The 2-adic valuation of a sequence arising from a rational integral

Tewodros Amdeberhan ${ }^{\text {a }}$, Dante Manna ${ }^{\text {b }}$, Victor H. Moll ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Tulane University, New Orleans, LA 70118, USA
${ }^{\text {b }}$ Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 3J5

A R T I C L E I N F O

Article history:

Received 14 December 2006
Available online 22 April 2008

Keywords:

Valuations
Compositions
Generating functions

Abstract

We analyze properties of the 2-adic valuation of an integer sequence that originates from an explicit evaluation of a quartic integral. We also give a combinatorial interpretation of the valuations of this sequence.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Wallis's formula

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{m+1}}=\frac{\pi}{2^{2 m+1}}\binom{2 m}{m} \tag{1.1}
\end{equation*}
$$

is one of the earlier instances of evaluation of definite integrals where the result contains interesting arithmetical and combinatorial properties. In this paper we examine such connection for the integral

$$
\begin{equation*}
N_{0,4}(a ; m)=\int_{0}^{\infty} \frac{d x}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}} . \tag{1.2}
\end{equation*}
$$

The condition $a>-1$ is imposed for convergence. The evaluation

$$
\begin{equation*}
N_{0,4}(a, m)=\frac{\pi}{2} \frac{P_{m}(a)}{[2(a+1)]^{m+\frac{1}{2}}} \tag{1.3}
\end{equation*}
$$

[^0]where
\[

$$
\begin{equation*}
P_{m}(a)=\sum_{l=0}^{m} d_{l}(m) a^{l} \tag{1.4}
\end{equation*}
$$

\]

with

$$
\begin{equation*}
d_{l}(m)=2^{-2 m} \sum_{k=l}^{m} 2^{k}\binom{2 m-2 k}{m-k}\binom{m+k}{m}\binom{k}{l}, \quad 0 \leqslant l \leqslant m \tag{1.5}
\end{equation*}
$$

appeared in [4]. The reader will find in [2] a survey of the different proofs of (1.3) and an introduction to the many issues involved in the evaluation of definite integrals in [8].

The study of combinatorial aspects of the sequence $d_{l}(m)$ was initiated in [3] where the authors show that $d_{l}(m)$ form a unimodal sequence, that is, there exists and index l^{*} such that $d_{0}(m) \leqslant \cdots \leqslant$ $d_{l^{*}}(m)$ and $d_{l^{*}}(m) \geqslant \cdots \geqslant d_{m}(m)$. The fact that $d_{l}(m)$ satisfies the stronger condition of logconcavity $d_{l-1}(m) d_{l+1}(m) \leqslant d_{l}^{2}(m)$ has been recently established in [6]. We consider here arithmetical properties of the sequence $d_{l, m}$. It is more convenient to analyze the auxiliary sequence

$$
\begin{equation*}
A_{l, m}=l!m!2^{m+l} d_{l, m}=\frac{l!m!}{2^{m-l}} \sum_{k=l}^{m} 2^{k}\binom{2 m-2 k}{m-k}\binom{m+k}{m}\binom{k}{l} \tag{1.6}
\end{equation*}
$$

for $m \in \mathbb{N}$ and $0 \leqslant l \leqslant m$. The integral (1.2) is then given explicitly as

$$
\begin{equation*}
N_{0,4}(a ; m)=\frac{\pi}{\sqrt{2} m!(4(2 a+1))^{m+1 / 2}} \sum_{l=0}^{m} A_{l, m} \frac{a^{l}}{l!} . \tag{1.7}
\end{equation*}
$$

In [5] it is shown that $A_{l, m} \in \mathbb{N}$. Observe that the computation of $A_{l, m}$ using (1.6) is more efficient if l is close to m. For instance,

$$
\begin{equation*}
A_{m, m}=2^{m}(2 m)!\quad \text { and } \quad A_{m-1, m}=2^{m-1}(2 m-1)!(2 m+1) . \tag{1.8}
\end{equation*}
$$

