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1. Introduction

Wallis’s formula
∞∫

0

dx

(x2 + 1)m+1
= π

22m+1

(
2m

m

)
(1.1)

is one of the earlier instances of evaluation of definite integrals where the result contains interesting
arithmetical and combinatorial properties. In this paper we examine such connection for the integral

N0,4(a;m) =
∞∫

0

dx

(x4 + 2ax2 + 1)m+1
. (1.2)

The condition a > −1 is imposed for convergence. The evaluation

N0,4(a,m) = π

2

Pm(a)

[2(a + 1)]m+ 1
2

(1.3)
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where

Pm(a) =
m∑

l=0

dl(m)al (1.4)

with

dl(m) = 2−2m
m∑

k=l

2k
(

2m − 2k

m − k

)(
m + k

m

)(
k

l

)
, 0 � l � m, (1.5)

appeared in [4]. The reader will find in [2] a survey of the different proofs of (1.3) and an introduction
to the many issues involved in the evaluation of definite integrals in [8].

The study of combinatorial aspects of the sequence dl(m) was initiated in [3] where the authors
show that dl(m) form a unimodal sequence, that is, there exists and index l∗ such that d0(m) � · · · �
dl∗ (m) and dl∗ (m) � · · · � dm(m). The fact that dl(m) satisfies the stronger condition of logconcavity
dl−1(m)dl+1(m) � d2

l (m) has been recently established in [6]. We consider here arithmetical properties
of the sequence dl,m . It is more convenient to analyze the auxiliary sequence

Al,m = l!m!2m+ldl,m = l!m!
2m−l

m∑
k=l

2k
(

2m − 2k

m − k

)(
m + k

m

)(
k

l

)
(1.6)

for m ∈ N and 0 � l � m. The integral (1.2) is then given explicitly as

N0,4(a;m) = π√
2m!(4(2a + 1))m+1/2

m∑
l=0

Al,m
al

l! . (1.7)

In [5] it is shown that Al,m ∈ N. Observe that the computation of Al,m using (1.6) is more efficient
if l is close to m. For instance,

Am,m = 2m(2m)! and Am−1,m = 2m−1(2m − 1)!(2m + 1). (1.8)

A second method to compute Al,m , efficient now when l is small, has been discussed in [5]. There, it
is shown that Al,m is a linear combination (with polynomial coefficients) of

m∏
k=1

(4k − 1) and
m∏

k=1

(4k + 1). (1.9)

For example,

A0,m =
m∏

k=1

(4k − 1) and A1,m = (2m + 1)

m∏
k=1

(4k − 1) −
m∏

k=1

(4k + 1). (1.10)

The results described in this paper started with some empirical observations on the behavior of
the 2-adic valuation of Al,m , i.e. ν2(Al,m). Recall that, for x ∈ N, the 2-adic valuation ν2(x) is the
highest power of 2 that divides x. This is extended to x = a/b ∈ Q via ν2(x) = ν2(a) − ν2(b). From
(1.10) it follows that A0,m is odd, so ν2(A0,m) = 0. Moreover,

ν2(A1,m) = ν2
(
m(m + 1)

) + 1, (1.11)

i.e., the main result of [5]. We present as Theorem 2.1, an expression for ν2(Al,m) that general-
izes (1.11).

The study of the sequence

X(l) := {
ν2(Al,l+m−1): m � 1

}
(1.12)

requires the introduction of two operators, F and T , defined in (4.1) and (4.2), respectively. The iter-
ation of these operators creates an integer vector

Ω(l) := {n1,n2,n3, . . . ,nω(l)}, with ni ∈ N, (1.13)
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associated to the index l ∈ N. We call Ω(l) the reduction sequence of l. See (4.2) for the precise defini-
tion of the integers n j . The structure of X(l) motivates the following definition.

Definition 1.1. Let s ∈ N, s � 2. We say that a sequence {a j: j ∈ N} is simple of length s (or s-simple) if
s is the largest integer such that for each t ∈ {0,1,2, . . .}, we have

ast+1 = ast+2 = · · · = as(t+1). (1.14)

The sequence {a j: j ∈ N} is said to have a block structure if it is s-simple for some s � 2.

