⊥ satisfies

(1) e2 = 0.
(2) ae− ea = τ∨(da), for a ∈ OX , and where τ∨ : T ∗ → L∗ is dual to the anchor map L→ T .
(3) σ e+ eσ = µ(σ), for σ ∈ L∗ ∈ J1.

Proof. The easy relation to show is (2), because it is a degree 1 relation. Consider the element ae− ea ∈ J1, and apply it to
any ∂ ∈ U1.

(ae− ea)∂ = e(∂a)− e(a∂) = e([∂, a]) = dτ(∂)(a) = ιda(τ (∂)) = τ∨(da)∂

and so (ae− ea) = τ∨(da).
The other two relations are degree 2, so they are true if and only if they are in J2; that is, if they kill R ∈ U1

⊗X U1.
Remember that R is spanned by elements of the form ∂ ⊗ ∂ ′ − ∂ ′ ⊗ ∂ − [∂, ∂ ′] ⊗ 1.
(1) e⊗ e.

(e⊗ e)(∂ ⊗ ∂ ′ − ∂ ′ ⊗ ∂ − [∂, ∂ ′] ⊗ 1)
= e(∂e(∂ ′))− e(∂ ′e(∂))− e([∂, ∂ ′]e(1))
= e(∂ ′)e(∂)+ e([∂, e(∂ ′)])− e(∂)e(∂ ′)− e([∂ ′, e(∂)])− e([∂, ∂ ′])
= [∂, e(∂ ′)] − [∂ ′, e(∂)] − e([∂, ∂ ′]).

It suffices to check that this final expression vanishes in several cases.

• If both ∂ and ∂ ′ are in OX , then all the commutators vanish.
• If one of ∂ and ∂ ′ is in OX and the other is in the kernel of e, then one of the terms vanish and the other two terms are
identical.
• If both ∂ and ∂ ′ are in the kernel of e, then this is also true of their commutator, and so all three terms vanish.
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(3) σ ⊗ e+ e⊗ σ − µ(σ).

(σ ⊗ e+ e⊗ σ)(∂ ⊗ ∂ ′ − ∂ ′ ⊗ ∂ − [∂, ∂ ′] ⊗ 1)
=
[
e(∂σ (∂ ′))− e(∂ ′σ(∂))

]
+
[
σ(∂e(∂ ′))− σ(∂ ′e(∂))− σ([∂, ∂ ′]e(1))

]
= e(∂σ (∂ ′))− e(∂ ′σ(∂))+ e(∂ ′)σ (∂)− e(∂)σ (∂ ′)− σ([∂, ∂ ′])
= e([∂ ′, σ (∂)])− e([∂, σ (∂ ′)])− σ([∂, ∂ ′])
= [∂ ′, σ (∂)] − [∂, σ (∂ ′)] − σ([∂, ∂ ′])

= dτ(∂)(σ (∂ ′))− dτ(∂ ′)(σ (∂))− σ([∂, ∂ ′]).

Compare to

µ(σ)(∂ ⊗ ∂ ′ − ∂ ′ ⊗ ∂ − [∂, ∂ ′] ⊗ 1)

=
1
2

[
dτ(∂)(σ (∂ ′))− dτ(∂ ′)(σ (∂))− σ([∂, ∂ ′])

]
−
1
2

[
dτ(∂ ′)(σ (∂))+ dτ(∂)(σ (∂ ′))+ σ([∂ ′, ∂])

]
−
1
2

[
dτ([∂,∂ ′])(σ (1))− dτ(1)([∂, ∂ ′])− σ([[∂, ∂ ′], 1])

]
= dτ(∂)(σ (∂ ′))− dτ(∂ ′)(σ (∂))− σ([∂, ∂ ′]).

Therefore, σ ⊗ e+ e⊗ σ − µ(σ) kills R ∈ U1
⊗X U1, and so it is a relation in Ũ⊥. �

For any element Ũ⊥, the above (graded) commutators allow e to collected on one side (for instance, to the right). Since
e2 = 0, an element in Ũ⊥ can have at most one e in it. The following theorem then establishes that Ũ⊥ is a rank 2 module
over the subalgebra of elements without an e.

Theorem A.1.1. The map L∗ → J1 extends to an inclusion Λ•XL
∗
→ Ũ⊥. This map fits into a short exact sequence of graded

Λ•XL
∗-bimodules

0→ Λ•XL
∗
→ Ũ⊥ → Λ•XL

∗(−1)→ 0

where e ∈ Ũ⊥ goes to 1 ∈ Λ•XL
∗(−1).