A second method to compute $A_{l, m}$, efficient now when l is small, has been discussed in [5]. There, it is shown that $A_{l, m}$ is a linear combination (with polynomial coefficients) of

$$
\begin{equation*}
\prod_{k=1}^{m}(4 k-1) \quad \text { and } \quad \prod_{k=1}^{m}(4 k+1) \tag{1.9}
\end{equation*}
$$

For example,

$$
\begin{equation*}
A_{0, m}=\prod_{k=1}^{m}(4 k-1) \quad \text { and } \quad A_{1, m}=(2 m+1) \prod_{k=1}^{m}(4 k-1)-\prod_{k=1}^{m}(4 k+1) . \tag{1.10}
\end{equation*}
$$

The results described in this paper started with some empirical observations on the behavior of the 2 -adic valuation of $A_{l, m}$, i.e. $\nu_{2}\left(A_{l, m}\right)$. Recall that, for $x \in \mathbb{N}$, the 2 -adic valuation $\nu_{2}(x)$ is the highest power of 2 that divides x. This is extended to $x=a / b \in \mathbb{Q}$ via $\nu_{2}(x)=\nu_{2}(a)-v_{2}(b)$. From (1.10) it follows that $A_{0, m}$ is odd, so $\nu_{2}\left(A_{0, m}\right)=0$. Moreover,

$$
\begin{equation*}
v_{2}\left(A_{1, m}\right)=v_{2}(m(m+1))+1, \tag{1.11}
\end{equation*}
$$

i.e., the main result of [5]. We present as Theorem 2.1, an expression for $\nu_{2}\left(A_{l, m}\right)$ that generalizes (1.11).

The study of the sequence

$$
\begin{equation*}
X(l):=\left\{v_{2}\left(A_{l, l+m-1}\right): m \geqslant 1\right\} \tag{1.12}
\end{equation*}
$$

requires the introduction of two operators, F and T, defined in (4.1) and (4.2), respectively. The iteration of these operators creates an integer vector

$$
\begin{equation*}
\Omega(l):=\left\{n_{1}, n_{2}, n_{3}, \ldots, n_{\omega(l)}\right\}, \quad \text { with } n_{i} \in \mathbb{N} \text {, } \tag{1.13}
\end{equation*}
$$

associated to the index $l \in \mathbb{N}$. We call $\Omega(l)$ the reduction sequence of l. See (4.2) for the precise definition of the integers n_{j}. The structure of $X(l)$ motivates the following definition.

Definition 1.1. Let $s \in \mathbb{N}, s \geqslant 2$. We say that a sequence $\left\{a_{j}: j \in \mathbb{N}\right\}$ is simple of length s (or s-simple) if s is the largest integer such that for each $t \in\{0,1,2, \ldots\}$, we have

$$
\begin{equation*}
a_{s t+1}=a_{s t+2}=\cdots=a_{s(t+1)} . \tag{1.14}
\end{equation*}
$$

The sequence $\left\{a_{j}: j \in \mathbb{N}\right\}$ is said to have a block structure if it is s-simple for some $s \geqslant 2$.
Section 2 presents two proofs of the expression for $\nu_{2}\left(A_{l, m}\right)$. Section 3 shows that $X(l)$ is a simple sequence of length $2^{1+v_{2}(l)}$. In Section 4 an algorithm generating the vector $\Omega(l)$ is described in detail. A combinatorial interpretation of $\Omega(l)$, as the composition of l, is provided in Section 5 . Theorem 5.5 gives $\Omega(l)$ in terms of the dyadic expansion of l. More precisely, if $\left\{k_{1}, \ldots, k_{n}\right.$: $\left.0 \leqslant k_{1}<k_{2}<\cdots<k_{n}\right\}$ is the unique collection of distinct nonnegative integers such that $l=\sum_{i=1}^{n} 2^{k_{i}}$, then the reduction sequence $\Omega(l)$ of l is $\left\{k_{1}+1, k_{2}-k_{1}, \ldots, k_{n}-k_{n-1}\right\}$. Finally, the last section contains a conjecture on symmetries of the graph of $v_{2}\left(A_{l, m}\right)$.

