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1. Introduction

Since our work may be of interest to audiences of varied background we will try to keep our
notation as elementary as possible and entirely self contained.

The problem in invariant theory that was the point of departure in our investigation is best stated
in its simplest and most elementary version. Given two matrices A = [ a11 a12

a21 a22

]
and B = [ b11 b12

b21 b22

]
of

determinants 1, or equivalently in SL[2] := SL(2,C), we recall that their tensor product may be written
in the block form
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A ⊗ B =
[

a11 B a12 B

a21 B a22 B

]
. (1)

We also recall that the action of a matrix M = [mij]n
i, j=1 on a polynomial P (x) in Rn :=

C[x1, x2, . . . , xn] may be defined by setting

T M P (x) = P (xM), (2)

where the symbol xM is to be interpreted as multiplication of a row n-vector by an n ×n matrix. This
given, we denote by RSL[2]⊗SL[2]

4 the ring of polynomials in R4 that are invariant under the action of
A ⊗ B for all pairs A, B ∈ SL[2]. In symbols

RSL[2]⊗SL[2]
4 = {

P ∈ R4: T A⊗B P (x) = P (x)
}
. (3)

Since the action in (2) preserves degree and homogeneity, RSL[2]⊗SL[2]
4 is graded, and as a vector space

it decomposes into the direct sum

RSL[2]⊗SL[2]
4 =

⊕
m�0

Hm
(
RSL[2]⊗SL[2]

4

)
,

where the mth direct summand here denotes the subspace consisting of the SL[2] ⊗ SL[2]-invariants
that are homogeneous of degree m. The natural problem then arises to determine the Hilbert series

W2(q) =
∑
m�0

qm dim Hm
(
RSL[2]⊗SL[2]

4

)
.

Now note that using (1) iteratively we can define the k-fold tensor product A1 ⊗ A2 ⊗ · · · ⊗ Ak, and
thus extend (3) to its general form

RSL[2]⊗SL[2]⊗···⊗SL[2]
2k = {

P ∈ R2k : T A1⊗A2⊗···⊗Ak P (x) = P (x)
}

and set

Wk(q) =
∑
m�0

qm dim Hm
(
RSL[2]⊗SL[2]⊗···⊗SL[2]

2k

)
.

Remarkably, to this date only the series W2(q), W3(q), W4(q), W5(q) are known explicitly. Moreover,
although the three series W2(q), W3(q), W4(q) may be hand computed, so far W5(q) has only been
obtained by computer.

The third named author, using branching tables calculated in [9], was able to predict the explicit
form of W5(q) by computing a sufficient number of its coefficients. The computation of these tables
took approximately 50 hours using an array of 9 computers.

The series W4(q), W5(q) first appeared in print in works of Luque and Thibon [5,6] which were
motivated by the same problem of quantum computing. We understand that their computation of
W5(q) was carried out by a brute force use of the partial fraction algorithm of the fourth named
author, and it required several hours with the computers of that time.

The present work was carried out whilst unaware of the work of Luque–Thibon. Our main goal is
to acquire a theoretical understanding of the combinatorics underlying such Hilbert series and give a
more direct construction of W5(q) and perhaps bring W6(q) within reach of present computers.

Fortunately, as is often the case with a difficult problem, the methods that are developed to solve
it may be more significant than the problem itself. This is no exception as we shall see.

Let us recall that the pointwise product of two characters χ(1) and χ(2) of the symmetric group Sn

is also a character of Sn , and we shall denote it here by χ(1) �χ(2) . This is usually called the Kronecker
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product of χ(1) and χ(2) . An outstanding yet unsolved problem is to obtain a combinatorial rule for
the computation of the integer

cλ
λ(1),λ(2),...,λ(k) (4)

giving the multiplicity of χλ in the Kronecker product χλ(1) � χλ(2) � · · · � χλ(k)
. Here χλ and

each χλ(i)
are irreducible Young characters of Sn . Using the Frobenius map F that sends the irreducible

character χλ onto the Schur function Sλ , we can define the Kronecker product of two homogeneous
symmetric functions of the same degree f and g by setting

f � g = F
((

F−1 f
) � (

F−1 g
))

.

With this notation the coefficient in (4) may also be written in the form

cλ
λ(1),λ(2),...,λ(k) = 〈sλ(1) � sλ(2) � · · · � sλ(k) , sλ〉,

where 〈 , 〉 denotes the customary Hall scalar product of symmetric polynomials. The relevancy of all
this to the previous problem is a consequence of the following identity.

Theorem 1.1.

Wk(q) =
∑
d�0

q2d〈sd,d � sd,d � · · · � sd,d, s2d〉 (5)

where, in each term, the Kronecker product has k factors.

For this reason, we will often refer to the task of constructing Wk(q) as the Sdd Problem. Using this
connection and some auxiliary results on the Kronecker product of symmetric functions we derived
in [3] that

W2(q) = 1

1 − q2
, W3(q) = 1

1 − q4
, W4(q) = 1

(1 − q2)(1 − q4)2(1 − q6)
. (6)

Although this approach is worth pursuing (see [3]), the present investigation led us to another sur-
prising facet of this problem.

Let us start with a special case. We are asked to place (nonnegative) integer weights on the ver-
tices of the unit square so that all the sides have equal weights. Denoting by P00, P01, P10, P11 the
vertices (see figure) and by p00, p01, p10, p11 their corresponding weights, we are led to the following
Diophantine system:

S2:

∥∥∥∥p00 + p01 − p10 − p11 = 0

p00 − p01 + p10 − p11 = 0
,

The general solution to this problem may be expressed as the formal series

F2(y00, y01, y10, y11) =
∑
p∈S

yp00
00 yp01

01 yp10
10 yp11

11 = 1

(1 − y00 y11)(1 − y01 y10)
.

2
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In particular, making the substitution y00 = y01 = y10 = y11 = q we derive that the enumerator of
solutions by total weight is given by the generating function

G2(q) =
∑
d�0

md(2)q2d = 1

(1 − q2)2
,

with md(2) giving the number of solutions of total weight 2d.
This problem generalizes to arbitrary dimensions. That is we seek to enumerate the distinct ways

of placing weights on the vertices of the unit k-dimensional hypercube so that all hyperfaces have the
same weight. Denoting by pε1ε2···εk the weight we place on the vertex of coordinates (ε1, ε2, . . . , εk)

we obtain a Diophantine system Sk of k equations in the 2k variables {pε1ε2···εk }εi=0,1.
The relevance of all this to the previous problem is a consequence of the following identity.

Theorem 1.2. Denoting by md(k) the number of solutions of the system Sk of total weight 2d and setting

Gk(q) =
∑
d�0

md(k)q2d, (7)

we have

Gk(q) =
∑
d�0

q2d〈hd,d � hd,d � · · · � hd,d, S2d〉,

where, hd,d denotes the homogeneous basis element indexed by the two part partition (d,d), and in each term,
the Kronecker product has k factors.

For this reason, we will refer to the task of constructing the series Gk(q) as the Hdd Problem.
Theorem 1.2 shows that the algorithmic machinery of Diophantine analysis may be used in the

construction of generating functions of Kronecker coefficients as well as Hilbert series of ring of
invariants. More precisely we are referring here to the constant term methods of MacMahon parti-
tion analysis which have been recently translated into computer software by Andrews et al. [1] and
Xin [10].

To see what this leads to, we start by noting that using MacMahon’s approach the solutions of S2
may be obtained by the following identity

F2(y00, y01, y10, y11) =
∑

p00�0

∑
p01�0

∑
p10�0

∑
p11�0

yp00
00 yp01

01 yp10
10 yp11

11 ap00+p01−p10−p11
1 ap00−p01+p10−p11

2

∣∣
a0

1a0
2
,

where the symbol “|a0
1a0

2
” denotes the operator of taking the constant term in a1,a2. This identity may

also be written in the form

F2(y00, y01, y10, y11) = 1

(1 − y00a1a2)(1 − y01a1/a2)(1 − y10a2/a1)(1 − y11/a1a2)

∣∣∣∣
a0

1a0
2

.

In particular the enumerator of the solutions of S2 by total weight may be computed from the identity

G2(q) = 1

(1 − qa1a2)(1 − qa1/a2)(1 − qa2/a1)(1 − q/a1a2)

∣∣∣∣
a0

1a0
2

.

More generally we have

Gk(q) = 1∏
S⊆[1,k](1 − q

∏
i∈S ai/

∏
j /∈Sa j)

∣∣∣∣
a0a0···a0

, (8)

1 2 k
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where we use (and will often use) [m,n] to denote the set {m,m + 1, . . . ,n}. Now, standard methods
of Invariant Theory yield that we also have

Wk(q) =
∏k

i=1(1 − a2
i )∏

S⊆[1,k](1 − q
∏

i∈S ai/
∏

j /∈Sa j)

∣∣∣∣
a0

1a0
2···a0

k

. (9)

A comparison of (8) and (9) strongly suggests that a close study of the combinatorics of Diophantine
systems such as Sk should yield a more revealing path to the construction of such Hilbert series. This
idea turned out to be fruitful, as we shall see, in that it permitted the solution of a variety of similar
problems (see [3,4]). In particular, we were eventually able to obtain that

G5(
√

q) = N5

(1 − q)9(1 − q2)8(1 − q3)6(1 − q4)3(1 − q5)
, (10)

with

N5 = q44 + 7q43 + 220q42 + 2606q41 + 24229q40 + 169840q39 + 951944q38

+ 4391259q37 + 17128360q36 + 57582491q35 + 169556652q34 + 442817680q33

+ 1036416952q32 + 2192191607q31 + 4219669696q30 + 7433573145q29 + 12041305271q28

+ 18003453305q27 + 24921751416q26 + 32017113319q25 + 38243274851q24 + 42524815013q23

+ 44052440432q22 + 42524815013q21 + 38243274851q20 + 32017113319q19 + 24921751416q18

+ 18003453305q17 + 12041305271q16 + 7433573145q15 + 4219669696q14 + 2192191607q13

+ 1036416952q12 + 442817680q11 + 169556652q10 + 57582491q9 + 17128360q8 + 4391259q7

+ 951944q6 + 169840q5 + 24229q4 + 2606q3 + 220q2 + 7q + 1.