Section 2 presents two proofs of the expression for ν2(Al,m). Section 3 shows that X(l) is a simple
sequence of length 21+ν2(l) . In Section 4 an algorithm generating the vector Ω(l) is described in detail.
A combinatorial interpretation of Ω(l), as the composition of l, is provided in Section 5. Theorem 5.5
gives Ω(l) in terms of the dyadic expansion of l. More precisely, if {k1, . . . ,kn: 0 � k1 < k2 < · · · < kn}
is the unique collection of distinct nonnegative integers such that l = ∑n

i=1 2ki , then the reduction
sequence Ω(l) of l is {k1 + 1,k2 − k1, . . . ,kn − kn−1}. Finally, the last section contains a conjecture on
symmetries of the graph of ν2(Al,m).

2. The 2-adic valuation of Al,m

In this section we prove that ν2(Al,m) agrees with ν2((m + 1 − l)2l) + l. The first proof actually
produces the latter term in a natural way starting from the former. The second proof employs the
WZ-machinery [9] to prove the identity (2.1).

Theorem 2.1. The 2-adic valuation of Al,m satisfies

ν2(Al,m) = ν2
(
(m + 1 − l)2l

) + l, (2.1)

where (a)k = a(a + 1) · · · (a + k − 1) is the Pochhammer symbol for k � 1. For k = 0, we define (a)0 = 1.

Proof. First proof. We have

ν2(Al,m) = l + ν2

(
m∑

k=l

Tm,k
(m + k)!

(m − k)!(k − l)!

)
, (2.2)

where

Tm,k = (2m − 2k)!
2m−k(m − k)! . (2.3)

The identity

Tm,k = (2(m − k))!
2m−k(m − k)! = (2m − 2k − 1)(2m − 2k − 3) · · · 3 · 1 (2.4)

shows that Tm,k is an odd integer. Then (2.2) can be written as

ν2(Al,m) = l + ν2

(
m−l∑
k=0

Tm,l+k
(m + k + l)!

(m − k − l)!k!

)
= l + ν2

(
m−l∑
k=0

Tm,l+k
(m − k − l + 1)2k+2l

k!

)
.

The term corresponding to k = 0 is singled out as we write

ν2(Al,m) = l + ν2

(
Tm,l(m − l + 1)2l +

m−l∑
k=1

Tm,l+k
(m − k − l + 1)2k+2l

k!

)
.
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The claim

ν2

(
(m − k − l + 1)2k+2l

k!
)

> ν2
(
(m − l + 1)2l

)
(2.5)

for any k, 1 � k � m − l, will complete the proof.
To prove (2.5) we use the identity

(m − k − l + 1)2k+2l

k! = (m − l + 1)2l · (m − l − k + 1)k(m + l + 1)k

k!
and the fact that the product of k consecutive numbers is always divisible by k!. This follows from
the identity

(a)k

k! =
(

a + k − 1

k

)
. (2.6)

Now if m + l is odd,

ν2

(
(m − l − k + 1)k

k!
)

� 0 and ν2
(
(m + l + 1)k

)
> 0, (2.7)

and if m + l is even

ν2

(
(m + l + 1)k

k!
)

� 0 and ν2
(
(m − l − k + 1)k

)
> 0. (2.8)

This proves (2.5) and establishes the theorem.

Second proof. Define the numbers

Bl,m := Al,m

2l(m + 1 − l)2l
. (2.9)

We need to prove that Bl,m is odd. The WZ-method [9] provides the recurrence

Bl−1,m = (2m + 1)Bl,m − (m − l)(m + l + 1)Bl+1,m, 1 � l � m − 1.

Since the initial values Bm,m = 1 and Bm−1,m = 2m + 1 are odd, it follows that Bl,m is an odd inte-
ger. �
3. Properties of the function ν2(Al,m)

Let l ∈ N∪{0} be fixed. In this section we describe properties of the function ν2(Al,m). In particular,
we show that each of these sequences has a block structure.

Theorem 3.1. Let l ∈ N ∪ {0} be fixed. Then for m � l, we have

ν2(Al,m+1) − ν2(Al,m) = ν2(m + l + 1) − ν2(m − l + 1). (3.1)

Proof. From (2.1) and (a)k = (a + k − 1)!/(a − 1)!, we have

ν2(Al,m) = ν2

(
(m + l)!
(m − l)!

)
+ l. (3.2)

This implies

ν2(Al,m+1) − ν2(Al,m) = ν2

(
(m + l + 1)!
(m − l + 1)!

)
− ν2

(
(m + l)!
(m − l)!

)

= ν2

(
(m + l + 1)!(m − l)!
(m − l + 1)!(m + l)!

