
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
www.elsevier.com/locate/apm

Applied Mathematical Modelling 30 (2006) 116–128
An integrated mechanistic-neural network modelling
for granular systems

S.J. Antony *, C.H. Zhou 1, X. Wang

Institute of Particle Science and Engineering, School of Process, Environmental and Materials Engineering,

University of Leeds, Leeds LS2 9JT, UK

Received 1 May 2003; received in revised form 1 February 2005; accepted 15 March 2005
Available online 4 May 2005
Abstract

A hybrid neural network model is designed to predict the micro-macroscopic characteristics of particu-
late systems subjected to shearing. The network is initially trained to understand the micro-mechanical
characteristics of particulate assemblies, by feeding the results based on three-dimensional discrete element
simulations. Given the physical properties of the individual particles and the packing condition of the par-
ticulate assemblies under specified loading conditions, the network thus understands the way contact forces
are distributed, the orientation of contact (fabric) networks and the evolution of stress tensor during the
mechanical loading. These relationships are regarded as soft sensors. Using the signals received from soft
sensors, a mechanistic neural network model is constructed to establish the relationship between the micro-
macroscopic characteristics of granular assemblies subjected to shearing. The macroscopic results obtained
form this hybrid mechanistic neural network modelling for data that were not part of the training signals, is
compared with simulations based on discrete element modelling alone and in general, the agreement is
good. The hybrid network responds to their inputs at a high speed and can be regarded as a real-time sys-
tem for understanding the complex behaviour of particulate systems under mechanical process conditions.
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1. Introduction

Granular materials and granular flows are everywhere in nature, in various industrial processes,
in everyday life. We find them in landslides and avalanches, erosion, raw minerals extraction and
transport, cereal storage, powder mixing in chemistry or pharmaceutics, on our table as sugar, salt
or pepper, just to cite a few examples. Granular materials are sometimes considered as a fourth
state of matter, different from the classic solid, liquid and gas. They exhibit specific phenomena
that call for better understanding. To this end, experimental studies have been and are being con-
ducted, but numerical simulation is increasingly seen as a means to understand both the internal
mechanics and macroscopic behaviour of granular materials under actual process conditions. The
recent surge in the computer power has attracted several researchers to study the underlying
mechanics and physics of granular materials using advanced computational modelling tools such
as discrete element modelling (DEM), e.g., [1–5]. However, DEM analysis, even for a simple par-
ticulate assembly requires simulating several thousands of individual particles and their complex
particle–particle contact interactions. The numerical algorithms for contact detection and contact
laws governing the inter-particle force–displacement relations are generally complex, thus require
a large amount of computational time to handle the simulations. At the moment, DEM simula-
tions can handle granular assemblies with the number of particles ranging from a couple of thou-
sands to a few million particles, depending on the nature of the inter-particle contact interaction
laws employed; some simulations define the contact interaction of particles using simple spring-
dashpot systems while others use algorithms based on theoretical contact mechanics. In the
present work, we have employed an alternative strategy, using a mechanistic neural network mod-
elling to predict the micro-macroscopic behaviour of dense granular systems, subjected to quasi-
static shearing. The network is initially trained to understand the internal mechanics of particulate
assemblies subjected to shearing, using DEM. Once trained, the neural network does not require
any further input from DEM to predict the micro-macroscopic characteristics of particulate
assemblies (under mechanical loading) outside the range of data used to train the model. The net-
work derives the advantages of both a conventional neural network and discrete element model-
ling, thus could be used as an efficient, hybrid modelling tool to analyse the behaviour of granular
materials without compromising on the accuracy of the predictions. In the present work, we
restrict our predictions to certain micro-macroscopic characteristics of three-dimensional,
mono-dispersed granular system subjected to quasi-static shearing. Using the mechanistic neural
network model, we present results for the evolution of macroscopic shear strength ratio, contact
normal force distribution P(f) and the contact networks characteristics (fabric tensor) of three-
dimensional granular assemblies during shearing. The results obtained using the mechanistic
neural network have been verified with simulations based on DEM alone and in general, the
agreement is good.
2. Micro-macroscopic characteristics