Proof. First, it is easy to see that, for σ , σ ′ ∈ L∗, σ ⊗ σ ′ + σ ′ ⊗ σ is a relation in Ũ⊥.

(σ ⊗ σ ′ + σ ′ ⊗ σ)(∂ ⊗ ∂ ′ − ∂ ′ ⊗ ∂ − [∂, ∂ ′] ⊗ 1)
= σ ′(∂σ (∂ ′))+ σ(∂σ ′(∂ ′))− σ ′(∂ ′σ(∂))− σ(∂σ ′(∂ ′))

= σ(∂ ′)σ ′(∂)+ σ ′(∂ ′)σ (∂)− σ(∂)σ ′(∂ ′)− σ ′(∂ ′)σ (∂) = 0.

It is not much harder to see that any relation in L∗ ⊗X L∗ is fixed by the map which sends σ ⊗ σ ′ to σ ′ ⊗ σ . Therefore,
elements of the form σ ⊗ σ ′ + σ ′ ⊗ σ generate the relations in L∗ ⊗X L∗. It follows that the submodule L∗ ⊂ J1 ⊂ Ũ⊥

generates a copy of the algebraΛ•XL
∗.

Now, let C denote the cokernel of Λ•XL
∗
→ Ũ⊥, as a Λ•XL

∗-bimodule. Note that the previous lemma showed that the
(graded) commutator of e with any element of J1 lies in L∗ ⊂ J1. Therefore, the image of e in Ũ⊥ → C is (graded) central.
Furthermore, since e2 = 0, e generates C , and so there is a surjective mapΛ•XL

∗(−1)→ C which sends 1 to e.
For this not to be an isomorphism, there would have to be a relation of the form σ e − Υ , for σ ∈ L∗ and Υ ∈ L∗ ⊗X L∗.

Let ∂ be an element inU1 which is not killed by σ . Then

(σ ⊗ e)(∂ ⊗ 1− 1⊗ ∂) = e(∂σ (1))− e(σ (∂)) = σ(∂).

By construction, this is not zero. However, Υ must kill ∂ ⊗ 1− 1⊗ ∂ since L∗ kills 1 ∈ U1. Therefore, there cannot be such
a relation, and the mapΛ•XL

∗(−1)→ C is an isomorphism. �

Since Λ•XL
∗ is an algebra which is finitely generated projective as a OX -module on either side and zero in large enough

degree, we can deduce identical facts about Ũ⊥.

Corollary A.1.1. For all i, Ũ⊥i is a finitely generated, projective OX -module on the left and right.

Corollary A.1.2. If i > n+ 1, then Ũ⊥i = 0.

Let ωL denoteΛnXL
∗, the top exterior power of the dual to L. From the Lemma, it is clear that Ũ⊥n+1 = ωL. This now gives

a pairing between elements of Ũ⊥ whose degree adds to n+ 1. We then have



2140 G. Muller / Journal of Pure and Applied Algebra 214 (2010) 2124–2143

Lemma A.1.2 (The Relative Frobenius Property). For any i, the multiplication map

Ũ⊥i ⊗X Ũ⊥(n+1−i) → ωL

is a ‘perfect pairing’. That is, the adjoint maps

Ũ⊥(n+1−i) → HomX−(Ũ⊥i, ωL), and Ũ⊥i → Hom−X (Ũ⊥(n+1−i), ωL)

are isomorphisms of OX -bimodules.

Proof. Explicitly, the adjoint map Ũ⊥(n+1−i) → HomX−(Ũ⊥i, ωL) takes an element µ ∈ Ũ⊥(n+1−i) and sends it to the map
γ ∈ Ũ⊥i → µ · γ ∈ ωL. Consider the short exact sequence of OX -bimodules

0→ Λn+1−iX L∗ → Ũ⊥n+1−i → Λn+iX L
∗
→ 0.