)
= ν2(m + l + 1) − ν2(m − l + 1). �
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The next corollary is a special case of Theorem 3.1.

Corollary 3.2. The sequence ν2(Al,m) satisfies

(1) ν2(Al,l+1) = ν2(Al,l).
(2) For l even,

ν2(Al,l+3) = ν2(Al,l+2) = ν2(Al,l+1) = ν2(Al,l).

(3) The sequence ν2(A1,m) is 2-simple; i.e., ν2(A1,m+1) = ν2(A1,m) for m odd. In fact,

A1,m = {2,2,3,3,2,2,4,4,2,2, . . .}.

Fix k, l ∈ N and let μ := 1 + ν2(l). Define the following sets

Ck,l := {
l + k · 2μ + j: 0 � j � 2μ − 1

}
, (3.3)

which will be instrumental in proving the main result of this section; i.e., {ν2(Al,m)} is 21+ν2(l)-simple.
We begin by showing that these sets form a partition of N. Moreover, for fixed k, l ∈ N the set

Ck,l has cardinality 2μ and the 2-adic valuation of {Al,m: m ∈ Ck,l} is constant. For example, if l ∈ N is
odd, then μ = 1 and

Ck,l = {l + 2k, l + 2k + 1}. (3.4)

The next result is immediate.

Lemma 3.3. Let l ∈ N be fixed. The sets {Ck,l: k � 0} form a disjoint partition of N; namely,

{m ∈ N: m � l} =
⋃
k�0

Ck,l, (3.5)

and Cr,l ∩ Ct,l = ∅, whenever r 	= t.

Lemma 3.4. Fix l ∈ N and let μ = ν2(2l).

(1) The sequence {ν2(Al,m): m ∈ Ck,l} is constant. We denote this value by ν2(Ck,l).
(2) For k � 0, ν2(Ck+1,l) 	= ν2(Ck,l).

Proof. Suppose 0 � j � 2μ − 2. Since ν2(2l) = μ � ν2(k · 2μ), then

ν2
(
2l + k · 2μ

)
� ν2(2l) = μ > ν2( j + 1), (3.6)

because j + 1 < 2μ . Therefore

ν2
(
2l + k · 2μ + j + 1

) = ν2( j + 1) = ν2
(
k · 2μ + j + 1

)
. (3.7)

Using these facts and (3.1), we obtain

ν2(Al,l+k·2μ+ j+1) − ν2(Al,l+k·2μ+ j) = ν2
(
2l + k · 2μ + j + 1

) − ν2
(
k · 2μ + j + 1

)
= ν2( j + 1) − ν2( j + 1) = 0

for consecutive values in Ck,l . This proves part (1). To prove part (2), it suffices to take elements
l + k · 2μ + 2μ − 1 ∈ Ck,l and l + (k + 1) · 2μ ∈ Ck+1,l and compare their 2-adic values. Again by (3.1),
we have

ν2(Al,l+(k+1)·2μ) − ν2(Al,l+(k+1)·2μ−1) = ν2
(
2l + (k + 1) · 2μ

) − ν2
(
(k + 1) · 2μ

)
= μ + ν2

(
2l · 2−μ + k + 1

) − μ − ν2(k + 1)

= ν2
(
2l · 2−μ + k + 1

) − ν2(k + 1) 	= 0.
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The last step follows from 2l · 2−μ being odd and thus 2l · 2−μ + k + 1 and k + 1 having opposite
parities. This completes the proof. �
Theorem 3.5. For each l � 1, the set {ν2(Al,m): m � l} is an s-simple sequence, with s = 21+ν2(l) .

Proof. From Lemmas 3.3 and 3.4, we know that ν2(·) maintains a constant value on each of the
disjoint sets Ck,l . The length of each of these blocks is 21+ν2(l) . �
4. The algorithm and its combinatorial interpretation

In this section we describe an algorithm that extracts from the sequence X(1) := {ν2(A1,m): m � 1}
its combinatorial information. We begin with the definition of the operators F and T mentioned in
the Introduction.

