Iterative sequence for asymptotically demicontractive maps in Banach spaces

Chika Moorea,∗, B.V.C. Nnolib

a Department of Mathematics and Computer Science, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
b Department of Mathematics, University of Jos, Jos, Plateau State, Nigeria

Received 29 January 2002

Abstract

Let E be a real Banach space and $T : E \to E$ an asymptotically demicontractive and uniformly L-Lipschitzian map with $F(T) := \{x \in E : Tx = x\} \neq \emptyset$. We prove necessary and sufficient conditions for the strong convergence of the Mann iterative sequence to a fixed point of T.

\textcopyright 2004 Published by Elsevier Inc.

Keywords: Asymptotically hemicontractive maps; Strong convergence; Necessary and sufficient condition; Banach spaces

1. Introduction

Let E be a real normed linear space, E^* its dual and let $\langle \cdot, \cdot \rangle$ denote the generalized duality pairing between E and E^*. Let $J : E \to 2^{E^*}$ be the normalized duality mapping defined for each $x \in E$ by

$$J(x) = \{f^* \in E^* : \langle x, f^* \rangle = \|x\|^2 = \|f^*\|^2\}.$$

It is well known that if E is smooth then J is single-valued. In the sequel we shall denote the single-valued normalized duality map by j.

∗ Corresponding author.
E-mail addresses: bcmoore@gacom.net, chikamoore@netscape.net (C. Moore), nnolib@unijos.edu.ng (B.V.C. Nnoli).

0022-247X/S – see front matter \textcopyright 2004 Published by Elsevier Inc.
doi:10.1016/j.jmaa.2004.03.006
The map T is called *asymptotically nonexpansive* with sequence \(\{k_n\} \subset [1, \infty) \) if \(\lim_{n \to \infty} k_n = 1 \) and \(\forall x, y \in E \),
\[
\|T^n x - T^n y\| \leq k_n \|x - y\|, \quad \forall n \in \mathbb{N},
\]
and is called *asymptotically pseudocontractive* with sequence \(\{k_n\} \) if \(\lim_{n \to \infty} k_n = 1 \) and for all \(x, y \in E \) there exists \(j(x - y) \in J(x - y) \) such that
\[
\{T^n x - T^n y, j(x - y)\} \subseteq k_n \|x - y\|^2, \quad \forall n \in \mathbb{N}.
\]
\(T \) is said to be *uniformly L-Lipschitzian* if \(\exists L > 0 \), a constant, such that \(\forall x, y \in E \) and \(\forall n \in \mathbb{N} \),
\[
\|T^n x - T^n y\| \leq L \|x - y\|. \tag{1.3}
\]
Let \(F(T) := \{x \in E : x = Tx\} \not= \emptyset \) denote the set of fixed points of \(T \). If Eqs. (1.1) and (1.2) hold \(\forall x \in E \) and \(\forall y = x^* \in F(T) \), then the map \(T \) is said to be, respectively, *asymptotically quasi-nonexpansive*, and *asymptotically hemicontractive*.

Let \(E = H \) (the Hilbert space). A map \(T : E \to E \) is said to be *\(k \)-strictly asymptotically pseudocontractive* (see, e.g., [3,5]) if there exists a sequence \(\{a_n\}_{n=0}^\infty \) with \(\lim_{n \to \infty} a_n = 1 \) such that
\[
\|T^n x - T^n y\|^2 \leq a_n^2 \|x - y\|^2 + k \|(I - T^n)x - (I - T^n)y\|^2, \tag{1.4}
\]
for some \(k \in [0, 1) \) and for all \(x, y \in E \) and \(n \in \mathbb{N} \). \(T : E \to E \) is called *asymptotically demicontractive* (see, e.g., [3,5]) if there exists a sequence \(\{a_n\}_{n=0}^\infty \) with \(\lim_{n \to \infty} a_n = 1 \) such that
\[
\|T^n x - x^*\|^2 \leq a_n^2 \|x - x^*\|^2 + k \|x - T^n x\|^2, \tag{1.5}
\]
for some \(k \in [0, 1) \) and for all \(x \in E \). \(x^* \in F(T) \) and \(n \in \mathbb{N} \). The class of \(k \)-strictly asymptotically pseudocontractive and asymptotically demicontractive maps were introduced by Liu [3]. If \(k = 0 \) in (1.5) then \(T : E \to E \) is asymptotically quasi-nonexpansive. Let \(E \) be an arbitrary Banach space. \(T : E \to E \) is \(k \)-strictly asymptotically pseudocontractive (see, e.g., [4,5]) if \(\forall x, y \in E \) there exists \(j(x - y) \in J(x - y) \) and a constant \(k \in [0, 1) \) such that
\[
\Re\{1 - T^n\} x - (I - T^n)y, j(x - y)\} \geq \frac{1}{2} (1 - k) \| (I - T^n)x - (I - T^n)y \|^2 - \frac{1}{2} (a_n^2 - 1) \|x - y\|^2. \tag{1.6}
\]
Furthermore, it follows from (1.6) that \(T : E \to E \) is asymptotically demicontractive if \(F(T) \not= \emptyset \) and for all \(x \in E \) and \(x^* \in F(T) \) there exists \(j(x - x^*) \in J(x - x^*) \) and a constant \(k \in [0, 1) \) such that
\[
\Re\{1 - T^n\} x, j(x - x^*) \geq \frac{1}{2} (1 - k) \| x - T^n x \|^2 - \frac{1}{2} (a_n^2 - 1) \|x - x^*\|^2. \tag{1.7}
\]
In 1973, Petryshyn and Williamson [6] proved a necessary and sufficient condition for the Picard and the Mann iterative schemes to converge strongly to fixed points of quasi-nonexpansive mappings in Hilbert spaces. Liu [1,2] extended the above results and obtained some necessary and sufficient conditions for an Ishikawa-type iterative scheme with errors to converge to fixed points of asymptotically quasi-nonexpansive maps.
It is our purpose in this paper to prove necessary and sufficient conditions for the strong convergence of the Mann iteration process to a fixed point of an asymptotically demicontractive map in (real) Banach spaces. Our theorems thus improve and extend the results of Liu [1,2], Osilike [5] and several others.