2. The $\mathbf{2}$-adic valuation of $\boldsymbol{A}_{\mathbf{l}, \boldsymbol{m}}$

In this section we prove that $\nu_{2}\left(A_{l, m}\right)$ agrees with $\nu_{2}\left((m+1-l)_{2 l}\right)+l$. The first proof actually produces the latter term in a natural way starting from the former. The second proof employs the WZ-machinery [9] to prove the identity (2.1).

Theorem 2.1. The 2-adic valuation of $A_{l, m}$ satisfies

$$
\begin{equation*}
v_{2}\left(A_{l, m}\right)=v_{2}\left((m+1-l)_{2 l}\right)+l, \tag{2.1}
\end{equation*}
$$

where $(a)_{k}=a(a+1) \cdots(a+k-1)$ is the Pochhammer symbol for $k \geqslant 1$. For $k=0$, we define $(a)_{0}=1$.
Proof. First proof. We have

$$
\begin{equation*}
v_{2}\left(A_{l, m}\right)=l+v_{2}\left(\sum_{k=l}^{m} T_{m, k} \frac{(m+k)!}{(m-k)!(k-l)!}\right) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{m, k}=\frac{(2 m-2 k)!}{2^{m-k}(m-k)!} . \tag{2.3}
\end{equation*}
$$

The identity

$$
\begin{equation*}
T_{m, k}=\frac{(2(m-k))!}{2^{m-k}(m-k)!}=(2 m-2 k-1)(2 m-2 k-3) \cdots 3 \cdot 1 \tag{2.4}
\end{equation*}
$$

shows that $T_{m, k}$ is an odd integer. Then (2.2) can be written as

$$
\nu_{2}\left(A_{l, m}\right)=l+v_{2}\left(\sum_{k=0}^{m-l} T_{m, l+k} \frac{(m+k+l)!}{(m-k-l)!k!}\right)=l+v_{2}\left(\sum_{k=0}^{m-l} T_{m, l+k} \frac{(m-k-l+1)_{2 k+2 l}}{k!}\right) .
$$

The term corresponding to $k=0$ is singled out as we write

$$
\nu_{2}\left(A_{l, m}\right)=l+v_{2}\left(T_{m, l}(m-l+1)_{2 l}+\sum_{k=1}^{m-l} T_{m, l+k} \frac{(m-k-l+1)_{2 k+2 l}}{k!}\right) .
$$

The claim

$$
\begin{equation*}
\nu_{2}\left(\frac{(m-k-l+1)_{2 k+2 l}}{k!}\right)>v_{2}\left((m-l+1)_{2 l}\right) \tag{2.5}
\end{equation*}
$$

for any $k, 1 \leqslant k \leqslant m-l$, will complete the proof.
To prove (2.5) we use the identity

$$
\frac{(m-k-l+1)_{2 k+2 l}}{k!}=(m-l+1)_{2 l} \cdot \frac{(m-l-k+1)_{k}(m+l+1)_{k}}{k!}
$$

and the fact that the product of k consecutive numbers is always divisible by k !. This follows from the identity

$$
\begin{equation*}
\frac{(a)_{k}}{k!}=\binom{a+k-1}{k} . \tag{2.6}
\end{equation*}
$$

Now if $m+l$ is odd,

$$
\begin{equation*}
\nu_{2}\left(\frac{(m-l-k+1)_{k}}{k!}\right) \geqslant 0 \quad \text { and } \quad \nu_{2}\left((m+l+1)_{k}\right)>0 \tag{2.7}
\end{equation*}
$$

and if $m+l$ is even

$$
\begin{equation*}
v_{2}\left(\frac{(m+l+1)_{k}}{k!}\right) \geqslant 0 \quad \text { and } \quad v_{2}\left((m-l-k+1)_{k}\right)>0 . \tag{2.8}
\end{equation*}
$$