Surprisingly, the presence of the numerator factor in (9) absent in (8) does not increase the complexity
of the result, as we see by comparing (10) with the Luque–Thibon result

W5(
√

q) = P5

(1 − q2)4(1 − q3)(1 − q4)6(1 − q5)(1 − q6)5
,

with

P5 = q54 + q52 + 16q50 + 9q49 + 98q48 + 154q47 + 465q46 + 915q45 + 2042q44 + 3794q43 + 7263q42

+ 12688q41 + 21198q40 + 34323q39 + 52205q38 + 77068q37 + 108458q36 + 147423q35

+ 191794q34 + 241863q33 + 292689q32 + 342207q31 + 386980q30 + 421057q29 + 443990q28

+ 451398q27 + 443990q26 + 421057q25 + 386980q24 + 342207q23 + 292689q22 + 241863q21

+ 191794q20 + 147423q19 + 108458q18 + 77068q17 + 52205q16 + 34323q15 + 21198q14

+ 12688q13 + 7263q12 + 3794q11 + 2042q10 + 915q9 + 465q8 + 154q7 + 98q6 + 9q5

+ 16q4 + q2 + 1.

It should be apparent from the size of the numerators of W5(q) and G5(q) that the problem of com-
puting these rational functions explodes beyond k = 4. In fact it develops that all available computer
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packages (including Omega and Latte) fail to directly compute the constant terms in (8) for k = 5.
This notwithstanding, we were eventually able to get the partial fraction algorithm of Xin [10] to
deliver us G5(q).

This paper covers the variety of techniques we developed in our efforts to compute these remark-
able rational functions. Our efforts in obtaining W6(q) and G6(q) are still in progress, so far they only
resulted in reducing the computer time required to obtain W5(q) and G5(q). Using combinatorial
ideas, group actions, in conjunction with the partial fraction algorithm of Xin, we developed three
essentially distinct algorithms for computing these rational functions as well as other closely related
families. Our most successful algorithm reduces the computation time for W5(q) down to about five
minutes. The crucial feature of this algorithm is an inductive process for successively computing the
series Gk(q) and Wk(q), based on a surprising role of divided differences.

This paper is the shortened version of [2]. We organize the contents in 5 sections. Section 1 is this
introduction. In Section 2 we relate these Hilbert series to constant terms and derive a collection of
identities to be used in later sections. In Section 3 we develop the combinatorial model that reduces
the computation of our Kronecker products to solutions of Diophantine systems. In Section 4 we
develop the divided difference algorithm for the computation of the complete generating functions
yielding Wk(q) and Gk(q). In Section 5, after an illustration of what can be done with bare hands
we expand the combinatorial ideas acquired from this experimentation into our three algorithms that
yielded G5(q) and our fastest computation of W5(q).

The readers are referred to the papers of Luque and Thibon [5,6] and Wallach [8,9] for an un-
derstanding of how these Hilbert series are related to problem arising in the study of quantum
computing.

2. Hilbert series of invariants as constant terms

Let us recall that given two matrices A = [aij]m
i, j=1 and B = [bij]n

i, j=1 we use the notation A ⊗ B to
denote the nm × nm block matrix A ⊗ B = [aij B]m

i, j=1. For instance, if m = n = 2, then

A ⊗ B =

⎡
⎢⎢⎢⎣

a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

⎤
⎥⎥⎥⎦ .

Here and in the following, we define T A P (x) to be the action of an m × m matrix A = [aij]m
i, j=1 on a

polynomial P (x) = P (x1, x2, . . . , xm) in Rm := C[x1, x2, . . . , xm] by

T A P (x1, x2, . . . , xm) = P

(
m∑

i=1

xiai1,

m∑
i=1

xiai2, . . . ,

m∑
i=1

xiaim

)
. (11)

In matrix notation (viewing x = (x1, x2, . . . , xm) as a row vector) we may simply rewrite this as

T A P (x) = P (xA).

Recall that if G is a group of m × m matrices we say that P is G-invariant if and only if

T A P (x) = P (x) ∀A ∈ G.

The subspace of Rm of G-invariant polynomials is usually denoted RG
m . Clearly, the action in (11)

preserves homogeneity and degree. Thus we have the direct sum decomposition

RG
m = Ho

(
RG

m

) ⊕ H1
(
RG

m

) ⊕ H2
(
RG

m

) ⊕ · · · ⊕ Hd
(
RG

m

) ⊕ · · ·
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where Hd(RG
m) denotes the subspace of G-invariants that are homogeneous of degree d. The Hilbert

series of RG
m is simply given by the formal power series

FG(q) =
∑
d�0

qd dim
(

Hd
(
RG

m

))
.

This is a well-defined formal power series since dim Hd(RG
m) � dim(Hd(Rm)) = (d+m−1

m−1

)
.

When G is a finite group the Hilbert series FG(q) is immediately obtained from Molien’s formula

FG(q) = 1

|G|
∑
A∈G

1

det(I − q A)
.

For an infinite group G which possesses a unit invariant measure ω this identity becomes

FG(q) =
∫

A∈G

1

det(I − q A)
dω. (12)

For the present developments we need to specialize all this to the case G = SL[2]⊗k , that is the group
of 2k × 2k matrices obtained by tensoring a k-tuple of elements of SL[2]. More precisely

SL[2]⊗k = {
A1 ⊗ A2 ⊗ · · · ⊗ Ak: Ai ∈ SL[2] ∀i = 1,2, . . . ,k

}
. (13)

Our first task in this section is to derive the identity in (9). That is

Theorem 2.1. Setting for k � 1,

Wk(q) = FSL[2]⊗k (q) =
∑
d�0

qd dim
(

Hd
(
RSL[2]⊗k

2k

))
, (14)

we have

Wk(q) =
∏k

i=1(1 − a2
i )∏

S⊆[1,k](1 − q
∏

i∈S ai/
∏

j /∈Sa j)

∣∣∣∣
a0

1a0
2···a0

k

. (15)

We need the following result.

Proposition 2.2. If Q (a1,a2, . . . ,ak) is a Laurent polynomial in C[a1,a2, . . . ,ak;1/a1,1/a2, . . . ,1/ak] then

(
1

2π

)k π∫
−π

· · ·
π∫

−π

Q
(
eiθ1 , eiθ2 , . . . , eiθk

)
dθ1 dθ2 · · ·dθk = Q (a1,a2, . . . ,ak)|a0

1a0
2···a0

k
. (16)

Proof. By multilinearity, it suffices to consider Q (a1,a2, . . . ,ak) = ar1
1 ar2

2 · · ·ark
k , in which case (16)

obviously holds. �
Proof of Theorem 2.1. To keep our exposition within reasonable limits we will need to assume here
some well-known facts (see [9] for proofs). Since SL[2] has no finite measure the first step is to note
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that a polynomial P (x) ∈ C[x1, x2, . . . , x2k ] is SL[2]⊗k-invariant if and only if it is SU[2]⊗k-invariant,
where SU[2] := SU(2,C) and as in (13)

SU[2]⊗k = {
A1 ⊗ A2 ⊗ · · · ⊗ Ak: Ai ∈ SU[2] ∀i = 1,2, . . . ,k

}
.

In particular we derive that FSL[2]⊗k (q) = FSU[2]⊗k (q). This fact allows us to compute FSL[2]⊗k (q) using
Molien’s identity (12). Note however that if

A = A1 ⊗ A2 ⊗ · · · ⊗ Ak

and Ai has eigenvalues ti,1/ti then (using plethistic notation) we have

1

det(I − q A)
=

∑
m�0

qmhm
[
(t1 + 1/t1)(t2 + 1/t2) · · · (tk + 1/tk)

]
.

Denoting by dωi the invariant measure of the ith copy of SU[2] we see that (12) reduces to

FSU[2]⊗k (q) =
∑
m�0

qm
∫

SU[2]
· · ·

∫
SU[2]

hm
[
(t1 + 1/t1) · · · (tk + 1/tk)

]
dω1 · · ·dωk. (17)

Now it is well know that if an integrand f (A) of SU[2] is invariant under conjugation then

∫
SU[2]

f (A)dω = 1

π

π∫
−π

f

([
eiθ 0

0 e−iθ

])
sin2 θ dθ.

This identity converts the right-hand side of (17) to

∑
m�0

qm 1

πk

π∫
−π

· · ·
π∫

−π

hm
[(

eiθ1 + e−iθ1
) · · · (eiθk + e−iθk

)]
sin2 θ1 · · · sin2 θk dθ1 · · ·dθk. (18)

The substitution

sin2 θ j = 1 − e2iθ j +e−2iθ j

2

2

reduces the coefficient of qm to

1

(2π)k

π∫
−π

· · ·
π∫

−π

hm
[(

eiθ1 + e−iθ1
) · · · (eiθk + e−iθk

)] k∏
i=1

(
1 − e2iθ j + e−2iθ j

2

)
dθ1 · · ·dθk. (19)

However the factor hm[(eiθ1 + e−iθ1) · · · (eiθk + e−iθk )] is invariant under any of the interchanges
eiθ j ↔ e−iθ j . Thus the integral in (19) may be simplified to

1

(2π)k

π∫
· · ·

π∫
hm

[(
eiθ1 + e−iθ1

) · · · (eiθk + e−iθk
)] k∏

i=1

(
1 − e2iθ j

)
dθ1 · · ·dθk.
−π −π
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Proposition 2.2 then yields that this integral may be computed as the constant term

hm
[
(a1 + 1/a1)(a2 + 1/a2) · · · (ak + 1/ak)

] k∏
i=1

(
1 − a2

i

)∣∣
a0

1a0
2···a0

k
.