2. Preliminaries

In the sequel we shall make use of the following lemma.

Lemma 2.1 (Tan and Xu [7, Lemma 1, p. 303]). Let \(\{\beta_n\}_{n \geq 0} \) and \(\{b_n\}_{n \geq 0} \) be sequences of nonnegative real numbers satisfying the inequality

\[
\beta_{n+1} \leq \beta_n + b_n, \quad n \geq 0.
\]

If \(\sum_{n \geq 0} b_n < \infty \) then \(\lim_{n \to \infty} \beta_n \) exists.

Remark 2.2. Let \(E \) be a real normed linear space. Then \(\forall x, y \in E \) and for \(j(x - y) \in J(x - y) \) the following inequality holds:

\[
\|x + y\|^2 \leq \|x\|^2 + 2\langle y, j(x + y) \rangle.
\] (2.1)

3. Main results

Lemma 3.1. Let \(E \) be a real normed linear space and \(T : E \to E \) a uniformly \(L \)-Lipschitzian asymptotically demicontractive map with sequence \(\{a_n^2\} \subset [1, \infty) \) and \(F(T) \neq \emptyset \). Let \(\{c_n\}_{n \geq 0} \subset [0, 1] \) be a real sequence such that \(\sum_{n \geq 0} c_n^2 < \infty \) and \(\sum_{n \geq 0} c_n(a_n^2 - 1) < \infty \). Let \(\{x_n\}_{n \geq 0} \) be the sequence generated from an arbitrary \(x_0 \in E \) by

\[
x_{n+1} = (1 - c_n)x_n + c_n T^n x_n, \quad n \geq 0.
\] (3.1)

Then \(\forall x^* \in F(T) \) and \(\forall n, m \in \mathbb{N} \),

(a) there exists \(M > 0 \) such that \(\|x_n - x^*\| \leq M \),

(b) \(\lim_{n \to \infty} \|x_n - x^*\| \) exists,

(c) \(\|x_{n+1} - x^*\| \leq (1 + c_n^2)\|x_n - x^*\| + \mu_n \) for some \(\{\mu_n\} \) with \(\sum_{n \geq 0} \mu_n < \infty \),

(d) \(\|x_{n+m} - x^*\| \leq D\|x_n - x^*\| + D \sum_{i=n}^{n+m-1} \mu_i^2 \), where \(D = e^{\sum_{i=n}^{n+m-1} c_i} \).

