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Alam'aet--In this paper we consider three examples of discontinuous Sturm-Liouville problems with 
symmetric potentials. The ¢igcnvalues of the systems were determined using the classical fourth order 
Runge--Kutta method. These eigenvalues are used to reconstruct the potential function using an algorithm 
presented in Kobayashi [1, 2]. The results of our numerical experiments are discussed. 

1. A M A T T H I E U  E Q U A T I O N  

In this section we generate the first fifteen eigenvalucs of  two discontinuous Sturm-Liouville 
systems with symmetric boundary and jump conditions, then we try to reconstruct the potential 
function of  the second system, a Matthieu potential, using the fifteen eigenvalues and algorithm 
from Kobayashi [1, 2]. Begin with the Sturm-Liouville system with potential q -- 0: 

Sys tem I 

with boundary conditions: 

and symmetric jump conditions: 

u(d~ +)  = au(d, - ) ,  

u(d:- ) ffi au(d: + ), 

- -U # ~ ~.Z/~ 

u'(O) ffi u '(n) = 0 

u'(d~ +) = a-~u'(d~ -) + bu(d~ -), 

u'(d:- ) ffi a-~u'(d, + ) - bu(d,- ), 

where 0 ~< x ~< ~, the discontinuities dt and d2 satisfy 0 < d~ < ~/2 < d~ < it and d2 ffi ~ - d~, and a 
and b are jump constants satisfying I a - 11 + I b I > O. Let  ~ = (a - a -  ~)/(a + a -  ~). Choose a so 
that 2 [ a [ + [ c¢21 < 1. We determine the eigenvalues for system 1 from the Volterra integral equations 
of  u [2]. Since the potential function is identically zero, the integral terms in the Volterra equations 
vanish, and we are left with a simple expression for u. The IMSL subroutine ZBRENT is used to 
determine the zeros of  u'(~, 2). The eigenvalues are the points :,1 where u~(e, 2i) = 0. A different 
technique is required to determine the eigenvalues of  the Matthieu equation: 

Sys tem 2 

with the boundary conditions: 

and symmetric jump conditions: 

-u" + (2 cos 2x)u ffi Au, 

u'(O) = u'(n) = 0 

u(d, +) = au(dl -), u'(dl +) ffi a-lu'(dl --) + bu(dl -), 

u(d:-) ffi au(d,+), u'(d,-) = a-lu'(d,+) - bu(d:-), 

where a, b, dl and d: satisfy the conditions described above; q -- 2 cos 2x so that the integral terms 
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in the Volterra integral equations do not vanish. We solve the system 

( u j ~ ' = ( q 0 _ 2 j  l~(us) ,  
\uW o)\,,j 

with the initial conditions 

and the jump conditions 

and 

(uU,:), 0:('0) 
0 (uU;')x=a,+ = (: a-'/\u,/x=a,_ 

( u j )  = ( a b l  0"~(uj'~ 
u; x=d2+ a,]\u;,]x=al- 

using the classical fourth order Runge-Kutta method. The IMSL subroutine ZBRENT is used to 
find the points 21 such that u~(n, 2i) = 0. The 2i are the eigenvalues. 

To determine the fifteenth eigenvalue to eleven decimal places, a gridsize of at most ~/10,000 
should be used, where ~ is the length of the interval. The accuracy of the eigenvalues can be found 
by beginning with gridsize n/20. As the gridsize is halved we gain one to two decimal places of 
accuracy. In the continuous problem this rate of convergence is expected. Our experiment shows 
that the method is also a fourth order method in the discontinuous problem. The expression for 
the calculated eigenvalues using the classical fourth order method is 

=  jo,ac, + c j .  h '  + . . .  

where h is the gridsize. We determined Cj for system 2 when a = 1.5, b = 0.5 and d = n/20. 
Calculations for the eleventh eigenvalue with varying meshsizes show that Ctt varies between 21.99 
and 22.85 for meshsizes n/320 to n/20480. From our calculations for various eigenvalues for 
meshsize n/640 we find that Cj is proportional to 2] where 2 < p  < 3 and p ,~ 2.5. We note that 
other higher order methods may be used to find the eigenvalues [3]. The Prince--Dormand 
Runge-Kutta order 7-8 method [4] was used by the author. Extra work is required in feeding the 
coefficients into the routine, and it is not clear whether there is a significant saving in computation 
time. In the fourth order Runge-Kutta method a very small step size is needed to achieve high 
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Fig. 1. Second eigenvalu¢ of Matthieu's equation. 
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Fig. 2. Five eigenvalues, a = 1.5, b = 0.5, d -- ~/20. 

accuracy, whereas in the Prince-Dormand routine a large number of  sums and products must be 
computed for each step. To illustrate the dependence of  the eigenvalues on the jump constants a 
and b, we select the second eigenvalue from System 2 and show how it varies as a and b range 
from 0.1 to 2.1 and - 1.0 to 1.0 respectively (see Fig. 1). The graph shows that for a given value 
of  ~ there is an associated level set of  pairs {(a, b)}, i.e. the value of  ~2 does not uniquely determine 
(a, b). In addition we note that the eigenvalue increases with an increase in either or both a and b. 

