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O B J E C T I V E S The objectives of this study were to use magnetic resonance (MR) molecular imaging

to 1) characterize the aortic neovascular development in a rat model of atherosclerosis and 2) monitor

the effects of an appetite suppressant on vascular angiogenesis progression.

B A C K G R O U N D The James C. Russell:LA corpulent rat strain (JCR:LA-cp) is a model of metabolic

syndrome characterized by obesity, insulin resistance, hyperlipidemia, and vasculopathy, although

plaque neovascularity has not been reported in this strain. MR molecular imaging with ���3-targeted

nanoparticles can serially map angiogenesis in the aortic wall and monitor the progression of

atherosclerosis.

M E T H O D S Six-week old JCR:LA-cp (�/?; lean, n � 5) and JCR:LA-cp (cp/cp; obese, n � 5) rats

received standard chow, and 6 obese rats were fed the appetite suppressant benfluorex over 16 weeks.

Body weight and food consumption were recorded at baseline and weeks 4, 8, 12, and 16. MR molecular

imaging with ���3-targeted paramagnetic nanoparticles was performed at weeks 0, 8, and 16. Fasted

plasma triglyceride, cholesterol, and glucose were measured immediately before MR scans. Plasma

insulin and leptin levels were assayed at weeks 8 and 16.

R E S U L T S Benfluorex reduced food consumption (p � 0.05) to the same rate as lean animals, but

had no effect on serum cholesterol or triglyceride levels. MR (3-T) aortic signal enhancement with

���3-targeted nanoparticles was initially equivalent between groups, but increased (p � 0.05) in the

untreated obese animals over 16 weeks. No signal change (p � 0.05) was observed in the benfluorex-

treated or lean rat groups. MR differences paralleled adventitial microvessel counts, which increased

(p � 0.05) among the obese rats and were equivalently low in the lean and benfluorex-treated animals

(p � 0.05). Body weight, insulin, and leptin were decreased (p � 0.05) from the untreated obese animals

by benfluorex, but not to the lean control levels (p � 0.05).

C O N C L U S I O N S Neovascular expansion is a prominent feature of the JCR:LA-cp model. MR

imaging with ���3-targeted nanoparticles provided a noninvasive assessment of angiogenesis in

untreated obese rats, which was suppressed by benfluorex. (J Am Coll Cardiol Img 2010;3:824–32)
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he prevalence of obesity, metabolic syn-
drome, and diabetes is rapidly increasing in
Western populations along with their sec-
ondary complications, particularly cardio-

ascular disease. Unfortunately, the acceleration
f atherosclerosis is generally silent and difficult
o monitor until the manifestations become
ymptomatic. Serum biomarkers, such as low-
ensity lipoprotein or high-sensitivity C-reactive
rotein, offer nonspecific but possibly predictive
ndications of cardiovascular risk, but neither
pecifically quantifies the temporospatial micro-
copic and biochemical changes occurring in the
therosclerotic vessel wall (1–3). As an alternative
o monitoring systemic indexes, molecular imag-
ng may allow noninvasive assessment of disease
iomarkers directly within the involved tissues.
or example, plaque angiogenesis is correlated
ith plaque rupture and often occurs alongside
ther morphological features of vulnerable lesions
ncluding macrophage infiltration, lipid-rich
ores, and thin-cap shoulders (4 – 8). Therefore,
laque neovasculature could be indicative of in-
ramural atherosclerotic severity and overall car-
iovascular disease risk.
Our laboratory developed an ���3-targeted para-
agnetic nanoparticle agent (�250 nm diameter)

or noninvasive molecular imaging of angiogenesis
n animal models of cancer and cardiovascular
isease as well as for monitoring response to tar-
eted antiangiogenic therapy (9–12). The overall
im of this study was to use ���3-integrin paramag-
etic nanoparticles for monitoring the temporal
rogression of aortic angiogenesis in a rat model of
etabolic syndrome and for evaluating the effects of
known cardioprotective therapy, benfluorex, on