Proof of (a) and (b). Using (1.7), (2.1) and (3.1) we get that

\[
\|x_{n+1} - x^*\|^2 \leq (1 - c_n)^2 \|x_n - x^*\|^2 + 2c_n\|T^n x_n - x^*, j(x_{n+1} - x^*)\|
\]

\[
= (1 - c_n)^2 \|x_n - x^*\|^2 - 2c_n\|x_{n+1} - T^n x_{n+1}, j(x_{n+1} - x^*)\|
\]

\[
+ 2c_n\|x_{n+1} - x^*, j(x_{n+1} - x^*)\| + 2c_n\|T^n x_n - T^n x_{n+1}, j(x_{n+1})\|
\]

\[
\leq (1 - c_n)^2 \|x_n - x^*\|^2 + 2c_n(k_n - 1)\|x_{n+1} - x^*\|^2
\]

\[
+ 2c_n\|x_{n+1} - x^*\|^2 + 2c_n\|T^n x_n - T^n x_{n+1}\|\|x_{n+1} - x^*\|.
\]
Moreover,
\[\|T^n x_n - T^n x_{n+1}\| \leq L \|x_n - x_{n+1}\| \leq c_n L (1 + L) \|x_n - x^*\| \]
and
\[\|x_{n+1} - x^*\| \leq \|x_{n+1} - x_n\| + \|x_n - x^*\| \leq [c_n (1 + L) + 1] \|x_n - x^*\|. \]

And hence,
\[\|x_{n+1} - x^*\|^2 \leq (1 - c_n)^2 \|x_n - x^*\|^2 + c_n (a_n^2 - 1) [(c_n (1 + L) + 1)]^2 \|x_n - x^*\|^2 + 2 c_n [c_n (1 + L) + 1] \|x_n - x^*\|^2 + 2 c_n^2 L (1 + L) \|x_n - x^*\|^2 \]
\[= (1 + c_n^2) \|x_n - x^*\|^2 + [c_n (a_n^2 - 1) [(c_n (1 + L) + 1)]^2 + 2 c_n [c_n (1 + L) + 1] + 2 c_n^2 \|x_n - x^*\|^2 \]
\[= (1 + \gamma_n) \|x_n - x^*\|^2, \tag{3.2} \]

where \(\gamma_n = c_n (a_n^2 - 1) [(c_n (1 + L) + 1)]^2 + 2 c_n^2 L (1 + L) \|x_n - x^*\|^2 + 2 (1 + L) \|x_n - x^*\|^2 \). Observe that \(\sum_{n=0}^{\infty} \gamma_n < \infty \). From (3.2) we get
\[\|x_{n+1} - x^*\|^2 \leq \prod_{i=0}^{n} (1 + \gamma_i) \|x_1 - x^*\|^2 \leq e^{\sum_{i=0}^{\infty} \gamma_i} \|x_0 - x^*\|^2. \]

So that \(\|x_n - x^*\| \leq M \) for some \(M > 0 \). If we set \(\beta_n = \|x_n - x^*\|^2 \) and \(b_n = \gamma_n M^2 \) then, by Lemma 2.1, \(\lim_{n \to \infty} \|x_n - x^*\| \) exists.

Proof of (c). From (3.2) we get
\[\|x_{n+1} - x^*\|^2 \leq (1 + c_n^2 + \lambda_n) \|x_n - x^*\|^2, \]
where \(\lambda_n = \gamma_n - c_n^2 \). Moreover,
\[\|x_{n+1} - x^*\| \leq (1 + c_n^2 + \lambda_n)^{1/2} \|x_n - x^*\| \]
\[\leq (1 + c_n^2) \|x_n - x^*\| + \lambda_n M = (1 + c_n^2) \|x_n - x^*\| + \mu_n, \]
where \(\mu_n = \lambda_n M = (\gamma_n - c_n^2) M \). Observe that \(\sum_{n=0}^{\infty} \mu_n < \infty \).

Proof of (d). From (c) and \(\forall n, m \in \mathbb{N} \) we get
\[\|x_{n+m} - x^*\| \leq (1 + c_n^2 + \mu_{n+m-1}) \|x_n - x^*\| + \mu_{n+m-1} \]
\[\leq (1 + c_n^2 + \mu_{n+m-1}) (1 + c_{n+m-2}^2) \|x_{n+m-2} - x^*\| \]
\[+ (1 + c_{n+m-1}^2) \mu_{n+m-2} + \mu_{n+m-1} \]
\[: \]
Let E be a real Banach space and $T : E \to E$ be a uniformly L-Lipschitzian asymptotically demicontractive map with sequence $\{a_n\}$ and $F(T) \neq \emptyset$. Let $\{c_n\}_{n \geq 0} \subset [0, 1]$ be a real sequence such that $\sum_{n \geq 0} c_n^2 < \infty$ and $\sum_{n \geq 0} c_n(a_n^2 - 1) < \infty$. Let $\{x_n\}_{n \geq 0}$ be the sequence generated from an arbitrary $x_0 \in E$ by (3.1). Then $\{x_n\}_{n \geq 0}$ converges strongly to a fixed point of T if and only if $\liminf_{n \to \infty} d(x_n, F(T)) = 0$.