In granular media, the transmission of forces from one boundary to another can occur only
via the inter-particle contacts. Hence the distribution of contacts will determine the distribution
of forces within the system of particles. These forces will not be necessarily distributed
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uniformly, even for an isotopic and homogeneous assembly of particles subjected to homoge-
neous applied load. This important qualitative observation of stress distribution can be seen
in photoelastic studies of two-dimensional disks reported by several investigators [6–9]. The
inhomogeneous distribution of optical fringe patterns in these studies, even for a homogeneous
applied load, reveals that the load is transmitted by relatively rigid, heavily stressed chains of
particles which form a relatively sparse network of greater than average normal contact force.
The groups of particles separating the strong force chains are only lightly loaded. Although a
consensus on the nature of the distribution of contact forces in granular media and a �perfect�
physi- cal model to capture the force distribution is far from achieved, recent numerical simula-
tions on a two-dimensional [10–13] and three-dimensional system of particles [13–17] under qua-
si-static shearing have revealed some exciting features. It has been shown that the normal force
contribution is the major contribution to the total stress tensor and the spatial distribution of
normal contact forces can be divided into two sub-networks, viz., (i) the contacts carrying less
than the average force (forming �weak force chains�) and (ii) the contacts carrying greater than
the average force (forming �strong force chains�). The contacts that slide are predominantly in
the weak force chains and they contribute only to the mean stress while their contribution to
the deviator stress (shear strength) is negligible. The contribution of the strong force chains to
the deviator stress is the dominant contribution. Hence, the weak force chains play a role sim-
ilar to a fluid surrounding the solid backbone composed of the strong force chains [15,16]. The
�fluidity� of the particles increases with an increase in size ratio of the particles (size of the par-
ticle in relation to their surrounding particles) [17]. These findings clearly show that the mac-
roscopic shear strength of granular materials is not an independent entity, rather it strongly
depends on the interplay between different variables of the granular assembly such as packing
condition, individual properties of the particles, nature of force distribution within the assem-
blies and the network of contacts that develop an anisotropic fabric structure during shearing.
Hence, in the present work, we trained the neural network to capture the above mechanical
characteristics of granular materials using DEM, originally developed by Cundall and Strack
[18]. However, the interaction between the neighbouring particles in the DEM modelling
employed here is based on theoretical contact mechanics provided by Thornton and Yin
[19,15].
3. Mechanistic neural networks

3.1. Soft-sensor

Soft-sensor is a technique for estimating variables usually difficult to measure on-line. In gen-
eral, soft-sensor technique is to construct some mathematical model (i.e., soft-sensor model) for
estimating the primary variable, on the basis of a group of secondary variables selected according
to some optimal criterions, which are closely related to the primary variable [20]. There are two
basic approaches for soft-sensor modelling, i.e., mathematical modelling and identification mod-
elling. To build a mathematical model of a system, one can use the physical laws that govern the
system�s behaviour. Alternatively, one can observe the signals produced by the system to known
inputs and find a model that best reproduces the observed data [21].



S.J. Antony et al. / Applied Mathematical Modelling 30 (2006) 116–128 119
3.2. Back propagation neural networks

Back propagation neural networks are analogous to the computational models of the brain.
The modelling based on neural network is one of the identification techniques to determine a
model of a system according to the observed inputs and outputs signals to the system [21]. Iden-
tification is necessary when there is not sufficient information about the system for it to be accu-
rately modelled by mathematical modelling approaches.
A neural network for identification generally consists of an input layer which receives input sig-

nals, an output layer which generates output signals, and some hidden layers which include a
number of interconnected neurons, i.e., processing elements (Fig. 1). If the connections are unidi-
rectional, the network is called a feed-forward network. Other types of the neural network are
feedback network, self-organizing network and etc. Each neurons in the hidden layers or the out-
put layer sums up its input signals after weighing them with the strengths of the respective con-
nections from the input layer or the former hidden layer, and compute its output as a transfer
function (usually nonlinear function) of the sum plus a bias.
It is believed that with sufficient hidden neurons and using some special training or learning

algorithm based on the known input and output data set for adjusting or training the strengths
of the connections and the biases to the neurons until a stopping criterion is met, a neural network
can approximate arbitrary mapping or function [21,22].

3.3. Mechanistic-neural network modelling

Fig. 2 shows the block diagram of a mechanistic neural network modelling approach. The net-
work is initially trained to capture the micro-mechanics of particulate assemblies, by feeding the
soft signals obtained using mechanistic three-dimensional DEM simulations. Given the physical
properties of the individual particles and the packing condition of the particulate assemblies under
specified loading conditions, the network thus understands the way contact forces are distributed,
the orientation of contact networks and the evolution of stress tensor during the mechanical loa-
ding. These relationships are regarded as soft sensors. Using the signals received from soft sensors,
a mechanistic neural network model is constructed to establish the relationship between the
micro-macroscopic characteristics of granular assemblies subjected to shearing.
In the present study, we consider the case of granular system consisting of mono-sized spherical

particles. To obtain the soft-sensor signals, the DEM simulations were carried out in a
Input layer Output layerHidden layers