Definition 4.1 (The maps F and T ). These are defined by

F
({a1,a2,a3, . . .}

) := {a1,a1,a2,a3, . . .}, (4.1)

and

T
({a1,a2,a3, . . .}

) := {a1,a3,a5,a7, . . .}. (4.2)

We employ the notation

c := {
ν2(m): m � 1

} = {0,1,0,2,0,1,0,3,0, . . .}. (4.3)

The algorithm:

(1) Start with the sequence X(l) := {ν2(Al,l+m−1): m � 1}.
(2) Find n ∈ N so that the sequence X(l) is 2n-simple. Define Y (l) := T n(X(l)). At the initial stage,

Theorem 3.5 ensures that n = 1 + ν2(l).
(3) Introduce the shift Z(l) := Y (l) − c.
(4) Define W (l) := F (Z(l)).

If W (l) is a constant sequence, then STOP; otherwise go to step (2) with W instead of X . Define Xk(l)
as the new sequence at the end of the (k − 1)th cycle of this process, with X1(l) = X(l).

Section 5 contains the justification for the steps of this algorithm. In particular, we prove that the
sequences Xk(l) have a block structure, so they can be used back in step (1) after each cycle. Theo-
rem 5.3 states that the algorithm finishes in a finite number of steps and that W (l) is essentially X( j),
for some j < l.

Definition 4.2. Let ω(l) be the number of cycles required for the algorithm to yield a constant se-
quence and denote by n j the integers appearing in step (2) of the algorithm. The integer vector

Ω(l) := {n1,n2,n3, . . . ,nω(l)} (4.4)

is called the reduction sequence of l. The number ω(l) will be called the reduction length of l. The
constant sequence obtained after ω(l) cycles is called the reduced constant.

In Corollary 5.8 we enumerate ω(l) as the number of ones in the binary expansion of l. Therefore
the algorithm yields a constant sequence in a finite number of steps. In fact, the algorithm terminates
after O (log2(l)) cycles as will follow directly from Corollary 5.8. Table 1 shows the results of the
algorithm for 4 � l � 15.

We now provide a combinatorial interpretation of Ω(l). This requires the composition of the in-
dex l.
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Table 1
Reduction sequence for 1 � l � 15

l Binary form Ω(l)

4 100 3
5 101 1, 2
6 110 2, 1
7 111 1, 1, 1
8 1000 4
9 1001 1, 3

10 1010 2, 2
11 1011 1, 1, 2
12 1100 3, 1
13 1101 1, 2, 1
14 1110 2, 1, 1
15 1111 1, 1, 1, 1

Definition 4.3. Let l ∈ N. The composition of l, denoted by Ω1(l), is defined as follows: write l in binary
form. Read the sequence from right to left. The first part of Ω1(l) is the number of digits up to and
including the first 1 read in the corresponding binary sequence; the second one is the number of
additional digits up to and including the second 1 read, and so on.

Example 4.4. Reading off the values from Table 1, we obtain Ω1(13) = {1,2,1} and Ω1(14) = {2,1,1}.
Therefore Ω1(13) = Ω(13) and Ω1(14) = Ω(14). Corollary 5.6 shows that this is always true.

The next result describes the formation of Ω1(l) from Ω1(
l/2�).

Lemma 4.5. Given the values of Ω1(l) for 2 j � l � 2 j+1 − 1, the list for 2 j+1 � l � 2 j+2 − 1 is formed
according to the following rule:

l is even: add 1 to the first part of Ω1(l/2) to obtain Ω1(l);
l is odd: prepend a 1 to Ω1(

l−1
2 ) to obtain Ω1(l).

Proof. Let x1x2 · · · xt be the binary representation of l. Then x1x2 · · · xt 0 corresponds to 2l. Thus, the
first part of Ω1(2l) is increased by 1, due to the extra 0 on the right. The relative position of the
remaining 1s stays the same. A similar argument takes care of Ω1(2l + 1). The extra 1 that is placed
at the end of the binary representation gives the first 1 in Ω1(2l + 1). �

We now relate the 2-adic valuation of Al,m to that of A
l/2�,m .

Proposition 4.6. Let

λl := 1 − (−1)l

2
, M0 :=

⌊
m + λl

2

⌋
. (4.5)

Then

ν2(Al,m) = 2l − 
l/2� + λlν2
(
M0 − 
l/2�) + ν2(A
l/2�,M0 ). (4.6)

Proof. We present the details for ν2(A2l,2m). Theorem 2.1 gives

ν2(A2l,2m) = ν2
(
(2m − 2l + 1)4l

) + 2l

= ν2
(
(2m − 2l + 1)(2m − 2l + 2) · · · (2m + 2l − 1)(2m + 2l)

) + 2l

= ν2
(
22l(m − l + 1)(m − l + 2) · · · (m + l)