dventitial neovascularization.
The James C. Russell:LA corpulent rat strain

JCR:LA-cp) is a unique model of metabolic syn-
rome characterized by spontaneous atherosclerosis
nd ischemic myocardial lesions due to obesity,
yperlipidemia, and insulin resistance (13–16). This
isease model arises from a genetic mutation in the

eptin receptor, commonly referred to as the corpu-
ent gene (cp) (15). Animals that are homozygous
or the cp gene are denoted as JCR:LA-cp cp/cp
bese, whereas animals that are heterozygous
cp/�) or homozygous for the functional leptin
eceptor gene (�/�) are indistinguishable and de-
oted as JCR:LA-cp �/? lean. The obese animals
isplay a phenotype consistent with metabolic syn-
rome and the lean animals serve as normal con-

rols. The prevalence of plaque angiogenesis as a a
ascular biomarker of atherosclerosis in metabolic
yndrome is poorly understood and undocumented
n the JCR:LA-cp rat model. Previous studies
emonstrated that benfluorex, an anorectic and
ypolipidemic drug, decreases insulin resistance,
ormalizes the lipid profile, and diminishes aortic
laque in JCR:LA-cp rats (17–19).

E T H O D S

xperimental design. Six-week old male JCR:LA-cp
�/?, lean rats, n � 5) and JCR:LA-cp (cp/cp,
bese rats, n � 11) were studied. Six obese rats
eceived dietary benfluorex (Sigma-Aldrich, St.
ouis, Missouri) ad libitum (0.069% wt/wt; Purina
ills, St. Louis, Missouri) for 16 weeks, and the

emaining obese (n � 5) and lean (n � 5) rats were
ed a standard rodent diet (Purina Mills). Body
eight and food consumption were recorded at
aseline and weeks 4, 8, 12, and 16 of the study.
agnetic resonance (MR) molecular imaging with

��3-targeted paramagnetic nanoparticles (1.0 ml/
g, �0.005 mmol Gd3�/kg, �200 pmol nanopar-
icles/kg) was performed at baseline and at
eeks 8 and 16. The study protocol was

pproved by the Animal Studies Commit-
ee of Washington University Medical
chool.
anoparticle formulation. The nanoparticle
ontrast agent was prepared for MR ex-
eriments as described in previous reports
9–12). Nanoparticle emulsions were composed of
erfluorocarbon (20%, vol/vol) and excipient (80%,
ol/vol). Each nanoparticle contained 98.0% per-
uorooctyl bromide (Minnesota Manufacturing
nd Mining, St. Paul, Minnesota) with 2.0% (wt/
ol) of a lipid surfactant comixture in a 1.7%
wt/vol) glycerin in water excipient. The surfactant
omixture included 68 mole% lecithin (Avanti Polar
ipids, Inc., Alabaster, Alabama), 0.1 mole% pep-

idomimetic ���3-integrin antagonist conjugated to
olyethylene glycol (molecular weight of 2,000)
hosphatidylethanolamine (Avanti Polar Lipids,
nc.), 1.9 mole% phosphatidylethanolamine (Avanti
olar Lipids, Inc.), and 30 mole% gadolinium
iethylenetriamine-pentaacetic acid-bis-oleate
IQsynthesis, St. Louis, Missouri).

Homing to angiogenic vessels was achieved with
n ���3-integrin antagonist, originally developed
or nuclear and optical imaging (20,21). The spec-
ficity of the ���3-ligand mirrored that of LM609
s assessed by staining and flow cytometry and had
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or (21 nmol/l) (21). The half maximal inhibitory
oncentration for ���5, �5�1 and glycoprotein IIb/
IIa was determined to be �10 �M. Integrin-
argeted nanoparticles presented approximately 300
igands per particle with a half maximal inhibitory
oncentration of 50 pM for the Mn2� activated
��3-integrin (12).
R imaging. MR molecular imaging of rat abdom-

