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Abstract

We consider the super-Yang–Mills/spin system map to construct the SU(2) spin bit model at the level of two loops in Yang
Mills perturbation theory. The model describes a spin system with chaining interaction. In the largeN limit the model is shown
to be reduced to the two loop planar integrable spin chain.
 2004 Elsevier B.V.

1. Introduction

LargeN physics[1] gained considerable interest in recent years (see[2] for a recent review and reference
due to the AdS/CFT conjecture enlightenment[3,4] and, more recently, to the consideration of various limits for
this correspondence[5–11]. These achievements lead to an intensive study of the anomalous dimensions o
gauge invariant composite operators inN = 4 super-Yang–Mills (SYM) model[12]. The major breakthrough i
this investigation was the discovery of integrability of the matrix of anomalous dimensions in the plana
N → ∞ [13,14]. These results were extended to two and higher loops[15,16].

As it is now clear, there is a one-to-one correspondence between one trace operators in SYM theory
states in spin chain models. It was enough to consider the planar limit of SYM theory. If the nonplanar cont
is considered, the one trace sector is not conserved anymore and one ends up with trace splitting and
the operator mixing[17]. Even in this case one can still consider a one-to-one map between local gauge in
operators and a spin system[18,19]. In this case one has to introduce a set of new degrees of freedom, b
the spin states, which describes the chaining state of our spin system. This new field takes values in the s
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group of permutations of spin bits and introduces a new gauge degree of freedom. An alternative approa
description of the nonplanar contribution is discussed in[20].

In this Letter we extend the analysis of[18,19] to the two loop level of SYM perturbation theory, i.e., w
consider the SYM anomalous dimension/mixing matrix to two loops and apply the map to the spin bit sy
this matrix.

The plan of the Letter is as follows. In Section2 we introduce the notations; then in Section3 we consider
the two loop nonplanar anomalous dimension matrix which we map to anoperator acting on the spin bit spac
Using the properties of the symmetry group we are able to reduce the SU(2) nonplanar two loop Hamiltonian to
remarkably simple form. Finally, in Section4 we draw some conclusions.

In this Letter we use conventions and notations of[18,19].

2. The setup and the one loop result

We consider the SU(2) sector of local gauge invariant SYM operators which are generated by two holomo
(multi)trace operators built from two complex SYM scalarsφ = φ5 + iφ6 andZ = φ1 + iφ2, with the typical form

O = Tr(φZφφZ . . .)Tr(φφφZ . . .)Tr(. . .) · · · .
This trace can be written in the following explicit form using a permutation group elementγ ∈ SL:

O = φ
a1aγ1
i1

φ
a2aγ2
i2

· · ·φaLaγL

iL
≡ |φi1, . . . , φiL;γ 〉,

whereL is the total number of “letters”φi = (φ,Z) in O which are numbered by a labelk = 1, . . . ,L. The
permutation elementγk gives the next multiplier to thekth letter

γ ≡ (γ1γ2 . . . γk . . . γL) :
(

1 2 . . . k . . . L

γ1 γ2 . . . γk . . . γL

)
∈ SL.

Obviously, the reshuffling of the labelsk �→ σk accompanied by a conjugation ofγ with the same group eleme
σ−1 · γ · σ leaves the trace form ofO unchanged. Therefore, the configurations related by such a transform
should be considered as equivalent

(2.1)(φk, γ ) ∼ (
φσk , σ

−1 · γ · σ )
.

Now, we should map the space of such operators to the system ofL SU(2) 1
2-spins (spin bits). The map is complet

by associating to each bit the spin value|−1
2〉, if we find in the respective place the letterφ, and|+1

2〉, if we findZ.
In perturbation theory, the anomalous dimension matrix is given by

(2.2)∆(g) =
∑

k

H2kλ
2k,

with λ2 = g2
YMN

8π2 being the ’t Hooft coupling. The coefficients in this expansion are given in terms of effe
vertices, i.e., the operatorsH2k. They can be determined, e.g., by an explicit evaluation of the divergenc
two-point function〈O(0)O(x)〉 Feynman amplitudes.