Using this in (18) we derive that

FSU[2]⊗k (q) =
∑
m�0

qmhm
[
(a1 + 1/a1)(a2 + 1/a2) · · · (ak + 1/ak)

] k∏
i=1

(
1 − a2

i

)∣∣
a0

1a0
2···a0

k

=
∑
m�0

qmhm

[ ∑
S⊆[1,k]

∏
i∈S ai∏
j /∈S a j

] k∏
i=1

(
1 − a2

i

)∣∣
a0

1a0
2···a0

k

=
( ∏

S⊆[1,k]

1

1 − q
∏

i∈S ai∏
j /∈S a j

) k∏
i=1

(
1 − a2

i

)∣∣
a0

1a0
2···a0

k
.

This completes the proof of Theorem 2.1. �
Note that if we restrict our action of SU[2]⊗k to the subgroup of matrices

T ⊗k
2 =

{[
t1 0

0 t1

]
⊗

[
t2 0
0 t2

]
⊗ · · · ⊗

[
tk 0

0 tk

]
: tr = eiθr

}

then a similar use of Molien’s formula yields the following result.

Theorem 2.3. The Hilbert series of the ring of invariants R
T ⊗k

2
2k is given by the constant term

F T ⊗k
2

(q) = 1∏
S⊆[1,k](1 − q

∏
i∈S ai/

∏
j /∈Sa j)

∣∣∣∣
a0

1a0
2···a0

k

. (20)

Proof. The integrand 1/det(1 − q A) is the same as in the previous proof and only the Haar measure
changes. In this case we must take dw = dθ1dθ2 · · ·dθk/(2π)k in (12), and Molien’s formula gives

F T ⊗k
2

(q) = 1

(2π)k

π∫
−π

· · ·
π∫

−π

1∏
S⊆[1,k](1 − q

∏
i∈S ti/

∏
j /∈St j)

dθ1dθ2 · · ·dθk.

Thus (20) follows from Proposition 2.2. �
Remark 2.4. There is another path leading to the same result that is worth mentioning here since it
gives a direct way of connecting Invariants to Diophantine systems. For notational simplicity we will
deal with the case k = 3. Note that the element[

t1 0

0 t1

]
⊗

[
t2 0

0 t2

]
⊗

[
t3 0

0 t3

]
∈ T ⊗3

2

is none other than the 8 × 8 diagonal matrix

A(t1, t2, t3) = diag(t1t2t3, t1t2/t3, t1t3/t2, t1/t2t3, t2t3/t1, t2/t1t3, t3/t1t2,1/t1t2t3).
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This gives that for any monomial xp = xp1
1 xp2

2 · · · xp8
8 we have

A(t1, t2, t3)xp = t p1+p2+p3+p4−p5−p6−p7−p8
1 t p1+p2−p3−p4+p5+p6−p7−p8

2 t p1−p2+p3−p4+p5−p6+p7−p8
3 × xp .

Thus all the monomials are eigenvectors and a polynomial P (x1, x2, . . . , x8) will be invariant if and
only if all its monomials are eigenvectors of eigenvalue 1. It then follows that the Hilbert series

F T ⊗3
2

(q) of C[x1, x2, . . . , x8]T ⊗3
2 is obtained by q-counting these monomials by total degree. That is

q-counting by the statistic p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 the solutions of the Diophantine
system

S3 =

∥∥∥∥∥∥∥
p1 + p2 + p3 + p4 − p5 − p6 − p7 − p8 = 0

p1 + p2 − p3 − p4 + p5 + p6 − p7 − p8 = 0

p1 − p2 + p3 − p4 + p5 − p6 + p7 − p8 = 0

(21)

and MacMahon partition analysis gives

F T ⊗3
2

(q) = 1

1 − qa1a2a3

1

1 − qa1a2/a3

1

1 − qa1a3/a2

1

1 − qa1/a2a3

1

1 − qa2a3/a1

× 1

1 − qa2/a1a3

1

1 − qa3/a1a2

1

1 − qa/a1a2a3

∣∣∣∣
a0

1a0
2a0

3

.

This gives another proof of the case k = 3 of (20). It is also clear that the same argument can be used
for all k > 3 as well.

Remark 2.5. Full information about the solutions of our systems is given by the complete generating
function

Fk(x1, x2, . . . , x2k ) =
∑
p∈Sk

xp1
1 xp2

2 · · · x
p2k

2k . (22)

Using the notation adopted for S3 in (21), our system Sk may be written in vector form

p1 V 1 + p2 V 2 + · · · + p2k V 2k = 0,

where V 1, V 2, . . . , V 2k are the k-vectors (±1,±1, . . . ,±1) yielding the vertices of the hypercube of
semiside 1 centered at the origin. In this notation, MacMahon partition analysis gives that the rational
function in (22) is obtained by taking the constant term

Fk(x1, x2, . . . , x2k ) =
2k∏

i=1

1

1 − xi Ai

∣∣∣∣
a0

1a0
2···a0

k

with the Ai Laurent monomials in a1,a2, . . . ,ak which may be written in the form

Ai =
k∏

i=1

a1−2εi
i

where ε1ε2 · · ·εk are the binary digits of i − 1.
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In the same vein the companion rational function W (x1, x2, . . . , x2k ) associated to the Sdd problem
is obtained by taking the constant term

Wk(x1, x2, . . . , x2k ) =
k∏

j=1

(
1 − a2

j

) 2k∏
i=1

1

1 − xi Ai

∣∣∣∣
a0

1a0
2···a0

k

.

Of course we have

Gk(q) = Fk(x1, x2, . . . , x2k )|xi=q and Wk(q) = Wk(x1, x2, . . . , x2k )|xi=q.

In Section 4 we will show that, at least in principle, these rational functions could be constructed by
a succession of elementary steps interspersed by single constant term extractions.

3. Diophantine systems, Constant terms and Kronecker products

We have seen, by MacMahon partition analysis, that the generating function Gk(q) defined in (7),
which counts solutions of the Diophantine system Sk , is given by the constant term identity in (8):

Gk(q) = 1∏
S⊆[1,k](1 − q

∏
i∈S ai/

∏
j /∈Sa j)

∣∣∣∣
a0

1a0
2···a0

k

. (23)

In the last section we proved (in Theorem 2.1) that the Hilbert series Wk(q) of invariants in (14) is
given by the constant term

Wk(q) =
∏k

i=1(1 − a2
i )∏

S⊆[1,k](1 − q
∏

i∈S ai/
∏

j /∈Sa j)

∣∣∣∣
a0

1a0
2···a0

k

. (24)

A comparison of (23) and (24) clearly suggests that these two results must be connected. This con-
nection has a beautiful combinatorial underpinning which leads to another interpretation of these
remarkable constant terms. The idea is best explained in the simplest case k = 2. Then (24) reduces
to

W2(q) = 1 − a2
1 − a2

2 + a2
1a2

2

(1 − qa1a2)(1 − qa1/a2)(1 − qa2/a1)(1 − q/a1a2)

∣∣∣∣
a0

1a0
2

.

Expanding the inner rational function as product of four formal power series in q we get

W2(q) =
∑

p00�0

∑
p01�0

∑
p10�0

∑
p11�0

qp00+p01+p10+p11ap00+p01−p10−p11
1 ap00−p01+p10−p11

2

∣∣
a0

1a0
2

−
∑

p00�0

∑
p01�0

∑
p10�0

∑
p11�0

qp00+p01+p10+p11ap00+p01−p10−p11+2
1 ap00−p01+p10−p11

2

∣∣
a0

1a0
2

−
∑

p00�0

∑
p01�0

∑
p10�0

∑
p11�0

qp00+p01+p10+p11ap00+p01−p10−p11
1 ap00−p01+p10−p11+2

2

∣∣
a0

1a0
2

+
∑

p �0

∑
p �0

∑
p �0

∑
p �0

qp00+p01+p10+p11 ap00+p01−p10−p11+2
1 ap00−p01+p10−p11+2

2

∣∣
a0

1a0
2
. (25)
00 01 10 11
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Now by MacMahon partition analysis, the ith term counts solutions of the Diophantine system

S i
2 =

∥∥∥∥p00 + p01 − p10 − p11 = ci

p00 − p01 + p10 − p11 = di
, (26)

where (ci,di) equals (0,0), (−2,0), (0,−2), (−2,−2) for i = 1,2,3,4, respectively. Note that the first
term of (25) is none other than (23) for k = 2.

Applying the same decomposition in the general case we see that the series Wk(q) may be viewed
as the end product of an inclusion exclusion process applied to a family of Diophantine systems. To
derive some further consequences of this fact, it is more convenient to use another combinatorial
model for these systems. In this alternate model our family of objects consists of the collection Fd of
d-subsets of the 2d-element set

Ω2d = {1,2,3, . . . ,2d}.

For a given A = {1 � i1 < i2 < · · · < id � 2d} ∈ Fd and σ in the symmetric group S2d we set

σ A = {σi1 , σi2 , . . . , σid }.

This clearly defines an action of S2d on Fd as well as on the k-fold cartesian product

F k
d = Fd × Fd × Fd × · · · × Fd.

Theorem 3.1. The number md(k) of solutions of the Diophantine system Sk is equal to the number of orbits in
the action of S2d on F k

d .

Proof. It will be sufficient to see this for k = 2. Then leaving d generic we can visualize an element of
Fd × Fd by the Ven diagram of Fig. 1. There we have depicted the pair (A1, A2) as it lies in Ω2d . Using
these two sets we can decompose Ω2d into 4 parts labeled by A00, A01, A10, A11. More precisely “A00”
labels the set A1 ∩ A2, “A01” labels the set A1 ∩ c A2, “A10” labels the set c A1 ∩ A2 and “A11” labels
the set c A1 ∩ c A2. Here we use “c Ai” to denote the complement of Ai in Ω2d . This given, if we let
p00, p01, p10, p11 denote the respective cardinalities of these sets, the condition that the pair (A1, A2)

belongs to Fd × Fd yields that we must have

p00 + p01 + p10 + p11 = 2d,

p00 + p01 = |A1| = d,

p00 + p10 = |A2| = d.