If µ ∈ Λ(n+1−i)X L∗ ∈ Ũ⊥(n+1−i), then µ · γ only depends on the image of γ under the map Ũ⊥i → Λi−1X L
∗. Similarly, if we

know that γ ∈ ΛiXL
∗
⊂ Ũ⊥i, then µ · γ only depends on the image of µ under the map Ũ⊥(n+1−i) → Λn+iX L

∗. This means
that the adjoint map above splits into a map of short exact sequences

Λn+1−iX L∗ → Ũ⊥(n+1−i) → Λn−iX L
∗

↓ ↓ ↓

HomX−(Λi−1X L
∗, ωL) → HomX−(Ũ⊥i, ωL) → HomX−(ΛiXL

∗, ωL).

The left and right maps are isomorphisms, because they are both adjoint to multiplication maps of the form Λ
j
XL
∗
⊗X

Λ
n−j
X L
∗
→ ωL. Therefore, the middle map is an isomorphism. The proof for the other adjoint map is identical. �

This can be restated in a more compact form.

Corollary A.1.3. There are isomorphisms of OX -bimodules

(Ũ⊥i)∗ = ω∗L ⊗X Ũ⊥(n+1−i), ∗(Ũ⊥i) = Ũ⊥(n+1−i) ⊗X ω
∗

L .

Proof.

Ũ⊥(n+1−i) ' HomX−(Ũ⊥i, ωL) = HomX−(Ũ⊥i,OX )⊗X ωL = ∗(Ũ⊥i)⊗X ωL.

Similarly, Ũ⊥(n+1−i) = ωL ⊗X (Ũ
⊥)∗. Since ωL is a line bundle, tensoring these with ω∗L on the left or right gives the

theorem. �

A.2. The quadratic dual as an Ext algebra

In this section, we prove the following theorem about Ũ⊥.

Theorem A.2.1. Ũ⊥ is isomorphic to Ext•
Ũ−
(OX ,OX ) as a graded algebra, where J1 = ∗(U1) ⊂ Ũ⊥ has graded degree−1.

Proof. It is easy to see this isomorphism, on the level of graded OX -modules.

Lemma A.2.1. Ũ⊥ is isomorphic to Ext•
Ũ−
(OX ,OX ) as a graded OX -module.

Proof. The left Koszul resolution K •right is a left projective resolution of OX . Therefore,

RHom•
Ũ−
(OX ,OX ) = HomŨ−(K

•,OX )

=

n⊕
i=0

HomŨ−(Ũ(−i)⊗X (Ũ
⊥i)∗,OX )

=

n⊕
i=0

HomX−((Ũ⊥i)∗,OX )(i)

=

n⊕
i=0

Ũ⊥i(i).

Since each term in the complex is concentrated in a different graded degree, the boundary vanishes, and so the cohomology
is isomorphic to Ũ⊥. �
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Showing that this is an isomorphismof algebraswill requiremorework. LetB• denote thenormalized left bar resolution
of OX (see [15], page 284 for details). This is the complex of graded left Ũ-modules with B−i = Ũ ⊗X (Ũ

≥1)⊗X (i−1) where
the boundary sends a1 ⊗X a2 ⊗X · · · ⊗X an to

n−1∑
i=1

(−1)ia1 ⊗X a2 ⊗X · · · ⊗X aiai+1 ⊗X · · · ⊗X an.

The complex B• is a left projective resolution ofOX , with the augmentation map B0 = Ũ→ OX the natural projection onto
graded degree zero.
Therefore, Ext•

Ũ−
(OX ,OX ) is the cohomology algebra of the differential graded algebra (dga) HomŨ−(B

•, B•), where the
multiplication is the composition of maps. The augmentation map B• → OX gives a quasi-isomorphism of complexes
HomŨ−(B

•, B•)→ HomŨ−(B
•,OX ). Since

HomŨ−(B
−i,OX ) = HomŨ−(Ũ⊗X (Ũ

≥1)⊗X (i−1),OX )

= HomX−((Ũ
≥1)⊗X (i−1),OX )

= [
∗(Ũ≥1)]⊗X (i−1).