nal aorta was conducted under anesthesia (1% to
% isoflurane in 2 l/min oxygen) using a 3.0-T
linical magnet (Achieva; Philips Healthcare, An-
over, Massachusetts); an 11-cm, 2-element phased
rray coil; and a T1-weighted, fat-suppressed,
lack-blood, multislice turbo spin echo imaging
equence (TR/TE � 296/10 ms, resolution � 213
m � 213 �m � 2 mm, 4 slices, �11.6 min). Four

ontiguous slices were positioned immediately su-
erior to the renal arteries, which provided an
natomical landmark for reproducible MR slice
lignment over the course of the study. Saturation
ands were placed proximal and distal to the region
f image acquisition to null the blood signal, and fat
uppression was achieved with spectral selection
ttenuated inversion recovery. MR images were
cquired before and 120 min after tail vein injection
f ���3-targeted paramagnetic nanoparticles at
eeks 0 and 8. At week 16, aortic images were

cquired before nanoparticle injection and dynam-
cally at 20, 60, and 120 min post-treatment. All
ortic images were normalized to a reference gad-
linium standard placed within the field of view. In
ach transaxial image, the aortic wall was manually
raced and the average signal intensity across all
lices in each animal was calculated for each time
oint. MR signal enhancement on each day of the
tudy was calculated for each animal relative to the
ortic signal intensity before ���3-targeted para-
agnetic nanoparticle injection.
linical and histopathology. At weeks 0, 8, and 16 of
he study, blood samples were obtained and ana-
yzed for fasted plasma triglyceride, cholesterol, and
lucose using routine clinical chemistry procedures
y the Washington University Department of Com-
arative Medicine. Plasma insulin and leptin levels
ere assayed by Millipore Bioscience Division (St.
harles, Missouri) at weeks 8 and 16.
After the last imaging time point, abdominal

ortas were resected for histology. Formalin-fixed
nd paraffin-embedded (5 �m) sections were
tained for von Willebrand factor, an endothelial
ell marker (Chemicon International, Inc., Te-
ecula, California). Four equally spaced histologi-
al sections within the imaged segment were exam- t
ned for each animal. For each digitized section,
dventitial microvessels, consisting of no more than
endothelial cells in circumference, were counted

nd divided by the adventitial area, which was
raced and calculated with MATLAB 7.0 (The

athWorks, Inc., Natick, Massachusetts) to es-
imate microvessel density. Microvessel density
vessels/100 �m2) was averaged across the 4
icroscopic sections to provide a single estimate

or each rat.
tatistics. All quantitative data are reported as
ean � SE. Two-way analysis of variance was

erformed to compare the experimental groups and
he repeated measures (SAS Institute, Cary, North
arolina). For significant F tests (p � 0.05), group
eans were separated using the least significant

ifference technique.

E S U L T S

ody weight and food consumption. At baseline,
ody weight and food consumption in the 6-week-
ld obese rat groups were 46.5% and 49.2% higher,
espectively, than the lean animals (Fig. 1). During
he 16 weeks of the study, all treatment groups
ncreased body weight and food consumption. The
ppetite suppression effect of benfluorex resulted in
ecreased (p � 0.05) weekly food consumption by
bese rats relative to the untreated corpulent ani-
als that was similar (p � 0.05) to the lean control

ntake. Although obese rats receiving benfluorex
eighed less (517 � 9 g, p � 0.05) than the
ntreated obese control animals (615 � 18 g) at 16
eeks, these animals were heavier (p � 0.05) than

he lean control rats (367 � 18 g) despite equivalent
ietary intakes. From the average daily food con-
umption, the amount of benfluorex incorporated
nto the feed and the average weights of the
nimals, the average drug dose over the course of
his study was calculated as 31.8 � 0.5 mg/kg/day.
R imaging. The fat suppressed MR images of the
eavier obese rats, both benfluorex-treated and
ntreated, revealed large, hypointense, periaortic
dipose regions within the abdominal cavity that
ere not observed in lean animals (Fig. 2). At 8 and
6 weeks of the study, marked neovascular signal
nhancement was measured throughout the aortic
lices of the untreated obese rats in contradistinc-
ion to the sparse background contrast level de-
ected in the lean animals at 2 h post-injection.
enfluorex treatment reduced the extent and inten-