………

Fig. 1. The structure of neural network model.
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three-dimensional cuboidal periodic cell. The periodic cell consisted 5000 randomly generated
spherical particles with diameter 0.1 mm. All the particles were given the following properties:
Young�s modulus, E = 70 GPa, Poisson�s ratio m = 0.3, coefficient of inter-particle friction
l = 0.3 and interface energy C = 0.6 J/m2. After the particles were initially generated, the system
was isotropically compressed until a mean stress p = 20 kPa was obtained. At the end of the iso-
tropic compression, the microstructure of the sample was isotropic. At this stage, the solid frac-
tion and mechanical coordination number (average number of load bearing contacts) of the
sample considered in this study were 0.61 and 4.8, respectively. For shearing, a strain rate of
10�5 s�1 was employed in the simulations. The samples were subjected to the axi-symmetric com-
pression test (r1 > r2 = r3) [15]. During shearing, the mean stress p = (r1 + r2 + r3)/3 was main-
tained constant at 20 kPa using a servo-control algorithm. The detailed description and numerical
methodology of the DEM simulations carried out here can be found elsewhere [15–17]. For the
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Fig. 4. Results for mapping: (a) P(f ) = F2(ed,q/p,f ) (Table 2, sub-model 1); (b) P(f) = F2(ed,q/p) (Table 2, sub-model 2);
(c) P(f ) = F2(ed,q/p) (Table 2, sub-model 3).
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granular system under study, the DEM simulations provided (i) the normalised shear stress ratio
q/p (q = r1 � r3), (ii) the evolution of force distribution in terms of the probability distribution of
normal contact force P(f ) and (iii) evolution of fabric anisotropy tensor /d during shearing. These
soft-sensor signals were used to train the neural network model. The specific objectives set for the
mechanistic neural network are as follows:

(1) To predict the evolution of macroscopic shear stress ratio q/p (defined as the ratio of the
deviator stress to the mean stress) as a function of the probability distribution of contact nor-
mal force P(f ) and deviator strain ed (=e1 � e3). It is known that the stress ratio q/p (Fig. 3)
strongly depends on the probability distribution function of contact normal forces P(f ),
where f = N/hNi, N is the contact normal force and hNi represents the average contact
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normal force in the system. A detailed physical analysis on the influence of the properties of
individual particles on the distribution of P(f ) for granular packing has been reported else-
where [16].

(2) To predict the contact normal force distribution P(f ) during shearing as a function of ed and
q/p.

(3) To predict the evolution of q/p as a function of the deviator strain ed, the deviator fabric /d
and contact normal force distribution P(f). Recent studies show that the micro-macroscopic
relations for granular media strongly depends on the way network of particle contacts
develop during mechanical loading. The contact network can be defined by the distribution
of contact orientations using the �fabric tensor� /ij, as suggested by Satake [23]:
/ij ¼ hni nji ¼
1

M

XM

1

ni nj;
where M is the number of contacts in the representative volume element and ni define the
components of the unit normal vector at a contact between two particles. Recent studies
have proved that the macroscopic shear strength of granular assemblies strongly depend
on the ability of the material to form a strongly anisotropic fabric network of contacts
[13–16]. Hence, it would be appropriate to design the neural network to predict the evolution
of q/p as a function of the deviator strain ed, the deviator fabric /d and contact normal force
distribution P(f). The deviator component of the fabric tensor is given by /d (=/1 � /3).

(4) To predict P(f ) as a function of ed and /d.
(5) To predict P(f ) as a function of ed, /d and q/p.
(6) To predict /d as a function of ed and P(f ).

Four-layer (including 2 hidden layers) feed-forward neural networks, as shown in Fig. 1, are
used to approximate the six mappings discussed above. The transfer functions for neurons in
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Fig. 6. Results for mapping: (a) P(f) = F4(ed,/d) (Table 4, sub-model 1); (b) P(f) = F4(ed,/d) (Table 4, sub-model 2);
(c) P(f) = F4(ed,/d) (Table 4, sub-model 3).

S.J. Antony et al. / Applied Mathematical Modelling 30 (2006) 116–128 123
the two hidden layers and the output layer are hyperbolic tangent, hyperbolic tangent and sigmoid
respectively, defined as
f ðxÞ ¼ 1� e
�2x

1þ e�2x ; ð1Þ

f ðxÞ ¼ 1

1þ e�x
. ð2Þ
The training algorithm is the back-propagation (BP) algorithm with a momentum coefficient and
an adaptive learning rate [22]. The stopping criterion for training is that the differences between
the actual and target outputs of the network model achieve a minimum (acceptable value).
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Considering the complexity of these mappings, a relatively large numbers of the data (obtained
from DEM simulations) are employed in the network training, including about 840 data of ed and
the same size of data for the corresponding f, P(f), q/p and /d. In this work, no noise was added to
the data produced by the DEM model. The impact of noise on neural network training has been
studied by many researchers, for instance the work of An [24] and more recently of Seghouane
et al. [25], who found that adding a certain degree of noise to the inputs can improve the gener-
alization capability of the neural network performance. However, if the noise to signal ratio is too
high, it may adversely affect the training. In the past, research has been conducted to use exper-
imental design to determine the minimum number of training data sets, e.g., the work of Lanou-
ette et al. [26]. In the present study, the number of datasets used for training each network is
sufficiently large (about 840) and the perturbation in the input has been made through careful de-
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sign. For convenience, the training of the neural network model for each mapping is divided into
three sub-models according to the effective range of ed as presented below. However, if the size of
the network increases (e.g., number of hidden nodes) more data could be required. If the variables
become more complicated such as size distribution, there are also techniques available in the lit-
erature to handle this, for example, to apply data dimension reduction using principal component
analysis and independent component analysis before the neural network is trained [27–30].
4. Results and discussion