Note that this system of equations is equivalent to the system

p00 + p01 + p10 + p11 = 2d,

p00 + p01 − p10 − p11 = 0,

p00 − p01 + p10 − p11 = 0.

It is easily seen that for any solution (p00, p01, p10, p11) of this system, we can immediately con-
struct a pair of subsets (A1, A2) ∈ Fd × Fd by simply filling the sets A00, A01, A10, A11 in the diagram
of Fig. 1 with p00, p01, p10, p11 respective elements from the set Ω2d . Moreover, any two such fillings
can be seen to be images of each other under suitable permutations of S2d . In other words by this
construction we obtain a bijection between the orbits of Fd × Fd under S2d and the solutions of



404 A. Garsia et al. / Advances in Applied Mathematics 42 (2009) 392–421
Fig. 1. The Ven diagram for F 2
d .

the system S2 we have previously encountered. This proves the theorem for k = 2. The general case
follows by an entirely analogous argument. �

Now we are ready to prove Theorem 1.2 and then Theorem 1.1.

Proof of Theorem 1.2. We are to show that

mk(d) = 〈hd,d � hd,d � · · · � hd,d, s2d〉. (27)

It is well known that a transitive action of a group G on a set Ω is equivalent to the action of G on
the left G-cosets of the stabilizer of any element of Ω . In our case, pick the subset [1,d] of Ω2d . Then
the stabilizer is the Young subgroup S[1,d] × S[d+1,2d] of S2d and thus the Frobenius characteristic of
this action is the homogeneous basis element hd,d = hdhd . It follows then that the Frobenius charac-
teristic of the action of S2d on the k-tuples (A1, A2, . . . , Ak) of d-subsets of Ω2d is given by the k-fold
Kronecker product hd,d � hd,d � · · · � hd,d. Therefore the scalar product

〈hd,d � hd,d � · · · � hd,d, s2d〉

yields the multiplicity of the trivial under this action. But it is well known, and easy to see that
this multiplicity is also equal to the number of orbits under this action. Thus (27) follows by Theo-
rem 3.1. �
Proof of Theorem 1.1. Again we will only need to do it for k = 2. To this end note that by Theorem 1.2
the number of solutions of the system S 1

2 in (26) is given by the scalar product

〈hd,d � hd,d, s2d〉. (28)

In the same vein we see that the number of solutions to the system S 2
2 in (26) may be viewed as

the number of orbits in the action of S2d on the pairs of subsets (A1, A2) of Ω2d where |A2| = |c A2|
and |A1| = |c A1| + 2. We have seen that the Frobenius characteristic of the action of S2d on subsets
of cardinality d is hd,d . On the other hand the action of S2d on sets of cardinality d + 1 is equivalent
to the action of S2d on left cosets of S[1,d+1] × S[d+2,2d] yielding that the Frobenius characteristic for
this action is hd+1hd−1. Thus the Frobenius characteristic of the action of S2d on such pairs must be
the Kronecker product

hd+1hd−1 � hdhd.

It then follows that the number of solutions of the system S 2
2 is given by the scalar product

〈hd+1hd−1 � hdhd, s2d〉. (29)
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The same reasoning gives that the number of solutions of the systems S 3
2 and S 4

2 in (26) are given
by the scalar products

〈hdhd � hd+1hd−1, s2d〉 and 〈hd+1hd−1 � hd+1hd−1, s2d〉. (30)

It follows then that the coefficient of q2d in the alternating sum of formal power series in (25) is none
other than the following alternating sum of the scalar products in (28), (29) and (30):

W2(q)|q2d = 〈hdhd � hdhd, s2d〉 − 〈hd+1hd−1 � hdhd, s2d〉
− 〈hdhd � hd+1hd−1, s2d〉 + 〈hd+1hd−1 � hd+1hd−1, s2d〉

= 〈
(hdhd − hd+1hd−1) � (hdhd − hd+1hd−1), s2d

〉 = 〈sd,d � sd,d, s2d〉.

Summing over d gives

W2(q) =
∑
d�0

q2d〈sd,d � sd,d, s2d〉.

An entirely analogous argument proves the general identity in (5). �
4. Enter divided difference operators

There is a truly remarkable approach to the solutions of a variety of constant term problems which
exhibit the same types of symmetries of the Hdd and Sdd problems. We will introduce the approach
in some simple cases first. We define the double of the Diophantine system

S2 =
∥∥∥∥p1 + p2 − p3 − p4 = 0

p1 − p2 + p3 − p4 = 0

to be the system

S S2 =
∥∥∥∥p1 + p2 − p3 − p4 + p5 + p6 − p7 − p8 = 0

p1 − p2 + p3 − p4 + p5 − p6 + p7 − p8 = 0
.

As we can easily see we have simply repeated twice each linear form and appropriately increased the
indices of the variables. Now suppose that we are in possession of the complete generating function
of S2, that is

F S2 (x1, x2, x3, x4) =
∑

p∈S2

xp1
1 xp2

2 xp3
3 xp4

4 .

We claim that the complete generating function of S S2 is simply given by

F S S2 (x1, x2, . . . , x8) = δ1,5δ2,6δ3,7δ4,8 F S2 (x1, x2, x3, x4), (31)

where for any pair of indices (i, j) we let δi, j denote the divided difference operator defined for any
function f (x) by

δi, j f (x) = f (x) − f (x)|xi=x j , x j=xi

x − x
.

i j
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Proof of (31). By MacMahon partition analysis we have

F S2 (x1, x2, x3, x4) = 1

(1 − x1a1a2)

1

(1 − x2a1/a2)

1

(1 − x3a2/a1)

1

(1 − x4/a1a2)

∣∣∣∣
a0

1a0
2

. (32)

Now note that since

δ1,5
1

(1 − x1a1a2)
=

(
1

(1 − x1a1a2)
− 1

(1 − x5a1a2)

)
1

x1 − x5
= a1a2

(1 − x1a1a2)(1 − x5a1a2)
,

we obtain similarly

δ2,6
1

(1 − x2a1/a2)
= a1/a2

(1 − x2a1/a2)(1 − x6a1/a2)
,

δ3,7
1

(1 − x3a2/a1)
= a2/a1

(1 − x3a2/a1)(1 − x7a2/a1)
,

δ4,8
1

(1 − x4/a1a2)
= 1/a1a2

(1 − x4/a1a2)(1 − x8/a1a2)
.

Thus applying the operator δ1,5δ2,6δ3,7δ4,8 to both sides of (32) gives

δ1,5δ2,6δ3,7δ4,8 F S2 (x1, x2, x3, x4) = 1

(1 − x1a1a2)(1 − x2a1/a2)(1 − x3a2/a1)(1 − x4/a1a2)

×
(1 − x5a1a2)(1 − x6a1/a2)(1 − x7a2/a1)(1 − x8/a1a2)

∣∣∣∣
a0

1a0
2

.

(33)

Now we can easily recognize that (33) is precisely the constant term that MacMahon partition analysis
would yield for the system S S2. This proves (31). �

Note that to obtain the equality in (33) we have used the simple fact that the divided difference
operator and the constant term operator do commute. This is the fundamental property which is at
the root of the present algorithm. This example should make it evident to have the following more
general result (with double modified).

Theorem 4.1. If F S (x1, x2, . . . , xn) is the complete generating function of the Diophantine system

S =

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

b11 b12 · · · b1n

.

.

.
.
.
. · · · .

.

.

br1 br2 · · · brn

⎤
⎥⎥⎦

⎡
⎢⎣

p1

.

.

.

pn

⎤
⎥⎦ =

⎡
⎢⎣

c1

.

.

.

cr

⎤
⎥⎦ ,

then the complete generating function of the doubling of S defined by

S S =

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

b11 b12 · · · b1n

.

.

.
.
.
. · · · .

.

.

b b · · · b

∣∣∣∣∣∣∣∣
b11 b12 · · · b1n

.

.

.
.
.
. · · · .

.

.

b b · · · b

⎤
⎥⎥⎦

⎡
⎢⎣

p1

.

.

.

p2n

⎤
⎥⎦ =

⎡
⎢⎣

c1 − b11 − b12 − · · · − b1n

.

.

.

cr − br1 − br2 − · · · − brn

⎤
⎥⎦
r1 r2 rn r1 r2 rn
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is given by the rational function

F S S (x1, x2, . . . , x2n) = δ1,n+1δ2,n+2 · · · δn,2n F S (x1, x2, . . . , xn).

This result combined with the next simple observation yields a powerful algorithm for computing
a variety of complete generating functions.

Theorem 4.2. Let F S (x1, x2, . . . , xn) be the complete generating function of a Diophantine system S . Then the
complete generating function F S E (x1, x2, . . . , xn) of the system S E obtained by adding the equation

E = ‖r1 p1 + r2 p2 + · · · + rn pn = s

to S is obtained by taking the constant term

F S E (x1, x2, . . . , xn) = a−s F S
(
ar1 x1,ar2 x2, . . . ,arn xn

)∣∣
a0 .

Proof. By assumption

F S (x1, x2, . . . , xn) =
∑
p∈S

xp1
1 xp2

2 · · · xpn
n .

Now we have

a−s F S
(
ar1 x1,ar2 x2, . . . ,arn xn

)∣∣
a0 =

∑
p∈S

xp1
1 xp2

2 · · · xpn
n ar1 p1+r2 p2+···+rn pn−s

∣∣
a0

=
∑

p∈S E
xp1

1 xp2
2 · · · xpn

n

= F S E (x1, x2, . . . , xn). �
These two results provide us with algorithms for (at least in principle) computing all the Hdd

series Gk(q) as well as the Sdd series Wk(q).