Thus, HomŨ−(B
•,OX ) is isomorphic to TX ∗(Ũ≥1) as a graded OX -module, and the natural multiplication on the tensor

algebra makes it into a dga.
In fact, the quasi-isomorphism

HomŨ−(B
•, B•)→ HomŨ−(B

•,OX ) = TX ∗(Ũ≥1)

is a map of dgas. To see this, let us construct a section of this map. Let φ ∈ [ ∗(Ũ≥1)]⊗X (i−1), then for any j > i, there is a
natural map

Ũ⊗X (Ũ
≥1)⊗X (j−1) → Ũ⊗X (Ũ

≥1)⊗X (j−i−1)

given by applying φ to the first i terms on the left. It is easy but tedious to verify that this gives a map of dgas TX ∗(Ũ≥1)→
HomŨ−(B

•, B•) which is a section of the above map. Therefore, Ext•
Ũ−
(OX ,OX ) is the cohomology algebra of the dga

TX ∗(Ũ≥1).
The dga TX ∗(Ũ≥1) has both a cohomological degree (coming from the usual grading on a tensor algebra) and a graded

degree (coming from the grading on Ũ≥1). Because ∗(Ũ≥1) is concentrated in graded degree ≤− 1, [ ∗(Ũ≥1)]⊗X (i−1) is
concentrated in graded degree ≤− i. Therefore, if one restricts the complex TX ∗(Ũ≥1) to graded degree −i, the resulting
complex is non-zero in cohomological degrees j, 0 ≤ j ≤ i.
However, we do actually know the cohomology of this complex, due to LemmaA.2.1. Specifically, we know that in graded

degree−i, the cohomology is concentrated in cohomological degree i. Since the corresponding complex is concentrated in
cohomological degrees ≤ i, the cohomology must be the cokernel of the boundary map. We therefore have a map of dgas
TX ∗(Ũ≥1)→ Ũ⊥, which is a quasi-isomorphism.
Note that, for an element in TX ∗(Ũ≥1) to have graded degree−i and cohomological degree i, itmust be the tensor product

of i elements of graded degree−1 elements; therefore, (TX ∗(Ũ≥1))(−i,i) = [ ∗(Ũ1)]⊗X i = (J1)⊗X i. If we let TX J1 be a dgawith
zero boundary, this extends to a map of dgas TX J1 → TX ∗(Ũ≥1), which is the identity in degree (−i, i) and zero elsewhere.
The composition

TX J1 → TX ∗(Ũ≥1)→ Ũ⊥

is then a surjection of dgas; since their boundaries are zero,we can think of themas algebras again. Since it is an isomorphism
in graded degree−1 on the J1’s, its kernel must be exactly generated by J2 ⊂ J1 ⊗X J1. The theorem follows. �

Appendix B. Localization and sheafification

The results of this paper localize and sheafify correctly, provided one defines the non-affine versions of the constructions
correctly. In this section, we provide the necessary definitions and sketch the necessary proofs. In this section, X is no longer
assumed to be affine, though it is still smooth and irreducible.

B.1. Lie algebroids

As was mentioned before, Lie algebroids are compatible with localization; that is, the localization of a Lie algebroid
naturally has a Lie algebroid structure. To wit, let X ′ be an affine open subscheme of affine X defined by a multiplicative
subset S of OX , and let L′ := OX ′ ⊗X L.

Lemma B.1.1. If (X, L) is a Lie algebroid, then (X ′, L′) has a unique Lie algebroid structure which is compatible with the inclusion
L→ L′.
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Proof. For any l ∈ L and s ∈ S, the anchor map defines the derivative of s along l to be dτ(l)(s). Therefore, there is only one
choice for the derivative of s−1 along l,

dτ(l)(s−1) := −s−2dτ(l)(s)

because dτ(l) must be a derivation. In this way, the anchor map L→ TX extends canonically to an anchor map L→ TX ′ . The
OX ′-module structure on TX ′ means that this map extends uniquely to a map L′ → TX ′ .
Elements in L′ are of the form s−n⊗ l, for s ∈ S and l ∈ L, and so the compatibility of the anchor map with the Lie bracket

implies that

[s−n ⊗ l, s′−m ⊗ l′] = s−ndτ(l)(s′−m) · l′ + s′−m[s−n ⊗ l, l′]
= s−ndτ(l)(s′−m) · l′ − s′−mdτ(l′)(s−n) · l+ s′−ms−n[l, l′].