ity of neovascular signal enhancement observed in

he aortic wall of obese rats to a magnitude similar
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o that found in the lean animals, which paralleled
he primary drug effect on feed consumption
Fig. 3). Dynamic images obtained over 120 min
fter injection of ���3-targeted paramagnetic nano-
articles at week 16 clearly revealed a marked
ncrease in neovascular contrast at 20 min for the
ntreated obese rats, whereas signal enhancement
n both the lean and benfluorex-treated obese rats
as much lower. These differences in contrast

nhancement remained unchanged over the re-
aining time of scanning (Fig. 4).
linical pathology. Fasting plasma glucose did not
iffer among the 3 treatment groups over the course
f the study (Fig. 5). As expected, cholesterol and
riglyceride concentrations were lower (p � 0.05) in
ean rats compared with the obese animals, but
enfluorex treatment did not decrease (p � 0.05)
lasma lipids significantly in the obese rats (Fig. 5).
asting hormonal concentrations of insulin and

eptin were markedly higher (p � 0.05) in the obese
ersus lean animals at 8 and 16 weeks (Fig. 5),
imilar to plasma lipid levels. However, benfluorex
owered (p � 0.05) insulin and leptin levels in the
bese rats, but not to the level in lean animals.
istology. Routine light microscopy of the aortas

rom obese rats showed increased adventitial adi-
ose deposits compared with the lean animals,
hich paralleled the MR imaging results (Fig. 6).
o protruding aortic plaque was appreciated in the

bese animals at 22 weeks of age, but subintimal
laque thickening was prevalent in the untreated
bese rats and rarely appreciated in the lean control
r obese rats fed benfluorex.
Anti–von Willebrand factor staining of endothe-

ial cells revealed a greatly expanded vasa vasorum
ithin the fatty adventitia of the abdominal aorta in
ntreated obese rats relative to the lean animals.
he benfluorex-treated animals displayed only
atchy areas of neovascular expansion within the
dventitia, involving much less of the vessel wall
ompared with the untreated obese animals. Ad-
entitial microvessel density in the untreated obese
ats (5 � 0.7 vessel/100 �m2) was greatly increased
p � 0.05) relative to benfluorex-treated obese rats
2.6 � 0.3 vessel/100 �m2) and the lean control
roups (2.7 � 0.4 vessel/100 �m2), which were
quivalent (Fig. 7).

I S C U S S I O N

etabolic syndrome is characterized by a clustering
f metabolic abnormalities in conjunction with

nderlying insulin resistance and is closely associ- c
ted with the onset of diabetes and accelerated
ardiovascular disease. The corpulent JCR:LA-cp
at model of metabolic syndrome exhibited obesity,
evere insulin resistance, hyperinsulinemia, and hy-
ertriglyceridemia, as reported by others (13–16).
asa vasorum expansion and neovasculature prolif-

ration, previously unreported in this model, was
emonstrated and longitudinally assessed with MR
olecular imaging at 3.0-T with ���3-targeted

aramagnetic nanoparticles, whereas benfluorex-
reated and lean rats had significantly lower MR
ignal enhancement throughout the study. The MR
nhancement observed in the aortic wall of the lean
nimals was perhaps a result of circulating nanopar-
icles. In an atherosclerotic rabbit model, the MR
nhancement in the aortic wall persisted up to 8 and
2 h for nontargeted and ���3-targeted nanopar-
icle formulations, respectively (22). Noninvasive

R molecular imaging results were closely corrob-
rated by microscopic estimates of microvessel den-
ity within the aortic wall. Both MR and histology
bjectively measured overall neovascularity by en-
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Figure 1. Diet Consumption and Body Weight

Diet consumption (top) and body weight (bottom) in lean (green),
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ncluding the entire vessel circumference and all im-
ged slices and not only subjectively selected areas
dentified as “hot spots” of plaque development.