Algorithm 4.3 (Hdd Case).

b1) Initially compute the complete generating function for the Hdd problem for k = 1. That is, com-
pute the constant term

F1(x1, x2) = 1

(1 − x1a)(1 − x2/a)

∣∣∣∣
a0

.

ak) With Fk−1(x1, . . . , x2k−1 ) from step bk−1), compute by divided difference

F Fk−1(x1, . . . , x2k ) = δ1,1+2k−1 · · · δ2k−1,2k Fk−1(x1, . . . , x2k−1 ).

bk) With F Fk−1(x1, . . . , x2k−1 ) from step ak), compute the complete generating function for the Sdd
problem for k by the following constant term:

Fk(x1, x2, . . . , x2k ) = F Fk−1(ax1,ax2, . . . ,ax2k−1 , x2k−1+1/a, . . . , x2k /a)|a0 .
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Algorithm 4.4 (Sdd Case).

b1) Initially compute the complete generating function for the Sdd problem for k = 1. That is, com-
pute the constant term

W1(x1, x2) = 1 − a2

(1 − x1a)(1 − x2/a)

∣∣∣∣
a0

.

ak) With Wk−1(x1, . . . , x2k−1 ) from step bk−1), compute by divided difference

W Wk−1(x1, . . . , x2k ) = δ1,1+2k−1 · · · δ2k−1,2k Wk−1(x1, . . . , x2k−1 ).

bk) With W Wk−1(x1, . . . , x2k−1 ) from step ak), compute the complete generating function for the Sdd
problem for k by the following constant term:

Wk(x1, x2, . . . , x2k ) = W Wk−1(ax1,ax2, . . . ,ax2k−1 , x2k−1+1/a, . . . , x2k /a)
(
1 − a2)∣∣

a0 .

Since the two algorithms are similar, we only explain here in detail the Sdd case. For the Hdd case,
see [2]. Note that the sequence of steps in Algorithm 4.4 can be terminated by replacing step bk) by

b′
k) To obtain the generating function Wk(q) compute the constant term

Wk(q) = W Wk−1(aq,aq, . . . ,aq,q/a, . . . ,q/a)
(
1 − a2)∣∣

a0 .

Only steps b1) and a2) can be carried out by hand. Though steps 3 and 4 are routine they are
too messy to do by hand. But step 5 again needs further tricks to be carried out by computer. Step 6
appears beyond reach at the moment.

It will be instructive to see what some of these steps give.

b1)

W1(x1, x2) = 1 − x2
2

1 − x1x2
.

a2)

W W1(x1, . . . , x4) = 1 − x2
2 − x2x4 − x2

4 + x1x2
2x4 + x2

2x3x4 − x1x2x3x4 + x1x2x2
4 + x2x3x2

4 − x1x2
2x3x2

4

(1 − x1x2)(1 − x3x2)(1 − x1x4)(1 − x3x4)
.

b2)

W2(x1, x2, x3, x4) = 1 − x2x4 − x3x4 + x2
4

(1 − x1x4)(1 − x2x3)
.

This gives

W2(q) = 1

1 − q2
.
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a3)

W W2(x1, . . . , x8) = (large numerator)

(1 − x1x4)(1 − x1x8)(1 − x2x3)(1 − x2x7)(1 − x3x6)(1 − x4x5)(1 − x5x8)(1 − x6x7)
.

b3)

W3(x1, . . . , x8) = (large numerator)

(1 − x1x8)(1 − x2x7)(1 − x3x6)(1 − x4x5)(1 − x1x4x6x7)(1 − x2x3x5x8)
.

b′
3) Notwithstanding the complexity of the previous results it turns out that to obtain W3(q) we need

only compute the constant term

W3(q) = 1

(1 − q2)
× 1 − a2

(1 − q2a2)(1 − q2/a2)

∣∣∣∣
a0

. (34)

To this end we start by determining the coefficients A and B in the partial fraction decomposition

(1 − a2)a2

(1 − q2a2)(a2 − q2)
= 1

q2
+ A

1 − q2a2
+ B

a2 − q2

obtaining

A = (1 − a2)a2

(a2 − q2)

∣∣∣∣
a2=1/q2

= (1 − 1/q2)/q2

(1/q2 − q2)
= − 1

q2(1 + q2)
,

B = (1 − a2)a2

(1 − q2a2)

∣∣∣∣
a2=q2

= (1 − q2)q2

(1 − q4)
= q2

(1 + q2)

(the exact value of B is not needed) and we can write

1 − a2

(1 − q2a2)(1 − q2/a2)
= 1

q2
− 1

q2(1 + q2)
× 1

(1 − a2q2)
+ 1

(1 + q2)
× q2/a2

1 − q2/a2
.

Thus taking constant terms gives

1 − a2

(1 − q2a2)(1 − q2/a2)

∣∣∣∣
a0

= 1

q2
− 1

q2(1 + q2)
+ 0 = 1

1 + q2
.

Using this in (34) we finally obtain

W3(q) = 1

1 − q4
.

a4)

W W4(x1, x2, . . . , x16) = (too large for typesetting)
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b′
4) Notwithstanding the complexity of the previous result it turns out that to obtain W4(q) we need

only compute the constant term

W4(q) = (1 + q4)(1 + q6)

(1 − q2)(1 − q4)2
× 1 − a2

(1 − a2q4)(1 − q4/a2)(1 − a4q4)(1 − q4/a4)

∣∣∣∣
a0

.

To illustrate the power and flexibility of the partial fraction algorithm we will carry this out by
hand. The reader is referred to [3] for a brief tutorial on the use of this algorithm. In the next few
lines we will strictly adhere to the notation and terminology given in [3].

To begin we note that we need only calculate the constant term

C(x) = 1 − a

(1 − ax)(1 − x/a)(1 − a2x)(1 − x/a2)

∣∣∣∣
a0

, (35)

since we can write

W4(q) = (1 + q4)(1 + q6)

(1 − q2)(1 − q4)2
× C

(
q4). (36)

Now we have

1

(1 − a2x)(1 − x/a2)
= a2

(1 − a2x)(a2 − x)
= 1

1 − x2

1

1 − a2x
+ 1

1 − x2

x/a2

1 − x/a2
.

Thus (35) may be rewritten in the form

C(x) = 1

1 − x2

(
(1 − a)

(1 − ax)(1 − x/a)

1

1 − a2x

∣∣∣∣
a0

+ (1 − a)

(1 − ax)(1 − x/a)

x/a2

1 − x/a2

∣∣∣∣
a0

)
. (37)

Note that in the first constant term we have only one dually contributing term and on the second we
have only one contributing term. This gives

(1 − a)

(1 − ax)(1 − x/a)

1

1 − a2x

∣∣∣∣
a0

= (1 − a)

(1 − ax)

1

1 − a2x

∣∣∣∣
a=x

= (1 − x)

(1 − x2)

1

1 − x3
, (38)

(1 − a)

(1 − ax)(1 − x/a)

x/a2

1 − x/a2

∣∣∣∣
a0

= (1 − a)

(1 − x/a)

x/a2

1 − x/a2

∣∣∣∣
a=1/x

= −(1 − x)

(1 − x2)

x2

1 − x3
. (39)

Using (38) and (39) in (37) we get

C(x) = 1

1 − x2

(
(1 − x)

(1 − x2)

1

1 − x3
− (1 − x)

(1 − x2)

x2

1 − x3

)
= 1 − x

(1 − x2)(1 − x3)
.

Together with (36), we get

W4(q) = (1 + q4)(1 + q6)

(1 − q2)(1 − q4)2
× 1 − q4

(1 − q8)(1 − q12)
= 1

(1 − q2)(1 − q4)2(1 − q6)
.

We will see in Section 5 what needs to be done to carry out step b′
5) on the computer.

The identities for W2(q), W3(q), W4(q) in (6) have also been derived in [3] by symmetric function
methods from the relation (5). In fact, all three results in (6) are immediate consequences of the
following deeper symmetric function identity. (For a proof see [3, Section 2].)
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Theorem 4.5.

sd,d � sd,d =
∑
λ�2d

sλχ(λ ∈ EO4)

where EO4 denotes the set of partitions of length 4 whose parts are � 0 and all even or all odd.

5. Solving the Hdd problem for k = 5

This section is divided into three parts. In the first subsection we start with our computer findings
and end by giving a combinatorial decomposition that works nicely to obtain F3(x). In the second
subsection, this decomposition is described algebraically and, together with group actions, turned
into manipulatory gyrations that will be used to extract G5(q) and W5(q) out of our computers. In
the final subsection, by combining the idea of decomposition and the method of divided difference in
Section 4, we give our best way that reduce the computation time for G5(q) and W5(q) down to a
few minutes.

5.1. A combinatorial decomposition for F3(x)

Our initial efforts at solving the Hdd an Sdd problems were entirely carried out by computer
experimentation. After obtaining quite easily the series G2(q), G3(q), G4(q) and W2(q), W3(q), W4(q),
all the computer packages available to us failed to directly deliver G5(q) and W5(q).

The computer data obtained for the Hdd problem for k = 2,3 were combinatorially so revealing
that we have been left with a strong impression that this problem should have a very beautiful
combinatorial general solution. Only time will tell if this will ever be the case. To stimulate further
research we will begin by reviewing our initial computer and manual combinatorial findings.

Recall that we denoted by Fd the collection of all d-subsets of the 2d element set Ω2d . We also
showed (in Theorem 3.1) that the coefficient md(k) in the series Gk(q) = ∑

d�0 q2dmd(k) counts the
number of orbits under the action of the symmetric group S2d on the k-fold cartesian product Fd ×
Fd × · · · × Fd . Denoting by (A1, A2, . . . , Ak) a generic element of this cartesian product, then each
orbit is uniquely determined by the 2k cardinalities

pε1,ε2,...,εk = ∣∣Aε1
1 ∩ Aε2

2 ∩ · · · ∩ Aεk
k

∣∣
where for each 1 � i � k we set

Aεi
i =

{
Ai if εi = 0,

c Ai if εi = 1.