Since this final expression only depends on the Lie bracket in L, and the extended anchor map, the Lie bracket on L′ is
completely determined. �

The above technique for localizing Lie algebroids is clearly compatible with compositions of localizations, and defines a
sheaf of Lie algebroids on X , for X affine. In the case of X not affine, this local data may be sheafified; we will call any sheaf
of Lie algebroids obtained this way a Lie algebroid on X .
For X affine, and X ′ an affine open subscheme,UX ′L′ = OX ′⊗XUXL = UXL⊗X OX ′ . This means that localizing enveloping

algebras is the same on the left and on the right; so from now on we can refer to localizing themwithout referring to a side.
AnOX -bimodulewhich has the property that left localization is isomorphic to right localizationwill be callednearly central;
since it means that as a sheaf on X × X , it is supported scheme-theoretically on the diagonal.
The universal enveloping algebra a non-affine Lie algebroid (X, L) will be defined as the sheaf of algebrasUXL which is

affine-locally the enveloping algebra of (X, L). Since enveloping algebras are nearly central, this is a quasi-coherent sheaf as
both a left and right OX -module.
It is worth noting that, while the global sections of a Lie algebroid (X, L) is again a Lie algebroid (Γ (X),Γ (L)), the global

sections ofUXL is not necessarily the enveloping algebra of (Γ (X),Γ (L)). For example, take the tangent bundle on P1. The
global Lie algebroid is (C, sl2) with trivial anchor map, but the global sections ofDP1 is the algebraUsl2/c , where c is the
casimir element; see e.g. [7].

B.2. Koszul complexes

The sheaf of graded algebras Ũ can then be defined in the natural way, and is again a sheaf of nearly central algebras.
Since Ui is a nearly central OX -bimodule, so is ∗(Ui) = J i. The tensor algebra TX J1 is then also nearly central, and so is
TX J1/〈J2〉 = Ũ⊥. Thus, Ũ⊥ also defines a sheaf of nearly central algebras on X . From this, it follows that the left Koszul
complex is also compatible with localization.

Lemma B.2.1. Let X ′ be an open affine subscheme of affine X, and L′ the localization of L. Then K •
(X ′,L′) is the localization of K

•

(X,L).

Proof. On the level of terms of the complex,

OX ′ ⊗X ŨXL(−i)⊗X (ŨXL
⊥i
)∗ = ŨX ′L′(−i)⊗X (ŨXL

⊥i
)∗

= ŨX ′L′(−i)⊗X ′ OX ′ ⊗X (ŨXL
⊥i
)∗

= ŨX ′L′(−i)⊗X ′ (ŨX ′L′
⊥i
)∗.

Note that the key is that the enveloping algebra is nearly central, and so localizing on the left localizes on the right. Finally,
it is immediate to show that the Koszul boundary is the correct one, because the Koszul boundary was defined in terms of
multiplication inUXL, and localization is an algebra homomorphism. �

From this, and analogous observations, it can be shown that all the complexes and bicomplexes defined in Section 4 are
nearly central and compatible with localization.

B.3. Projective geometry

Define in the obvious way the module categories mod(UXL) and gr(ŨXL), which are OX -quasicoherent sheaves of left
modules of the appropriate sheaf of algebras. In either category, the Hom set is naturally a OX -bimodule, and is a nearly
central bimodule. Therefore, localization is independent of side, and we can canonically define the sheafyHom as the sheaf
of OX -bimodules on X which is locally the corresponding Hom.
The quotient category PU can be defined identically to the affine case. The sheafyHom can also be defined in this case,

by

HomPU(πM, πN) := Homgr(Ũ)(M, ωπN).
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Let T denote ⊕ni=0πŨ(−i). Then HomPU(T , T ) is defined locally by Theorem 5.2.1, and so it is the sheaf of nearly central
algebras

HomPU(T , T ) = E
op
=


OX U1 U2

· · · Un

0 OX U1
· · · Un−1

0 0 OX · · · Un−2

...
...

...
. . .

...
0 0 0 · · · OX


and Ext iqgr(T , T ) = 0 for i > 0.
Letmod(E) denote the category of quasi-coherent sheaves of left E-modules on X . Then RHomqgr(T ,−) defines a functor

from Db(PU) to Db(mod(E)). We then have the non-affine version of the main theorem.

Theorem B.3.1. The functorRHomqgr(T ,−)defines a quasi-equivalence of dg categories, and thus an equivalence of triangulated
categories

Db(PU) ' Db(mod(E)).

Proof. Since this functor is a quasi-equivalence on affine local subsets, the theorem will follow from effective descent for
dg categories. Specifically, the sheafy categories Db(PU) and Db(mod(E)) can be obtained as a homotopy limit of the affine
local categories. Since the functor is a locally a quasi-equivalence, it must be one in the limit. See Section 7.4 in [2]. �
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