Neovascularization is a prominent feature of
uman atherosclerotic lesions characterized as un-
table lipid-rich plaques, but only a minor compo-
ent of stable fibrocalcific lesions (6). Angiogenesis

Figure 2. MR Molecular Imaging of Aortic Angiogenesis With Ta

Full field of view (FOV) of T1 weighted, fat suppressed magnetic re
(middle row) and obese treated (bottom row) rats that were absen
views of the abdominal aorta in lean, obese, and obese-treated rats
ticles show signal enhancement in the aorta wall. The percentage o
red) demonstrate higher MR signal enhancement in the untreated
of atherosclerotic lesions.

Lean
*

Obese Treated

Obese
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Week

8 16

Serial Monitoring of Angiogenesis in the Abdominal Aorta
olecular Imaging

itoring of angiogenesis in the abdominal aorta with targeted
les in the lean (green), obese (pink), and obese treated (yellow)
the untreated obese animals, the MR enhancement measured
jection steadily increases over the course of the study, indicating
e development of angiogenesis. Neovascular enhancement in the
bese treated animals remained constant and low throughout the
cting the reduced progression of aortic disease with benfluorex
p
*p � 0.05. Abbreviation as in Figure 2.
ot only provides a portal of entry for blood-borne
ells and nutrients into the inflamed tissue (23), but
hese fragile neovessels are also prone to shear-
nduced disruption, resulting in intraplaque hemor-
hage. Intraplaque hemorrhage induces amplifica-
ion of intramural inflammatory and immune
rocesses, which may ultimately progress to plaque
upture (8,24,25).

The ���3-integrin is a heterodimeric transmem-
rane glycoprotein and biomarker that is differen-
ially up-regulated in proliferating versus quiescent
ndothelial cells, but it is also expressed by numer-
us cell types prominently represented in ath-
rosclerotic plaques, including endothelial cells
26,27), macrophages (28), platelets (29), lympho-
ytes (29), and smooth muscle cells (30). We have
hown that ���3-targeted paramagnetic nanopar-
icles specifically detect and quantify angiogenesis
n atherosclerotic plaques of hypercholesterolemic
abbits (31). Microvessel counts have been closely
orrelated with the MR imaging signal enhance-
ent, which increased monotonically at higher

dventitial microvessel counts and decreased rapidly
s neovessel counts decreased (32). Moreover, MR
ignal enhancement has been clearly shown to
eflect a neovascular response to targeted antiangio-
enic treatment given alone and in synergistic
ombination with atorvastatin therapy (32,33). His-
ological staining of the ���3-integrin itself was not

ted Nanoparticles

nce (MR) images show large abdominal fat deposits in the obese
the lean (top row) animals (arrows denote aortas). Magnified
baseline (Bsl) and 2-h (2 Hr) post-injection of targeted nanopar-
nal enhancement maps (Enh. Map; false colored from blue to
e animal, indicating active angiogenesis supporting development
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ypes, including macrophages, platelets, lympho-
ytes, and smooth muscle cells (32), express this
ntegrin. Earlier publications have demonstrated
hat ���3-targeted nanoparticles are confined to the
asculature (12,32) where they can only interact with
ndothelial cells. Therefore, histological staining of an
ndothelial marker, such as von Willebrand factor, is
ore likely to reflect possible sites of nanoparticle

inding than staining for the integrin itself, which
ould greatly overestimate particle binding.
Dietary benfluorex, which increases neurotrans-
itter serotonin levels to produce satiety and loss of