At the zero, one and two loop level, the SU(2) anomalous dimension matrices are given by the follow
expressions[21]:

H0 = Tr(φφ̌ + ZŽ),

H2 = − 2

N
:Tr

([φ,Z][φ̌, Ž]):,
H4 = 1

2

{
2:Tr

([Z,φ][Ž,
[
Z, [Ž, φ̌]]]): + 2:Tr

([Z,φ][φ̌,
[
φ, [Ž, φ̌]]]): + 4N :Tr

([φ,Z][φ̌, Ž]):},

N
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Fig. 1. Splitting and joining of chains byΣkl.

where the checked letteršφ andŽ correspond to derivatives with respect to the matrix elements

Žij = ∂

∂Zji
, φ̌ij = ∂

∂φji

and colons denote the ordering in which all checked letters in the group are assumed to stay on the rig
unchecked ones.

In order to find the “pull back” of the Hamiltonian(2.2) to the spin description, one has to apply it on
(multi)trace operator corresponding to the spin bit state|s, γ 〉 and map the result back to the corresponding s
bit state. This can be done term-by-term in the perturbation theory expansion series.

A simple form for the one-loop nonplanar Hamiltonian was found earlier[18,19] (see also[22] for a related
discussion) and reads

(2.3)H2 = 1

2N

∑
k,l

HklΣkγl = 1

N

∑
k,l

(1− Pkl)Σkγl ,

where the permutation and chain “twist” operators are respectively defined in the following way(k, l = 1, . . . ,L):

Pkl

∣∣{. . .Ak . . .Al . . .}
〉 = ∣∣{. . .Al . . .Ak . . .}〉, with Al,Ak ∈ {φ,Z},

(2.4)Σkl |γ 〉 =
{ |γ σkl〉, if k 	= l,

N |γ 〉, k = l.

Σkl acts as a chain splitting and joining operator as illustrated inFig. 1. Notice that twoΣ ’s do not commute if
they have indices in common. The factorN in the casek = l in Eq. (2.4) appears because the splitting of a tra
at the same place leads to a chain of length zero, whose corresponding trace is Tr1= N . It is important to note
that the operatorΣkl acts only on the linking variable, while the two-site SU(2) one-loop spin bit Hamiltonian
Hkl = 2 (1− Pkl) acts on the spin space. Therefore, the two operators commute.

3. The two loop Hamiltonian

Let us now consider the two loop Hamiltonian

(3.1)H4 = 1

N2

{
2:Tr

([Z,φ][Ž,
[
Z, [Ž, φ̌]]]): + 2:Tr

([Z,φ][φ̌,
[
φ, [Ž, φ̌]]]): + 4N :Tr

([φ,Z][φ̌, Ž]) :}.
We introduce the operator

OB1,B2,B3 = Tr(ǍkAB1ǍlAB1ǍmAB3),
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d as
Fig. 2. The action ofOB1,B2,B3 on a spin chain state.

with Ǎk, Ǎl, Ǎm = φ̌, Ž acting on thekth, lth, mth sites of the state| . . .Ak . . .Al . . .Am . . . ;γ 〉, respectively. Here
Bi are non-intersecting sequences chosen in the set{klm} andABi are then monomials inAk,Al,Am. For example,
the choicesB1 = ∅, k, lm, klm correspond toAB1 = 1,Ak,AlAm,AkAlAm. Indeed, asAB1,AB2,AB3 are made of
the same number ofφ andZ than inǍk, Ǎl, Ǎm, any trace of(3.1)can be written with such anOB1,B2,B3 operator.

Acting with OB1,B2,B3 on a spin chain state specified byγ , one finds

OB1,B2,B3 : γ =
(

γ −1
k k γ −1

l l γ −1
m m

k γk l γl m γm

)
→

(
γ −1
k B1 γ −1

l B2 γ −1
m B3

B1 γl B2 γm B3 γk

)
.

A pictorial view of the action ofOB1,B2,B3 is given inFig. 2. The three relevant cases are

Oklm,∅,∅|γ 〉 =
∣∣∣∣
(

γ −1
k k l m γ −1

l γ −1
m

k l m γl γm γk

)〉
= PlmΣlγmΣγkm|γ 〉,

Om,∅,kl |γ 〉 =
∣∣∣∣
(

γ −1
k m γ −1

l γ −1
m k l

m γl γm k l γk

)〉
= PkmΣlγmΣγkγl |γ 〉,

(3.2)Okl,∅,m|γ 〉 =
∣∣∣∣
(

γ −1
k k l γ −1

l γ −1
m m

k l γl γm m γk

)〉
= PkmΣkmΣlγm |γ 〉.