(
here c Ai = Ω2d/Ai

)
.

It is also convenient to set Aε1,ε2,...,εk = Aε1
1 ∩ Aε2

2 ∩ · · · ∩ Aεk
k . This given we have seen that the condi-

tion (A1, A2, . . . , Ak) ∈ F k
d is equivalent to the Diophantine system

Sk =

∥∥∥∥∥∥∥∥∥∥∥

∑1
ε1=0

∑1
ε2=0 · · ·∑1

εk=0(1 − 2ε1)pε1,ε2,...,εk = 0∑1
ε1=0

∑1
ε2=0 · · ·∑1

εk=0(1 − 2ε2)pε1,ε2,...,εk = 0

.

.

.∑1
ε1=0

∑1
ε2=0 · · ·∑1

εk=0(1 − 2εk)pε1,ε2,...,εk = 0

together with the condition |Ω2d| = 2d, that is
∑1

ε1=0
∑1

ε2=0 · · ·∑1
εk=0 pε1,ε2,...,εk = 2d.

There are several algorithms available to solve such a system. See for instance [7, Chapter 4.6]. The
algorithm we used for our computer experimentations is the MacMahon algorithm which has been
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recently implemented in MATHEMATICA by Andrews, Paule and Riese and in MAPLE by Xin using the
partial fraction method of computing constant terms.

The former can be downloaded from the web site http://www.risc.uni-linz.ac.at/research/combinat/
software/Omega/ and the latter from the web site http://www.combinatorics.net.cn/homepage/xin/
maple/ell2.rar. For computer implementation we found it more convenient to use the alternate nota-
tion adopted in Remark 2.5. That is

Sk = ‖p1 V 1 + p2 V 2 + · · · + p2k V 2k = 0. (40)

These algorithms may yield quite a bit more than the number of solutions of such a system. For
instance, in our case the “Omega package” of Andrews, Paule and Riese should, in principle, yield the
formal power series

Fk(x1, x2, . . . , x2k ) =
∑

(p1,p2,...,p2k )∈Sk

xp1
1 xp2

2 · · · x
p2k

2k .

It follows from the general theory of Diophantine systems that Fk(x1, x2, . . . , x2k ) is always the Taylor
series of a rational function.

Now for S2 and S3 the Omega package gives

F2(x1, x2, x3, x4) = 1

(1 − x1x4)(1 − x2x3)
, (41)

F3(x1, x2, . . . , x8) = 1 − x2x3x5x8x1x4x6x7

(1 − x1x8)(1 − x2x7)(1 − x3x6)(1 − x4x5)(1 − x2x3x5x8)(1 − x1x4x6x7)
. (42)

But this is as far as this package went in our computers. However we could go further by giving up
full information about the solutions and only ask for the series

Gk(q) = Fk(x1, x2, . . . , x2k )|xi=q,

which can be computed from its constant term representation in (8). For example, the program Latte
by De Loera, Hemmecke, Tauzer, Yoshida, which is available at http://www.math.ucdavis.edu/~latte/
computed the G4(q) series in approximately 30 seconds. However, this is as far as Latte went on our
machines. We should also mention that all the series Gk(q) and Wk(q) for k � 4 can be obtained in
only a few seconds, from the software of Xin by computing the corresponding constant terms in (8)
and (9).

To get our computers to deliver G5(q) and W5(q) in a matter of minutes a divide and conquer
strategy had to be adopted. More precisely, these rational functions were obtained by decomposing
the constant terms (8) and (9) as sums of constant terms. This decomposition had its origin from
an effort to find a human proof of the identities in (41) and (42). More importantly, the surprising
simplicity of (41) and (42) required a combinatorial explanation. Our findings there provided the
combinatorial tools that were used in our early computations of G5(q) and W5(q). This given, before
describing our work on these series, we will show how to obtain (41) and (42) entirely by hand.

Let us start by sketching the idea for k = 2. Beginning with

S2 =
∥∥∥∥p1 + p2 − p3 − p4 = 0

p1 − p2 + p3 − p4 = 0

we immediately notice that (1,0,0,1) and (0,1,1,0) are solutions. Set a = min(p1, p4) and b =
min(p2, p3). It is clear that the following difference must also be a solution.

(q1,q2,q3,q4) = (p1, p2, p3, p4) − (a,b,b,a) = (p1 − a, p2 − b, p3 − b, p4 − a).

http://www.risc.uni-linz.ac.at/research/combinat/software/Omega/
http://www.combinatorics.net.cn/homepage/xin/maple/ell2.rar.
http://www.math.ucdavis.edu/~latte/
http://www.risc.uni-linz.ac.at/research/combinat/software/Omega/
http://www.combinatorics.net.cn/homepage/xin/maple/ell2.rar.
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Now q1q4 = 0 and q2q3 = 0. This gives us four possibilities for (q1,q2,q3,q4):

(0,0, x, y), (0, x,0, y), (x,0, y,0), (x, y,0,0),

for some nonnegative integers x, y. It is easy to show that we must always have x = 0, y = 0 and
therefore the general solution of S2 is of the form (a,b,b,a). See [2] for details. We thus reobtain the
full generating function (41) of solutions of S2:

F2(x1, x2, x3, x4) =
∑
a�0

∑
b�0

xa
1xb

2xb
3xa

4 = 1

(1 − x1x4)(1 − x2x3)
.

It turns out that we can deal with S3 in a similar manner. Again we begin by noticing the four
symmetric solutions

(1,0,0,0,0,0,0,1), (0,1,0,0,0,0,1,0), (0,0,1,0,0,1,0,0), (0,0,0,1,1,0,0,0).

Next we set

a = min(p1, p8), b = min(p2, p7), c = min(p3, p6), d = min(p4, p5),

and by subtraction we get a solution

(q1,q2,q3,q4,q5,q6,q7,q8) = (p1, p2, p3, p4, p5, p6, p7, p8) − (a,b, c,d,d, c,b,a) (43)

with the property qiq9−i = 0 for 1 � i � 4. It will be good here and after to call the set

{
i ∈ [1,n]: pi � 1

}
the support of the composition (p1, p2, . . . , pn). This given, we derive that the resulting composition
in (43) will necessarily have its support contained in at least one of the following 16 patterns:

(0,0,0,0,∗,∗,∗,∗), (0,0,0,∗,0,∗,∗,∗), (0,0,∗,0,∗,0,∗,∗), (0,0,∗,∗,0,0,∗,∗),

(0,∗,0,0,∗,∗,0,∗), (0,∗,0,∗,0,∗,0,∗), (0,∗,∗,0,∗,0,0,∗), (0,∗,∗,∗,0,0,0,∗),

(∗,0,0,0,∗,∗,∗,0), (∗,0,0,∗,0,∗,∗,0), (∗,0,∗,0,∗,0,∗,0), (∗,0,∗,∗,0,0,∗,0),

(∗,∗,0,0,∗,∗,0,0), (∗,∗,0,∗,0,∗,0,0), (∗,∗,∗,0,∗,0,0,0), (∗,∗,∗,∗,0,0,0,0). (44)

Unlike the case k = 2 not all of these patterns force a trivial solution. To find out which it is helpful
to resort to a Venn diagram imagery. To this end recall that a solution of S3 gives the cardinalities of
the 8 regions of the Venn diagram of three d-subsets A1, A2, A3 of Ω2d (see Fig. 2).

In Fig. 3, each pattern is represented by a Venn diagram where in each region Aε1
1 ∩ Aε2

2 ∩ Aε3
3

that corresponds to a ∗ in the pattern we placed a black dot. That means that only the regions with
a dot may have � 0 cardinality. The miracle is that all but the two patterns (0,∗,∗,0,∗,0,0,∗) and
(∗,0,0,∗,0,∗,∗,0) can be quickly excluded by a reasoning that only uses the positions of the dots
in the Venn diagram. In fact, in each of the excluded cases, we show that it is impossible to replace
the dots by � 0 integers in such a manner that the three sets A1, A2, A3 and their complements c A1,
c A2, c A3 end up having the same cardinality (except for all empty sets).

The reasoning is so cute that we are compelled to present it here in full. In what follows the jth
diagram in the ith row will be referred to as “Dij”:
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Fig. 2. The Ven diagram for S3.

Fig. 3. The 16 support patterns for S3.

(1) D11, D14, D16, D23, D25, and D28 can be immediately excluded because one of A1, A2, A3, Ac
1,

Ac
2 or Ac

3 would be empty.
(2) In D15 the dot next to 8 should give the cardinality of Ac

2 (say d) and then the dot next to
the 2 should also give d. But that forces the dots next to 5 and 6 to be 0, leaving A3 empty,
a contradiction. The same reasoning applies to D12, D13, D18, D21, D24, D26, and D27.

That leaves only the two diagrams D17 and D22 which clearly correspond to the two above men-
tioned patterns. Now we see that for D22 we must have the equalities p1 + p4 = p1 + p6 = p1 + p7 =
p6 + p7. This forces p1 = p4 = p6 = p7. In summary this pattern can only support the compo-
sition (u,0,0, u,0, u, u,0). The same reasoning yields that the diagram D17 can only support the
composition (0, v, v,0, v,0,0, v). It follows that the general solution of S3 must be of the form
(a,b, c,d,d, c,b,a) + (u, v, v, u, v, u, u, v).