This proves (2.5) and establishes the theorem.
Second proof. Define the numbers

$$
\begin{equation*}
B_{l, m}:=\frac{A_{l, m}}{2^{l}(m+1-l)_{2 l}} . \tag{2.9}
\end{equation*}
$$

We need to prove that $B_{l, m}$ is odd. The WZ-method [9] provides the recurrence

$$
B_{l-1, m}=(2 m+1) B_{l, m}-(m-l)(m+l+1) B_{l+1, m}, \quad 1 \leqslant l \leqslant m-1 .
$$

Since the initial values $B_{m, m}=1$ and $B_{m-1, m}=2 m+1$ are odd, it follows that $B_{l, m}$ is an odd integer.

3. Properties of the function $\boldsymbol{\nu}_{\mathbf{2}}\left(A_{l, m}\right)$

Let $l \in \mathbb{N} \cup\{0\}$ be fixed. In this section we describe properties of the function $\nu_{2}\left(A_{l, m}\right)$. In particular, we show that each of these sequences has a block structure.

Theorem 3.1. Let $l \in \mathbb{N} \cup\{0\}$ be fixed. Then for $m \geqslant l$, we have

$$
\begin{equation*}
v_{2}\left(A_{l, m+1}\right)-v_{2}\left(A_{l, m}\right)=v_{2}(m+l+1)-v_{2}(m-l+1) \tag{3.1}
\end{equation*}
$$

Proof. From (2.1) and $(a)_{k}=(a+k-1)!/(a-1)$!, we have

$$
\begin{equation*}
v_{2}\left(A_{l, m}\right)=v_{2}\left(\frac{(m+l)!}{(m-l)!}\right)+l . \tag{3.2}
\end{equation*}
$$

This implies

$$
\begin{aligned}
v_{2}\left(A_{l, m+1}\right)-v_{2}\left(A_{l, m}\right) & =v_{2}\left(\frac{(m+l+1)!}{(m-l+1)!}\right)-v_{2}\left(\frac{(m+l)!}{(m-l)!}\right) \\
& =v_{2}\left(\frac{(m+l+1)!(m-l)!}{(m-l+1)!(m+l)!}\right) \\
& =v_{2}(m+l+1)-v_{2}(m-l+1) .
\end{aligned}
$$

The next corollary is a special case of Theorem 3.1.
Corollary 3.2. The sequence $\nu_{2}\left(A_{l, m}\right)$ satisfies
(1) $\nu_{2}\left(A_{l, l+1}\right)=\nu_{2}\left(A_{l, l}\right)$.
(2) For l even,

$$
\nu_{2}\left(A_{l, l+3}\right)=\nu_{2}\left(A_{l, l+2}\right)=\nu_{2}\left(A_{l, l+1}\right)=\nu_{2}\left(A_{l, l}\right) .
$$

(3) The sequence $\nu_{2}\left(A_{1, m}\right)$ is 2 -simple; i.e., $\nu_{2}\left(A_{1, m+1}\right)=\nu_{2}\left(A_{1, m}\right)$ for m odd. In fact,

$$
A_{1, m}=\{2,2,3,3,2,2,4,4,2,2, \ldots\} .
$$

Fix $k, l \in \mathbb{N}$ and let $\mu:=1+\nu_{2}(l)$. Define the following sets

$$
\begin{equation*}
C_{k, l}:=\left\{l+k \cdot 2^{\mu}+j: 0 \leqslant j \leqslant 2^{\mu}-1\right\}, \tag{3.3}
\end{equation*}
$$

which will be instrumental in proving the main result of this section; i.e., $\left\{v_{2}\left(A_{l, m}\right)\right\}$ is $2^{1+\nu_{2}(l)}$-simple.
We begin by showing that these sets form a partition of \mathbb{N}. Moreover, for fixed $k, l \in \mathbb{N}$ the set $C_{k, l}$ has cardinality 2^{μ} and the 2 -adic valuation of $\left\{A_{l, m}: m \in C_{k, l}\right\}$ is constant. For example, if $l \in \mathbb{N}$ is odd, then $\mu=1$ and