Proof. From (c) of Lemma 3.1 we obtain

$$d(x_{n+1}, F(T)) \leq (1 + c_n^2)d(x_n, F(T)) + \delta_n.$$

Since $\liminf_{n \to \infty} d(x_n, F(T)) = 0$ we have from (b) of Lemma 3.1 that

$$\lim_{n \to \infty} d(x_n, F(T)) = 0.$$

It now suffices to show that $\{x_n\}_{n \geq 0}$ is Cauchy. For this, let $\varepsilon > 0$ be given. Since $\lim_{n \to \infty} d(x_n, F(T)) = 0$ and $\sum_{i=0}^{\infty} \delta_i < \infty$, there exists a positive integer N_1 such that $\forall n \geq N_1$,

$$d(x_n, F(T)) \leq \frac{\varepsilon}{3D} \quad \text{and} \quad \sum_{i=0}^{\infty} \delta_i \leq \frac{\varepsilon}{6D}.$$

In particular there exists $x^* \in F(T)$ such that $d(x_{N_1}, x^*) \leq \varepsilon/(3D)$. Now from Lemma 3.1(c) we have that, $\forall n \geq N_1$, that

$$\|x_{n+m} - x_n\| \leq \|x_{N_1+m} - x_{N_1}\| + \|x_{N_1} - x^*\| + D \sum_{i=N_1}^{N_1+m-1} \delta_i + D\|x_{N_1} - x^*\| + D \sum_{i=N_1}^{N_1+m-1} \delta_i \leq \varepsilon.$$

Hence $\lim_{n \to \infty} x_n$ exists (since E is complete). Suppose that $\lim_{n \to \infty} x_n = x^*$. We now show that $x^* \in F(T)$. But given any $\hat{\varepsilon} > 0$ there exists a positive integer $N_2 \geq N_1$ such that $\forall n \geq N_2$,

$$\|x_n - x^*\| \leq \frac{\hat{\varepsilon}}{2(1 + L)} \quad \text{and} \quad d(x_n, F(T)) \leq \frac{\hat{\varepsilon}}{2(1 + 3L)}.$$

Thus, there exists $y^* \in F(T)$ such that

$$\|x_{N_2} - y^*\| = d(x_{N_2}, y^*) \leq \frac{\hat{\varepsilon}}{2(1 + 3L)}.$$
We then have the following estimates:

\[
\|Tx^* - x^*\| \leq \|Tx_N - y^*\| + 2\|x_N - y^*\| + \|x_N - x^*\| + \|x_N - x^*\|
\]

\[
\leq L\|x_N - y^*\| + 2L\|x_N - y^*\| + \|x_N - y^*\| + \|x_N - x^*\|
\]

\[
\leq L\|x_N - x^*\| + L\|x_N - y^*\| + (1 + 2L)\|x_N - y^*\| + \|x_N - x^*\|
\]

\[
= (1 + L)\|x_N - x^*\| + (1 + 3L)\|x_N - y^*\| \leq \bar{\epsilon}.
\]

Since \(\bar{\epsilon} > 0\) is arbitrary we have that \(Tx^* = x^*\). This completes the proof. \(\square\)

Theorem 3.3. Let \(E\) be a real Banach space and \(T : E \rightarrow E\) be a uniformly \(L\)-Lipschitzian asymptotically demicontractive map with sequence \(\{a_n\}\) and \(F(T) \neq \emptyset\). Let \(\{c_n\}_{n \geq 0} \subset [0, 1]\) be a real sequence such that \(\sum_{n \geq 0} c_n^2 < \infty\) and \(\sum_{n \geq 0} c_n (a_n^2 - 1) < \infty\). Let \(\{x_n\}_{n \geq 0}\) be the sequence generated from an arbitrary \(x_0 \in E\) by (3.1). Then \(\{x_n\}_{n \geq 0}\) converges strongly to \(x^* \in F(T)\) if and only if there exists an infinite subsequence of \(\{x_n\}_{n \geq 0}\) which converges strongly to \(x^* \in F(T)\).

Proof. Let \(x^* \in F(T)\) and \(\{x_{n_j}\}_{j \geq 0}\) a subsequence of \(\{x_n\}_{n \geq 0}\) such that

\[
\lim_{j \to \infty} \|x_{n_j} - x^*\| = 0.
\]

Since, by Lemma 3.1(b), \(\lim_{n \to \infty} \|x_n - x^*\|\) exists then \(\lim_{n \to \infty} \|x_n - x^*\| = 0.\) \(\square\)

Remark 3.4. The extension of our theorems to Ishikawa-type iteration process and to iteration processes with errors is now routine.

References

Further reading