Now recall that after the subtraction of a symmetric solution we are left with an asymmetric
solution. Thus to avoid over counting we must impose the condition uv = 0. This leaves only three
possibilities u = v = 0, u > 0, v = 0 or u = 0, v > 0. Thus

F3(x) =
∑
a�0

∑
b�0

∑
c�0

∑
d�0

(x1x8)
a(x2x7)

b(x3x6)
c(x4x5)

d
(

1 +
∑
u�1

(x1x4x6x7)
u +

∑
v�1

(x2x3x5x8)
v
)

= 1

(1 − x1x8)(1 − x2x7)(1 − x3x6)(1 − x4x5)

(
1 + x1x4x6x7

1 − x1x4x6x7
+ x2x3x5x8

1 − x2x3x5x8

)
,

which is only another way of writing (42).

5.2. Algebraic decompositions and group actions

It is easy to see that the decomposition of a solution into a sum of a symmetric plus an asymmetric
solution can be carried out for general k. In fact, note that if 0 � i � 2k −1 has binary digits ε1ε2 · · ·εk
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then the binary digits of 2k −1− i are ε1ε2 · · ·εk (with ε = 1−ε). Thus we see from (40) that in each
equation pi and p2k+1−i appear with opposite signs. This shows that for each k � 2 the system Sk

has 2k−1 symmetric solutions, which may be symbolically represented by the monomials xi xi′ for
i = 1, . . . ,2k−1, where we use (and will often use) i′ to denote 2k + 1 − i when k is fixed.

Proceeding as we did for S2 and S3 we arrive at a unique decomposition of each solution of Sk
into

(p1, p2, . . . , p2k ) = (u1, u2, . . . , u2, u1) + (q1,q2, . . . ,q2k )

with the first summand symmetric and the second asymmetric, that is ui = ui′ and qiqi′ = 0 for
1 � i � 2k−1, and thereby obtain a factorization of Fk(x) in the form

Fk(x) =
(

2k−1∏
i=1

1

1 − xi xi′

)
F A

k (x) (45)

with F A
k (x) denoting the complete generating function of the asymmetric solutions.

This given it is tempting to try to apply, in the general case, the same process we used for k = 3
and obtain the rational function F A

k (x) by selecting the patterns that do contain the support of an

asymmetric solution. Note that the total number of asymmetric patterns to be examined is 22k−1

which is already 256 for k = 4. For k = 5 the number grows to 65,536 and doing this by hand is
out of the question. Moreover, it is easy to see, by going through a few cases, that even for k = 4
the geometry of the Venn Diagrams is so intricate that the only way that we can find out if a given
pattern contains the support of a solution is to solve the corresponding reduced system.

Nevertheless, using some inherent symmetries of the problem, the complexity of the task can be
substantially reduced to permit the construction of G5(q) by computer. To describe how this was
done we need some notation. We will start with the complete generating function of the system Sk
as given in Remark 2.5, that is

Fk(x1, x2, . . . , x2k ) =
2k∏

i=1

1

1 − xi Ai

∣∣∣∣
a0

1a0
2···a0

k

,

where Ai = ∏k
i=1 a1−2εi

i , with ε1ε2 · · ·εk being the binary digits of i − 1. Note that since (as we pre-
viously observed) the binary digits of 2k − 1 − i are ε1ε2 · · ·εk , we have Ai′ = 1/Ai . It then follows
that

1 − xi xi′

(1 − xi Ai)(1 − xi′ Ai′)
=

(
1

1 − xi Ai
+ xi′/Ai

1 − xi′/Ai

)
.

Thus combining the factors containing Ai and Ai′ we may rewrite (45) in the form

Fk(x1, x2, . . . , x2k ) =
2k−1∏
i=1

1

1 − xi xi′

2k−1∏
i=1

(
1

(1 − xi Ai)
+ xi′/Ai

(1 − xi′/Ai)

)∣∣∣∣
a0

1a0
2···a0

k

. (46)

Comparing with (45) we derive that the complete generating function of the asymmetric solutions is
given by the following sum:

F A
k (x) =

∑
S⊆[1,2k−1]

F S (x), (47)
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where

F S (x) =
(∏

i /∈S

1

(1 − xi Ai)

)
×

(∏
i∈S

xi′/Ai

(1 − xi′/Ai)

)∣∣∣∣
a0

1a0
2···a0

k

. (48)

In this way we have described our decomposition algebraically. Using notation as of (40), we can see
that F S (x) is none other than the complete generating function of the reduced system

∑
i /∈S

pi V i +
∑
i∈S

pi′ V i′ = 0

with the added condition that pi′ � 1 for all i ∈ S.

Note that for k = 3 the summands in (47) correspond precisely to the 16 patterns in (44) with the
added condition that the “∗” in position i � 5 should represent pi � 1 in the corresponding solution
vector. This extra condition is precisely what is needed to eliminate overcounting.

Perhaps all this is best understood with an example. For instance for k = 3 the patterns

(∗,0,0,∗,0,∗,∗,0) and (0,∗,∗,0,∗,0,0,∗)

were the only ones that supported an asymmetric solution. They represent the two reduced systems

S{14} =

∥∥∥∥∥∥∥
p1 + p4 − p6 − p7 = 0

p1 − p4 + p6 − p7 = 0

p1 − p4 − p6 + p7 = 0

, S{23} =

∥∥∥∥∥∥∥
p2 + p3 − p5 − p8 = 0

p2 − p3 + p5 − p8 = 0

−p2 + p3 + p5 − p8 = 0

and correspond to the following two summands of (47) for k = 3,

F{1,4}(x) = 1

1 − x1a1a2a3

1

1 − x4a1/a2a3

x6a2/a1a3

1 − x6a2/a1a3

x7a3/a1a2

1 − x7a3/a1a2

∣∣∣∣
a0

1a0
2a0

3

= x1x4x6x7

1 − x1x4x6x7
, (49)

F{2,3}(x) = 1

1 − x2a1a2/a3

1

1 − x3a1a3/a2

x5a2a3/a1

1 − x5a2a3/a1

x8/a1a2a3

1 − x8/a1a2a3

∣∣∣∣
a0

1a0
2a0

3

= x2x3x5x8

1 − x2x3x5x8
. (50)

A close look at these two expressions should reveal the key ingredient that needs to be added
to our algorithms that will permit reaching k = 5 in the Hdd and Sdd problems. Indeed we see that
F{1,4}(x) goes onto F{2,3}(x) if we act on the vector (x1, x2, . . . , x8) by the permutation

σ =
(

1 2 3 4 5 6 7 8

3 4 1 2 7 8 5 6

)
(51)

and on the triple (a1,a2,a3) by the operation a2 → a−1
2 . In fact, σ is none other than an image of

the map (ε1, ε2, ε3) → (ε1, ε2, ε3) on the binary digits of 0,1, . . . ,7, as we can easily see when we
replace each i in (51) by the binary digits of i − 1

σ =
(

000 001 010 011 100 101 110 111

010 011 000 001 110 111 100 101

)
.

What goes on is quite simple. Recall that solutions p of our system Sk can also be viewed as
assignments of weights to the vertices of the k-hypercube giving all hyperfaces equal weight. Then
clearly any rotation or reflection of the hypercube will carry this assignment onto an assignment with
the same property. Thus the Hyperoctahedral group Bk will act on all the constructs we used to
solve Sk .
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To make precise the action of Bk on [1,2k] we need some conventions.

(1) We will view the elements of Bk as pairs (α,η) with a permutation α = (α1,α2, . . . ,αk) ∈ Sk and
a binary vector η = (η1, η2, . . . , ηk).

(2) Next, for any binary vector ε = (ε1, ε2, . . . , εk) let us set

(α,η)ε = (εα1 + η1, εα2 + η2, . . . , εαk + ηk) (52)

with “mod 2 ” addition.
(3) This given, to each element g = (α,η) ∈ Bk there corresponds a permutation σ(g) by setting

σ(g) =
(

1 2 · · · 2k

σ1 σ2 · · · σ2k

)
,

where σi = j if and only if the k-vector ε = (ε1, ε2, . . . , εk) giving the binary digits of i − 1 is sent
by (52) onto the k-vector giving the binary digits of j − 1. In particular we will set

g(x1, x2, . . . , x2k ) = (xσ1 , xσ2 , . . . , xσ2k ). (53)

(4) In the same vein we will make Bk act on the k-tuple (a1,a2, . . . ,ak) by setting, again for g =
(α,η),

g(a1,a2, . . . ,ak) = (
a1−2η1
α1 ,a1−2η2

α2 , . . . ,a1−2ηk
αk

)
. (54)

With these conventions we can easily derive that gxi Ai = xσi Aσi . Thus

g
2k∏

i=1

1

1 − xi Ai

∣∣∣∣
a0

1a0
2···a0

k

=
2k∏

i=1

1

1 − xσi Aσi

∣∣∣∣
a0

1a0
2···a0

k

=
2k∏

i=1

1

1 − xi Ai

∣∣∣∣
a0

1a0
2···a0

k

,

from which we again derive the Bk invariance of the complete generating function Fk(x1, x2, . . . , x2k ).

If we let Bk−1 not only act on the indices 1,2, . . . ,2k−1, but also on 1′,2′, . . . ,2k−1′
by σi′ = σ ′

i .

Then Bk−1 permutes the summands in (47) as well as the factors in the product
∏2k−1

i=1
1

1−xi xi′
. Note

further that if we only want the q-series Gk(q) we can reduce (47) to

G A
k (q) =

∑
S⊆[1,2k−1]

G S (q), (55)

where G S (q) = F S (x)|xi=q . But if for some g ∈ Bk−1 we have F S1 (xσ1 , xσ2 , . . . , xσ2k ) = F S2 (x), then
replacing each xi by q converts this to the equality G S1 (q) = G S2 (q). That means that we need only
compute the constant terms in (55) for orbit representatives, then replace (55) by a sum over orbit
representatives multiplied by orbit sizes. More precisely we get

G A
k (q) =

∑
i

mi G Si (q), (56)

where the sum ranges over all orbits and mi denotes the cardinality of the orbit of the representa-
tive F Si (x). In the computer implementation we obtain orbit representatives as well as orbit sizes, by
acting with Bk−1 on the monomials M S = ∏

i∈S xi .