$$
\begin{equation*}
C_{k, l}=\{l+2 k, l+2 k+1\} . \tag{3.4}
\end{equation*}
$$

The next result is immediate.
Lemma 3.3. Let $l \in \mathbb{N}$ be fixed. The sets $\left\{\mathcal{C}_{k, l}: k \geqslant 0\right\}$ form a disjoint partition of \mathbb{N}; namely,

$$
\begin{equation*}
\{m \in \mathbb{N}: m \geqslant l\}=\bigcup_{k \geqslant 0} c_{k, l}, \tag{3.5}
\end{equation*}
$$

and $C_{r, l} \cap C_{t, l}=\emptyset$, whenever $r \neq t$.
Lemma 3.4. Fix $l \in \mathbb{N}$ and let $\mu=\nu_{2}(2 l)$.
(1) The sequence $\left\{\nu_{2}\left(A_{l, m}\right): m \in C_{k, l}\right\}$ is constant. We denote this value by $\nu_{2}\left(C_{k, l}\right)$.
(2) For $k \geqslant 0, \nu_{2}\left(C_{k+1, l}\right) \neq \nu_{2}\left(C_{k, l}\right)$.

Proof. Suppose $0 \leqslant j \leqslant 2^{\mu}-2$. Since $\nu_{2}(2 l)=\mu \leqslant \nu_{2}\left(k \cdot 2^{\mu}\right)$, then

$$
\begin{equation*}
v_{2}\left(2 l+k \cdot 2^{\mu}\right) \geqslant v_{2}(2 l)=\mu>v_{2}(j+1), \tag{3.6}
\end{equation*}
$$

because $j+1<2^{\mu}$. Therefore

$$
\begin{equation*}
\nu_{2}\left(2 l+k \cdot 2^{\mu}+j+1\right)=v_{2}(j+1)=v_{2}\left(k \cdot 2^{\mu}+j+1\right) . \tag{3.7}
\end{equation*}
$$

Using these facts and (3.1), we obtain

$$
\begin{aligned}
\nu_{2}\left(A_{l, l+k \cdot 2^{\mu}+j+1}\right)-v_{2}\left(A_{l, l+k \cdot 2^{\mu}+j}\right) & =v_{2}\left(2 l+k \cdot 2^{\mu}+j+1\right)-v_{2}\left(k \cdot 2^{\mu}+j+1\right) \\
& =v_{2}(j+1)-v_{2}(j+1)=0
\end{aligned}
$$

for consecutive values in $C_{k, l}$. This proves part (1). To prove part (2), it suffices to take elements $l+k \cdot 2^{\mu}+2^{\mu}-1 \in C_{k, l}$ and $l+(k+1) \cdot 2^{\mu} \in C_{k+1, l}$ and compare their 2 -adic values. Again by (3.1), we have

$$
\begin{aligned}
\nu_{2}\left(A_{l, l+(k+1) \cdot 2^{\mu}}\right)-\nu_{2}\left(A_{l, l+(k+1) \cdot 2^{\mu}-1}\right) & =v_{2}\left(2 l+(k+1) \cdot 2^{\mu}\right)-v_{2}\left((k+1) \cdot 2^{\mu}\right) \\
& =\mu+v_{2}\left(2 l \cdot 2^{-\mu}+k+1\right)-\mu-v_{2}(k+1) \\
& =v_{2}\left(2 l \cdot 2^{-\mu}+k+1\right)-v_{2}(k+1) \neq 0 .
\end{aligned}
$$

The last step follows from $2 l \cdot 2^{-\mu}$ being odd and thus $2 l \cdot 2^{-\mu}+k+1$ and $k+1$ having opposite parities. This completes the proof.

Theorem 3.5. For each $l \geqslant 1$, the set $\left\{v_{2}\left(A_{l, m}\right): m \geqslant l\right\}$ is an s-simple sequence, with $s=2^{1+v_{2}(l)}$.