) + 2l

= 4l + ν2
(
(m − l + 1)2l

)
= 3l + ν2(Al,m).
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A similar calculation shows that

ν2(A2l+1,2m) = 3l + 2 + ν2(Al,m) + ν2(m − l). (4.7)

The general case then follows from Theorem 3.1. �
Corollary 4.7. The 2-adic valuation of Al,m satisfies

ν2(Al,m) = 2l + ν2(l!) +
∑
k�0

λ
l/2k�ν2
(
Mk − ⌊

l/2k+1⌋)
(4.8)

where

Mk =
⌊

m + λl + 2λ
l/2� + · · · + 2kλ
l/2k�
21+k

⌋
=

⌊
m + ∑k

n=0 2nλ
l/2n�
21+k

⌋
. (4.9)

Proof. This is a repeated application of Proposition 4.6. The first term results from

∑
k�0

(
2

⌊
l

2k

⌋
−

⌊
l

2k+1

⌋)
= 2l +

∑
k�1

⌊
l

2k

⌋
= 2l + ν2(l!). �

5. Verification of the algorithm and the reduction sequence

In this section we show that the algorithm presented in Section 4 terminates after a finite numbers
of cycles. Moreover, we prove that Ω(l), the reduction sequence of l, is identical to the composition
sequence of l.

Notation. The constant sequences will be denoted by (t) = {t, t, t, . . .}.

Definition 5.1. A sequence (a) = {a1,a2,a3, . . .} is a translate of (b) = {b1,b2,b3, . . .} if (a) = (b) + (t),
for some constant sequence (t). Addition of sequences is performed term by term.

We first consider the base case l = 1.

Lemma 5.2. The initial case l = 1 satisfies

W (1) = F
(
T
(

X(1)
) − c

) = (2), (5.1)

where (c) is given in (4.3).

Proof. Since ν2(A1,m) = ν2(m(m + 1)) + 1 and ν2(2m − 1) = 0, we have

T
(

X(1)
) = {

ν2
(
(2m − 1)(2m)

) + 1: m � 1
} = {

ν2(m) + 2: m � 1
} = c + (2).

Then the assertion follows from F ((t)) = (t) for a constant (t). �
Theorem 5.3. The algorithm terminates after finitely many iterations. Furthermore, in each cycle, W (l) is a
translate of X( j), for some j < l.

Proof. Start by rewriting the terms in X(l) as

ν2

(
(m − 1 + 2l)!

(m − 1)!
)

+ l = ν2
(
(m − 1 + 2l)(m − 2 + 2l) · · · (m + 1)m

) + l, m � 1.

Then, the operator T acts on these to yield (for m � 1)
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ν2
(
(2m − 2 + 2l)(2m − 3 + 2l) · · · (2m)(2m − 1)

) + l = ν2
(
(m − 1 + l) · · · (m)

) + 2l

= ν2

(
(m − 1 + l)!

(m − 1)!
)

+ 2l. (5.2)

Case I: l is even. From (5.2), we can easily obtain the relation

T
(

X(l)
) =

{
ν2

(
(m − 1 + l)!

(m − 1)!
)

+ l/2 + t: m � 1

}
= X(l/2) + (t), t = 3l/2.

Case II: l is odd. Upon subtracting the sequence c = {ν2(m): m � 1} from (5.2) we get that

ν2

(
(m + l − 1)!

m!
)

+ 2l = ν2

(
(m + l − 1)!

m!
)

+ l − 1

2
+ 3(l − 1)

2
+ 2,

for m � 1. Then, apply the operator F to the last sequence and find

W (l) =
{
ν2

(
(m − 2 + l)!

(m − 1)!
)

+ l − 1

2
+ t: m � 1

}
= X

(
l − 1

2

)
+ (t), t = (3l + 1)/2.

Here, we have utilized the property that ν2(r!) = ν2((r − 1)!), when r � 1 is odd. This justifies that
the first term augmented in the sequence, as a result of the action of F , coincides with the next term
(these are values at m = 1 and m = 2, respectively).

We can now conclude that in either of the two cases (or a combination thereof), the index l
shrinks dyadically. Thus the reduction algorithm must end in a finite step into a translate of X(1).
Since Lemma 5.2 handles X(1), the proof is completed. �
Corollary 5.4. For general k ∈ N, the sequence Xk(l) is 2nk -simple for some nk ∈ N.