ppetite, decreased diet intake to the lean control
onsumption. Body weight and circulating levels of
nsulin and leptin were reduced relative to the
ntreated obese animals, but were still elevated
ompared with the lean controls, in agreement with
revious reports (18,19). In earlier studies, the
airing of obese rat food intake to control animals
nd the feeding of benfluorex or d-fenfluramine
ave been found to diminish cardiovascular disease
nd myocardial lesions in this corpulent rat model
14,18,19,34,35). Ad libitum feed consumption in
enfluorex-treated obese rats was comparable to the
ntake of their lean control counterparts, which was

irrored by a low aortic neovascular MR signal in
oth groups of animals. Collectively, these findings
upport the contention that the progression of
ardiovascular disease is correlated with increasing
ntramural angiogenesis, which can be noninva-
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tudy limitations. One limitation of the present
tudy and other animal model studies is the focus
n very early atherosclerotic disease because many
f the key features of human atherosclerotic
laque reported to amplify neovascular response,
uch as intraplaque hemorrhage and associated T
ell–mediated immune response, are not present.

Figure 6. Increased Microvascular Density in Obese Rats

Staining of von Willebrand factor in abdominal aorta sections (�10
identifies endothelial cells in the lumen, media, and adventitia. High
of small blood vessels (arrowheads) located in the adventitia.

Lean Obese
Treated

Obese

*

1
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4

5

6

Benfluorex Normalizes Adventitial Microvascular Density

microvessel density (microvessels/100 �m2) in the lean (green),
k), and obese treated (yellow) animals. Far fewer small vessels
d in both the lean and obese treated groups compared with
obese animals (*p � 0.05), corroborating the results obtained
etic resonance molecular imaging with ���3-integrin targeted
m
les.
lthough the ameliorative effect of benfluorex on
ietary intake, body weight increase, and aortic
eovascular expansion in early plaque was evi-
ent, the regression or stabilization of advanced
laque remains to be demonstrated.
This study measured the MR imaging en-

ancement arising from only the ���3-integrin
argeted nanoparticle formulation. Although we
id not use nontargeted nanoparticles to deter-
ine the nonspecific accumulation of the contrast

gent due to the hyperpermeability of angiogenic
essels, this issue has been explored in previous
tudies of animal models of cardiovascular disease
nd cancer (10,31,33). Typically, the nontargeted
ormulation produces approximately 50% less im-
ge enhancement compared with the targeted
articles. Although it is reasonable to assume that
he nontargeted agent would also yield 50% less
nhancement in the JCR rat, further studies will be
equired to assess the nonspecific contribution and
he dependence of particle dose and post-injection
ime point on the nontargeted component.

The clinical use of benfluorex has been discon-
inued in the U.S. due to safety concerns. How-
ver, the molecular imaging techniques described
n this study are sensitive to neovascular prolif-
ration in the aortic wall and are not limited to
nly detecting the response to benfluorex treat-
ent. This method could be applied to monitor-

ng the end-organ effects of a vast array of
herapeutic approaches, such as lifestyle modifi-
ations, surgical interventions, lipid-lowering

m lean (left), obese (middle), and obese treated (right) animals
agnification inset of the untreated obese rat shows high density
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O N C L U S I O N S

hese data represent the first report of molecular
maging of angiogenesis at a clinical field strength
o detect early metabolic vasculopathy and to quan-
ify therapeutic response to benfluorex in the cor-
ulent JCR:LA-cp rat model of metabolic syn-
rome. Benfluorex, an appetite suppressant,
educed ad libitum food intake equivalent to that in
ean control rats, which reduced body weight, insu-
in, and leptin levels of the obese rats relative to
hose of untreated animals. However, none of these
easures were reduced to the control level in the

ean rats. MR neovascular signal enhancement, on
J Interv Cardiol 2003;16:267–72.
16. Russell JC, Koesla

Dolphin PJ. Indep
o the contrast levels measured in the lean rats,
hich closely paralleled the appetite suppression

ffects. These results support the contention that
R molecular imaging of angiogenesis with integrin-

argeted nanoparticles could provide a sensitive,
igh-resolution signal for monitoring progression
nd treatment of cardiovascular disease.
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