Figs. 3–8 show the results obtained by the mechanistic neural network, for mapping the func-
tions F1–F6 (Tables 1–6). For comparison purposes, in these figures, we have incorporated the cor-
responding results obtained by three-dimensional DEM modelling alone. It is worth mentioning
that the DEM results used for comparison purposes were not part of the training signals that were
used to train the neural network model. It can be observed that the predicted results based on the
mechanistic neural network compare very well with the results based on (independent) DEM
simulations.
The comparison between the network model results, as shown in Figs. 3 and 5 and their cor-

responding mapping schemes presented in Tables 1 and 3 indicate that the introduction of the fab-
ric tensor /d into the neural modelling for q/p is beneficial as the network structure tends to a
smaller size. This confirms the ability of the mechanistic neural network to provide accurate pre-
dictions for the mechanical behaviour of granular materials as, the realistic mechanistic nature
(for example the contact orientations could be fed in terms of /d, which is more sensitive to strain
level ed) could be captured in the hybrid mechanistic neural network system. The hybrid neural
network modelling allows fast prediction of the bulk behaviour of particulate system, and in
the present case, by a factor of about 5–10 when compared with DEM simulations.
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Table 1
Model for mapping q/p = F1(ed,P(f))

Sub-model no. Range of ed Number of hidden neurons Training epochsa

First layer Second layer

1 [0,0.10) 60 60 120,000
2 [0.10,0.20) 55 55 150,000
3 [0.20,0.30] 50 50 150,000

a A training epoch is said to having been completed when the whole input and output data set for the training have
been presented once to the network.

Table 2
Model for mapping P(f) = F2(ed,q/p)

Sub-model no. Range of ed Number of hidden neurons Training epochs

First layer Second layer

1 [0,0.050) 25 25 90,000
2 [0.050,0.176) 40 40 120,000
3 [0.176,0.298] 65 65 90,000

Table 3
Model for mapping q/p = F3(ed,/d,P(f))

Sub-model no. Range of ed Number of hidden neurons Training epochs

First layer Second layer

1 [0,0.10) 50 50 150,000
2 [0.10,0.20) 50 50 90,000
3 [0.20,0.30] 50 50 60,000

Table 4
Model for mapping P(f) = F4(ed,/d)

Sub-model no. Range of ed Number of hidden neurons Training epochs

First layer Second layer

1 [0,0.050) 25 25 60,000
2 [0.050,0.176) 40 40 150,000
3 [0.176,0.298] 55 55 60,000

Table 5
Model for mapping P(f) = F5(ed,/d,q/p)

Sub-model no. Range of ed Number of hidden neurons Training epochs

First layer Second layer

1 [0,0.050) 25 25 150,000
2 [0.050,0.176) 40 40 120,000
3 [0.176,0.298] 55 55 120,000
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Table 6
Model for mapping /d = F6(ed,P(f))

Sub-model no. Range of ed Number of hidden neurons Training epochs

First layer Second layer

1 [0,0.10) 50 50 120,000
2 [0.10,0.20) 60 60 120,000
3 [0.20,0.30] 65 65 60,000
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5. Conclusions

A hybrid mechanistic neural network method has been used to establish the relationships be-
tween the key variables (micro-macroscopic characteristics) involved in the mechanical behaviour
of a slowly sheared (mono-dispersed) granular system. The possible correlation between the
micro-macroscopic features and strength parameters in the granular material are investigated.
Conceptually, the mechanistic neural network modelling is more reliable and efficient than the
convention network models. The mechanistic neural network model employed here for granular
systems is generic in nature, and can complement other analytical or modelling approaches, for
approximating the desired mappings. However, just like any other identification modelling tech-
niques, for more realistic granular systems, it may require rather long identification experiments.
This may involve obtaining soft signals in terms of realistic particle shapes, size distributions, sur-
face roughness, inter-particle forces etc. However, the generic nature of the hybrid network pre-
sented here provides the basis for further increasing the efficiency of soft sensors, once more
realistic soft sensors are available. Furthermore, the possibility of obtaining soft sensors using rig-
orous theoretical analysis or experimental methods for granular media needs to be explored in
future.
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