For detailed work along this line for k = 3,4,5, we refer the reader to [2]. Here, for brevity, we
only report that we can produce G5(q) in about 15 minutes using this decomposition.
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The decomposition in (55) is only Bk−1 invariant, and it is natural from the geometry of the
hypercube labelings, to ask of a Bk invariant decomposition. To obtain such a decomposition of Fk(x)
we will pair off the factors containing Ai and Ai′ by means of the more symmetric identity

1 − xi x2k+1−i

(1 − xi Ai)(1 − x2k+1−i A2k+1−i)
=

(
1 + xi Ai

1 − xi Ai
+ xi′ Ai′

1 − xi′ Ai′

)

and derive that

Fk(x) =
∑

S∪T ⊆[1,2k−1]
F S,T (x),

where S and T are disjoint and

F S,T (x) =
(

k∏
i∈S

xi Ai

1 − xi Ai

)(∏
i∈T

x′
i/Ai

1 − x′
i/Ai

)
.

Note that every pair (S, T ) should be identified with the set S ∪ {i′: i ∈ T } ⊆ [1,2k] when applying
the action of Bk .

Example 5.1. For k = 3 we have 34 = 81 summands with 9 orbits but only 2 orbits do contribute
to F A

3 . The two orbits corresponds to the monomials 1 and x1x4x6x7 with respective orbit sizes 1
and 2. The orbit representative that corresponds to 1 is simply the case Fφ,φ = 1|a0

1a0
2a0

3a0
4
= 1 and that

corresponds to x1x4x6x7 is

F{1,4},{2,3}(x) = x1 A1

1 − x1 A1

x4 A4

1 − x4 A4

x6 A6

1 − x6 A6

x7 A7

1 − x7 A7

∣∣∣∣
a0

1a0
2a0

3a0
4

= x1x4x6x7

1 − x1x4x6x7
.

Example 5.2. For k = 4 we have 38 = 6561 summands with 62 orbits but only 10 orbits do contribute
to F A

4 . We obtain the following complete generating functions for the 10 orbit representatives:

(1) 1

(24)
x1x15x4x14

1 − x1x15x4x14

(16)
x16x7(x9)

2x6x4

1 − x16x7x9
2x6x4

(96)
x15x3x7(x12)

2(x9)
2(x6)

3

(1 − x12x7x9x6)(1 − x15x3x12x9x6
2)

(96)
x16x14x5x7(x11)

2(x2)
2

(1 − x2x7x11x14)(1 − x16x5x2x11)

(192)
x9x10x1(x4)

4(x15)
3(x5)

2(x14)
2

(1 − x1x15x4x14)(1 − x15x5x10x4)(1 − x15x5x9x4
2x14)

(64)
x6x16x4(x3)

2(x5)
2(x15)

2(x10)
3

(1 − x15x5x10x4)(1 − x16x5x3x10)(1 − x15x3x10x6)

(64)
x3x7x4(x6)

5x1(x9)
3(x12)

3(x15)
3

2
(1 − x1x15x12x6)(1 − x12x7x9x6)(1 − x15x9x6x4)(1 − x15x3x12x9x6 )
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(32)
(x13)

3(x12)
3x1x3x2x6x7x8(1 − x1x2x3x8x12

3x7x13
3x6)

(1 − x1x8x12x13)(1 − x2x12x7x13)(1 − x3x12x13x6)(1 − x1x12
2x7x13x6)(1 − x2x3x8x12x13

2)

(8)
x4x5x3x6x9x10x15x16(1 − 2x15x16x5x3x10x9x6x4 + x15

2x16
2x5

2x3
2x10

2x9
2x6

2x4
2)

(1 − x16x3x9x6)(1 − x16x5x9x4)(1 − x15x9x6x4)(1 − x15x5x10x4)(1 − x16x5x3x10)(1 − x15x3x10x6)
.

Here the numbers in parentheses give the respective orbit sizes.
Replacing all the xi by q and summing as in (56), we obtain

G4(q) = 1 + q2 + 21q4 + 36q6 + 74q8 + 86q10 + 74q12 + 36q14 + 21q16 + q18 + q20

(1 − q2)7(1 − q4)4(1 − q6)
.

We should mention that the partial fraction algorithm delivers this rational function in less than a
second by directly computing the constant term in (8) for k = 4. We computed the above representa-
tives because it contains more information and can be used for an alternate path to G5(q).

Computing the orbit representatives for k = 5 requires the construction of the 25 × 5! = 3840
elements of B5 and examining their action on the 316 = 43046721 symmetric supports. This took a
few hours on our computers. We found in this manner that the 43046721 summands in (55) break
up into 15418 orbits and of these 6341 contribute to the sum. Most of the orbits have denominators
of less than 16 factors. It also took about 15 minutes to persuade MAPLE to deliver G5(q) in the form
displayed in the introduction.

It turns out that the same orbit reduction idea can also be used to compute W5(q), but with a
little more efforts. Detailed work can be found in [2].

Remark 5.3. It is interesting to point out that computing complete generating functions for orbit
representatives of summands in (47) yielded as a byproduct orbit representatives of the extreme rays
of our Diophantine cone for k = 4 and k = 5. Note that for k = 3 the representatives can be directly
derived from our hand computation: there are only two and the corresponding Venn Diagrams are

and .

Here the regions without numbers are empty. The number 1 indicates that the region has only one
element. For k = 4 we found that there are only three orbits, containing 24,8 and 16 elements re-
spectively. The corresponding diagrams are depicted below:

.

Note, for k = 4 each Venn diagram is depicted as a pair of Venn diagrams of k = 3. The first
member of the pair renders the Venn diagram of A1 ∩ A2, A1 ∩ A3, A1 ∩ A4 and the second member
renders the Venn diagram of c A1 ∩ A2, c A1 ∩ A3, c A1 ∩ A4.

For k = 5 we found that there are 2712 extreme rays which break up into 9 orbits. We give in Fig. 4
a set of representatives depicted as assignments of weights to the vertices of the 5-dimensional hyper-
cube. We imagine that the vertices of this hypercube are indexed by the binary digits of 0,1,2, . . . ,31
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Fig. 4. Representatives of extreme rays for k = 5.

Fig. 5. Representatives for minimal solutions but not extreme rays.

with 00000 the vertex at the origin and 11111 the opposite vertex of the origin. In Fig. 4 each hyper-
cube is represented by two rows of two cubes. The cubes in the first row, from left to right, have the
vertices labeled with the binary digits of 1 to 16 (minus 1) and the cubes in the second row have the
vertices labeled with the binary digits of 17 to 32 (minus 1). The vertices here have possible weights
0,1,2,3 and, correspondingly, are surrounded by 0,1,2,3 concentric circles. The integer on the top
of each diagram gives the size of the corresponding orbit.

Each of the corresponding solutions of our system S5 is minimal, that is, it cannot be decomposed
into a nontrivial sum of solutions. But we found that there are also 480 minimal solutions that do not
come from extreme rays. The latter break up into two orbits, with representatives depicted in Fig. 5.

5.3. Our fastest way for G5(q) and W5(q)

With the notations in the previous subsection and Section 4 handy, we can describe our best way
to obtain G5(q) and W5(q).

Let us explain the idea for k = 5. In Example 5.2 we have obtained for F A
4 (x) 10 orbit representa-

tives with corresponding orbit sizes. Denote them by R�(x) the representatives and m� the orbit sizes
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for � = 1, . . . ,10. From this we can give explicit formula of F A
4 (x) and hence of F4(x) with the help

of B4 action as follows:

F4(x) = F A
4 (x)∏8

i=1(1 − xi x17−i)
=

10∑
�=1

m�

|B4|
∑

g∈B4

g
R�∏8

i=1(1 − xi x17−i)
. (57)

Applying Algorithm 4.3 a5), b5) to (57), we can obtain F5(x) by multilinearity:

F5(x) =
10∑

�=1

m�

|B4|
∑

g∈B4

(
gδ1,17 · · · δ16,32

R�∏8
i=1(1 − xi x17−i)

)∣∣∣∣
j=1,2,...,16

x j=x ja,x16+ j=x16+ j/a

∣∣∣∣
a0

, (58)

where we have used the straightforwardly checked fact: for any rational function R(x1, . . . , x16) and
g ∈ Bk , it holds that

δ1,17 · · · δ16,32 g R(x1, . . . , x16) = gδ1,17 · · · δ16,32 R(x1, . . . , x16),

where g is extended to permute also indices 16 + j by g(16 + j) = 16 + g( j) for j = 1, . . . ,16.
Substituting x j = q for all j into (58) gives

G5(q) =
10∑

�=1

m�

(
δ1,17 · · · δ16,32

R�∏8
i=1(1 − xi x17−i)

)∣∣∣∣
j=1,2,...,16

x j=x ja,x16+ j=x16+ j/a

∣∣∣∣
a0

. (59)

That is to say, we only need representatives of Fk−1(x) together with orbit sizes to compute Fk(x),
and this clearly extends for general k. Using (59), we can persuade Maple to deliver G5(q) as in (10)
in about 12 minutes.

The idea for W5(q) is similar but much more complicated. In order to use a similar decomposition
as for F4(x), we construct a B4-invariant constant term to replace the constant term in (15). But the
new problem is that we do not have simple orbit representatives as in Example 5.2. We use (again)
group action to give new representatives (together with orbit sizes) of reasonable sizes. Now we can
apply a similar formula as (59), but (inspired by our computation of W3(q) and W4(q)) this time
we combine the summands before taking “|a0 .” Using this approach Maple can deliver W5(q) in only
about 5 minutes in total which is the shortest time we have been able to compute this series. See [2]
for detailed work.

Finally we mention that the extended version [2] of this paper also includes our first way to obtain
G5(q) and W5(q) by another trick of divide and conquer.
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