In order to write the operators in terms ofP andΣ , we used the fact that permutations can also be viewe
operators acting onγ rather than on spin states. From such a viewpoint, the action ofPkl onγ is

Pkl

∣∣∣∣
(

. . . k . l . . .

. k . . . . . l .

)〉
=

∣∣∣∣
(

. . . l . k . . .

. l . . . . . k .

)〉
,

while the action ofΣkl is given explicitly by

Σkl

∣∣∣∣
(

. . . . .

. k . l .

)〉
=

∣∣∣∣
(

. . . . .

. l . k .

)〉
.

All other contributions in(3.1)can be written as permutations and/or relabeling of indices in(3.2). Collecting
the sixteen terms coming from(3.1), one finds

(3.3)

H4 = 2

N2

∑
k 	=l 	=m

[
(PkmPlm + PklPlm − Pkl − Pkm)(ΣlγmΣγkγl + ΣklΣγlm)

+ (2Plm + 2Pkl − 2− PklPlm − PlmPkl)ΣkγlΣlγm

] + 4

N

∑
k,l

(Pkl − 1)Σkγl .
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c,
Fig. 3. Splitting and joining of chains byΣklm ≡ Σkγl
Σlγm .

Using the relation

(3.4)1− Pkl − Pkm − Plm + PkmPlm + PklPlm = 0

valid for k 	= l 	= m on 1
2-spin states, one can rewrite the two loop SU(2) spin bit Hamiltonian(3.3)as

H4 = 2

N2

∑
k 	=l 	=m

[
(Plm − 1)(ΣlγmΣγkγl + ΣklΣγlm) + (Plm + Pkl − Pkm − 1)ΣkγlΣlγm

]

(3.5)+ 4

N

∑
k,l

(Pkl − 1)Σkγl .

Next, we would like to write the Hamiltonian in terms ofP ’s and a single (two loop) joining–splitting operator

Σklm ≡ Σkγl Σlγm.

Its action is depicted inFig. 3. Because a one-operator trace vanishes and a two-operators trace is fully symmetri
the joining–splitting Σklm operator satisfies

(3.6)Σllm = Σkll = (Pkl − 1)Σklk = 0.

Noticing that1

ΣlγmΣγkγl = ΣγkγlΣlγm = Σγklm for l 	= γk

ΣklΣγlm = Σmγl Σlk = Σ
mlγ −1

k
for k 	= γl,

the first term of the first sum in(3.5)can then be rewritten as

X ≡
∑

k 	=l 	=m

(Plm − 1)(ΣlγmΣγkγl + ΣklΣγlm)

=
∑

γ −1
k′ 	=l 	=m

Σk′lm(Plm − 1) +
∑

k 	=l 	=γm′
Σklm′(Pkl − 1) +

∑
l,m

(Plm − 1)(ΣlγmΣlγl + ΣγllΣγlm),

1 Herek 	= l 	= m is understood.
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where the terms withl = γk or k = γl were explicitly written apart. Relaxing the restrictions in the sums
subtracting the exceptional terms and usingΣkk = NI, one gets

X =
∑
k,l,m

Σklm(Plm + Pkl − 2) − 2N
∑
l,m

(Plm − 1)Σlγm

−
∑
l,m

(Plm − 1)[ΣγmγlΣlγm − ΣlγmΣlγl + Σmγl Σlm − ΣγllΣγlm].

Finally, using the relationsΣγmγlΣlγm = ΣlγmΣlγl andΣmγl Σlm = ΣγllΣγlm and pluggingX in (3.5), one finally
finds the surprisingly simple result of this Letter

(3.7)H4 = 2

N2

∑
k,l,m

(2Plm + 2Pkl − Pkm − 3)Σklm.

Notice that in(3.7)one can chose to put or not the restrictionsk 	= l 	= m, as equaling two indices always gives
term of the form(3.6).

It is also instructive to rewrite the Hamiltonian in terms of SU(2) spin operators�s = 1
2 �σ , where�σ are usual

Pauli matrices, using the identity (see, e.g.,[23])

(3.8)Pkl = 1

2
+ 1

2
�sk · �sl .