We have tried to reconstruct the potential function q = 2 cos 2x using the eigenvalues generated 
by the methods outlined above and an algorithm from Kobayashi [1, 2]. The results are given in 
Figs 2-4. Calculated values of  the jump constant b for the Matthieu system using the zeroth 
through the fourteenth eigenvalues are given in Fig. 5. The changes in the Lrerror, L2-error and 
L®-error with respect to the number of  eigenvalues used in the reconstruction are illustrated in 
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Fig. 3, Ten eigenvalues, a ffi 1.5, b = 0 .5 ,  d ffi I t /20 .  
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Fig. 4. Fifteen cngenvalues, a = 1.5, b = 0.5, d - re~20. 
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Fig. 5. New value of  b (a = 1.5, b = 0.5, d = ~/20). 
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Fig. 6. Er ror  in Q = 2 cos 2x (a = 1.5, b = 0.5, d = n/20). 
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Fig. 7. a = i.5, b = - 0 . 5 ,  d = n/5.  

Fig. 6. Detailed numerical results can be found in Kobayashi [2]. As the number of eigenvalues 
used in the reconstruction increases to 4 or 5, the experimental results appear to converge toward 
the potential q = 2 cos 2x. However as we pass to 6 or more eigenvalues the experimental results 
begin to oscillate about q = 2 cos 2x. The cause for this behaviour is unclear, and several 
explanations have been suggested. First, the eigenvalues we use for the Matthieu system are 
generated assuming that b -- 0.5. In the reconstruction algorithm we determine a new value for b. 
We see from Fig. 5 that the value of b does not equal 0.5 and furthermore does not approach 0.5 
as higher eigenvalues are considered. Next, note that the oscillations for six or more eigenvalues 
appear to be related to the Gibbs phenomenon which has been observed in other similar numerical 
experiments [5]. Two tall, thin spikes are observed in the reconstructed potential function. The 
spikes occur at the points where the eigenfunctions are discontinuous and become more 
pronounced as the number of eigenvalues used in the reconstruction increases. Ching-ju Lee at the 
University of California, Berkeley first noted the discrepancy between the asymptotic behavior of 
the eigenvalues. She generated the first 100 eigenvalues for Systems 1 and 2 to five or six digit 
accuracy and calculated the difference between the corresponding eigenvalues of the two systems. 
This difference did not converge to zero; it oscillated in a periodic manner about zero. The locations 
of the discontinuities and the jump constants were varied to see how the oscillatory patterns were 
changed. Her results are summarized in Fig. 7. These findings show that the assumption that the 
eigenvalues for systems 1 and 2 are equal for j  > n is violated. In a follow-up experiment C.-J. Lee 
reconstructed the potential q(x)= ½ cos 16x from q = 0. "The reconstruction algorithm turns out 
to be quite successful (for this choice)", she notes, "(and) compared to other pairs of (potential) 
functions the asymptotic difference between the spectrum for q ~ 0 and the one for q(x) = ½ cos 16x 
turns out to be quite small." (Private communication.) 

2. A DISCONTINUOUS POTENTIAL 

In the previous section we tried to reconstruct the smooth potential q(x)= 2 cos 2x from the 
zero potential. In this section we present an example to study how the same algorithm reconstructs 
a discontinuous, symmetric potential function. Consider the two systems given below: 

System 3 

with symmetric boundary conditions: 

- - U "  = ,~U, 

u'(O) = u'(n) = o 
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Fig.  8. F i v e  e l g e n v a l u e s ,  a = 1.5, b = 0.5,  d = n/4. 

and symmetrically located discontinuities dl, d2 satisfying symmetric jump conditions: 

System 4 

U(dl +) = au(dl - ) ,  

u ( d z -  ) = au(d= + ), 

w i t h  s y m m e t r i c  b o u n d a r y  c o n d i t i o n s :  

u'(d,  + )  = a - J u'(d,  - )  + bu (d I - ) ,  

u ' ( d 2 -  ) = a - ' u ' ( d 2  + ) - b u ( d 2 -  ). 

- u "  + qu = 2 u ,  

u' (O)  = u ' ( n )  = o 
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Fig. 9. Ten eigenva]ues, a = 1.5, b = 0 . 5 ,  d = n/4. 
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Fig. I0. Fifteen eigenvalues, a = 1.5, b = 0.5, d = n/4.  

and symmetrically located discontinuities d~, d2 satisfying symmetric jump conditions: 

u(dl +) = au(d, - ) ,  u'(d, .+) "-'--- a - l u ' ( d l  - )  --I- bu(d, - ) 

u(d2- ) = au(d2 + ), u ' (d : -  ) = a -  lu'(d2 + ) - bu(d2- ), 

where 0 < x < n and the potential to be reconstructed is described by 

- i  for O<~x<n/4  
q =  + for n / 4 < x < 3 n / 4 .  

- for 3 n / 4 < x  <~n. 

In both systems a, b, d~ and d: satisfy the conditions given in the previous section. We choose 
eigenfunctions with discontinuities at x = n/4 and x = 3n/4 and jump constants a = 1.5, b = 0.5. 
Note that the discontinuities in the eigenfunctions coincide with those of the desired potential q(x). 
We investigate this problem to determine whether this match in the discontinuities reduces the 
error. First generate the eigenvalues r~ v-14 for Systems 3 and 4 using the methods described in ~.r-I Jt - 0 
the previous section. Then we use this data to reconstruct the potential q. Results from our 
implementation of the algorithm are given in Figs 8-10. 

3. CONCLUSIONS 

The eigenvalue generating techniques given in this paper are simple and can be applied to many 
eigenvalue systems. We have presented two examples of the implementation of a reconstruction 
algorithm for discontinuous, inverse Sturm-Liouville problems from Kobayashi [1, 2]. The data 
we used did not meet all of the specified requirements of the algorithm so that the computed result 
was poor in some locations and excellent in others. The information acquired from the algorithm 
can be considerable value in scientific and engineering problem-solving when data from a variety 
of sources will be used to analyze a situation. 
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