Theorem 5.5. Let {k1, . . . ,kn: 0 � k1 < k2 < · · · < kn}, be the unique collection of distinct nonnegative inte-
gers such that

l =
n∑

i=1

2ki . (5.3)

Then the reduction sequence Ω(l) of l is {k1 + 1,k2 − k1, . . . ,kn − kn−1}.

Proof. The argument of the proof is to check that the rules of formation for Ω1(l) also hold for the
reduction sequence Ω(l). The proof is divided according to the parity of l. The case l odd starts with
l = 1, where the block length is 2. From Theorem 2.1 we obtain a constant sequence after iterating
the algorithm once. Thus the algorithm terminates and the reduction sequence for l = 1 is Ω(1) = {1}.

Now consider the general even case: X(2l). Theorem 5.3 shows that applying T to this sequence
yields a translate of X(l). This does not affect the reduction sequence Ω(l), but the doubling of block
length increases the first term of Ω(l) by 1. Therefore

Ω(2l) = {k1 + 2,k2 − k1, . . . ,kn − kn−1}. (5.4)

This is precisely what happens to the binary digits of l: if

l =
n∑

i=1

2ki , then 2l =
n∑

i=1

2ki+1.

This concludes the argument for even indices.
For the general odd case, X(2l + 1), we apply T , subtract c and then apply F . Again, by Theo-

rem 5.3, this gives us a translate of X(l). We conclude that, if the reduction sequence of l is

{k1 + 1,k2 − k1, . . . ,kn − kn−1}, (5.5)
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then that of 2l + 1 is

{1,k1 + 1,k2 − k1, . . . ,kn − kn−1}. (5.6)

This is precisely the behavior of Ω1. The proof is complete. �
Corollary 5.6. The reduction sequence Ω(l) associated to an integer l is the sequence of compositions of l, that
is,

Ω(l) = Ω1(l). (5.7)

Corollary 5.7. The reduced constant is 2l + ν2(l!) = ν2(Al,l).

Proof. In Corollary 4.7, subtract the last term as per the reduction algorithm. �
Corollary 5.8. The set Ω(l) has cardinality

s2(l) = the number of ones in the binary expansion of l. (5.8)

Note. The function s2(l) defined in (5.8) has recently appeared in a different divisibility problem.
Lengyel [7] conjectured, and De Wannemacker [10] proved, that the 2-adic valuation of the Stirling
numbers of the second kind S(n,k) is given by

ν2
(

S
(
2n,k

)) = s2(k) − 1. (5.9)

The reader will find in [1] a general study of the 2-adic valuation of Stirling numbers.

6. A symmetry conjecture on the graphs of ν2(Al,m)

The graphs of the function ν2(Al,m), where we take every other 21+ν2(l)-element to reduce the
repeating blocks to a single value, are shown in the next figures. We conjecture that these graphs
have a symmetry property generated by what we call an initial segment from which the rest is deter-
mined by adding a central piece followed by a folding rule. We conclude with sample pictures of this
phenomenon.

Example 6.1. For l = 1, the first few values of the reduced table are

{2,3,2,4,2,3,2,5,2,3, . . .}.
The ingredients are:

• initial segment: {2,3,2},
• central piece: the value at the center of the initial segment, namely 3,
• rules of formation: start with the initial segment and add 1 to the central piece and reflect.

This produces the sequence

{2,3,2} → {2,3,2,4} → {2,3,2,4,2,3,2} → {2,3,2,4,2,3,2,5}
→ {2,3,2,4,2,3,2,5,2,3,2,4,2,3,2}.

The details are shown in Fig. 1.

Remark. We have found no way to predict the initial segment nor the central piece. Fig. 2 shows the
beginning of the case l = 9. From here one could be tempted to anticipate that this graph extends as
in the case l = 1. This is not correct however, as can be seen in Fig. 3. In fact, the initial segment is
depicted in Fig. 3 and its extension is shown in Fig. 4.

The initial pattern can be quite elaborate. Fig. 5 illustrates the case l = 53 and Fig. 6 shows it for
l = 59. A complete description of these initial segments is open to further exploration.
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Fig. 1. The 2-adic valuation of A1,m .

Fig. 2. The beginning for l = 9.

Fig. 3. The continuation of l = 9.
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Fig. 4. The pattern for l = 9 persists.

Fig. 5. The initial pattern for l = 53.

Fig. 6. The initial pattern for l = 59.
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