After the substitution of permutation operators, the one-loop Hamiltonian(2.3)takes the following form:

(3.9)H4 = 8

N2

∑
k,l,m

(
(�sk − 2�sl + �sm)

)2
Σklm = 8

N2

∑
k,l,m

(
(�sk − �sl ) − (�sl − �sm)

)2
Σklm.

This Hamiltonian has a simple meaning (seeFig. 3): Σklm cyclically exchanges the incoming and outgoing end
the chains adjacent to the bitsk, l andm; at the same time the spin part acts as the discrete second derivative
the new chain. After knowing that the one-loop Hamiltonian has the similar structure

H2 = 4

N

∑
k,l

(�sk − �sl)2Σkγl ,

it is very tempting to conjecture that at the arbitraryn-loop level the Hamiltonian is given by the discrete derivat
of the ordern squared times the splitting that cyclically exchange the chain ends

Hn ∼ 4n

Nn

∑
k1,...,kn

(
n∑

i=0

n!
(n − i)!i!(−1)i�ski

)2

Σk0γk1
Σk1γk2

· · ·Σkn−1γn .

This is compatible with the BMN conjecture[5] but it implies that the Hamiltonian can be written linearly in p
permutation operatorsPkl atany loop level, which unfortunately is probably not the case.
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3.1. The planar limit

N → ∞ affects just the “twist” operator in the following way:2

lim
N→∞

1

N
Σkl = δkl.

The two loop nonplanar SU(2) spin bit Hamiltonian(3.7)gives then the correct known expression[21] in the planar
limit N → ∞:3

(3.10)

lim
N→∞ H4 = 2

L∑
k=1

(4Pk,k+1 − Pk,k+2 − 3) = 2
L∑

k=1

(−4+ 6Pk,k+1 − Pk,k+1Pk+1,k+2 − Pk+1,k+2Pk,k+1),

where in the last passage we used the identity(3.4).

4. Conclusion

In this Letter we considered the anomalous dimension and mixing of composite operators ofN = 4 SYM theory
in the SU(2) symmetric sector. Using the isomorphic map between gauge invariant composite operators
spin bit states, we computed the spin bit Hamiltonian corresponding to two-loop corrections to the ano
dimension/mixing matrix. The resulting Hamiltonian at this level has two important properties:

(i) The Hamiltonian shows at the two-loop level an explicit full factorization in the spin and chain splitting
similar to the one-loop level.

(ii) Its action is given by a three-point spin interaction and a cyclic exchange (hopping) of the chain ends.

The first property is expected to hold at any loop order since the Hilbert space of the spin bit model is alw
direct product of the spin space and the linking variableγ -space. The second property has a natural generaliz
to n + 1 interacting points appearing atn loops: cyclic exchange of the chain ends multiplied by the squar
thenth discrete derivative of spin operators�sk . In the continuum limit, this is in perfect agreement with the BM
conjecture which gives a term∼ λ2n(∂nφ)2 as then loop contribution.

A strong consequence of this higher loop conjecture is therequirement that at any loop level the spin part of
Hamiltonian should always be linear in permutation operators. This implies strong restrictions on the plan
too. Of course, there is a very rich set of identities involving permutation operators which could be used t
such a property. Our attempts to check this at the three-loop level with the expressions for planar Ham
given by[21] so far failed.

Similar results giving the Hamiltonian at three and more loops in terms of spin-bit would give more in
allowing one to give a conjecture for generalization. Infact, there is enough data and technique at this stag
produce the three loop Hamiltonian. Theproblem being only algebraic difficulty, it seems hopefully superable b
the use of computer algebra.

Finally, we notice that it would be interesting to extend this analysis to other sectors ofN = 4 SYM; unfortu-
nately, only SU(2) anomalous dimension operators are known beyond one-loop.

2 In fact from Eq.(2.4) the following decomposition ofΣkl holds

Σkl = Nδkl + (1− δkl)Σ̃kl,

whereΣ̃kl is the joining–splitting operator spoiled of its degeneracy in the case of coinciding sites.
3 We assume here a single trace, so thatγk ≡ k + 1, with the identificationL + 1≡ 1.
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