Proof. From Lemmas 3.3 and 3.4, we know that $\nu_{2}(\cdot)$ maintains a constant value on each of the disjoint sets $C_{k, l}$. The length of each of these blocks is $2^{1+\nu_{2}(l)}$.

4. The algorithm and its combinatorial interpretation

In this section we describe an algorithm that extracts from the sequence $X(1):=\left\{\nu_{2}\left(A_{1, m}\right): m \geqslant 1\right\}$ its combinatorial information. We begin with the definition of the operators F and T mentioned in the Introduction.

Definition 4.1 (The maps F and T). These are defined by

$$
\begin{equation*}
F\left(\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}\right):=\left\{a_{1}, a_{1}, a_{2}, a_{3}, \ldots\right\} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
T\left(\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}\right):=\left\{a_{1}, a_{3}, a_{5}, a_{7}, \ldots\right\} \tag{4.2}
\end{equation*}
$$

We employ the notation

$$
\begin{equation*}
c:=\left\{v_{2}(m): m \geqslant 1\right\}=\{0,1,0,2,0,1,0,3,0, \ldots\} . \tag{4.3}
\end{equation*}
$$

The algorithm:

(1) Start with the sequence $X(l):=\left\{v_{2}\left(A_{l, l+m-1}\right): m \geqslant 1\right\}$.
(2) Find $n \in \mathbb{N}$ so that the sequence $X(l)$ is 2^{n}-simple. Define $Y(l):=T^{n}(X(l))$. At the initial stage, Theorem 3.5 ensures that $n=1+v_{2}(l)$.
(3) Introduce the shift $Z(l):=Y(l)-c$.
(4) Define $W(l):=F(Z(l))$.

If $W(l)$ is a constant sequence, then STOP; otherwise go to step (2) with W instead of X. Define $X_{k}(l)$ as the new sequence at the end of the $(k-1)$ th cycle of this process, with $X_{1}(l)=X(l)$.

Section 5 contains the justification for the steps of this algorithm. In particular, we prove that the sequences $X_{k}(l)$ have a block structure, so they can be used back in step (1) after each cycle. Theorem 5.3 states that the algorithm finishes in a finite number of steps and that $W(l)$ is essentially $X(j)$, for some $j<l$.

Definition 4.2. Let $\omega(l)$ be the number of cycles required for the algorithm to yield a constant sequence and denote by n_{j} the integers appearing in step (2) of the algorithm. The integer vector

$$
\begin{equation*}
\Omega(l):=\left\{n_{1}, n_{2}, n_{3}, \ldots, n_{\omega(l)}\right\} \tag{4.4}
\end{equation*}
$$

is called the reduction sequence of l. The number $\omega(l)$ will be called the reduction length of l. The constant sequence obtained after $\omega(l)$ cycles is called the reduced constant.

In Corollary 5.8 we enumerate $\omega(l)$ as the number of ones in the binary expansion of l. Therefore the algorithm yields a constant sequence in a finite number of steps. In fact, the algorithm terminates after $O\left(\log _{2}(l)\right)$ cycles as will follow directly from Corollary 5.8 . Table 1 shows the results of the algorithm for $4 \leqslant l \leqslant 15$.

We now provide a combinatorial interpretation of $\Omega(l)$. This requires the composition of the index l.

Table 1
Reduction sequence for $1 \leqslant l \leqslant 15$

l	Binary form	$\Omega(l)$
4	100	3
5	101	1,2
6	110	2,1
7	111	$1,1,1$
8	1000	4
9	1001	1,3
10	1010	2,2
11	1011	$1,1,2$
12	1100	3,1
13	1101	$1,2,1$
14	1110	$2,1,1$
15	1111	$1,1,1,1$

Definition 4.3. Let $l \in \mathbb{N}$. The composition of l, denoted by $\Omega_{1}(l)$, is defined as follows: write l in binary form. Read the sequence from right to left. The first part of $\Omega_{1}(l)$ is the number of digits up to and including the first 1 read in the corresponding binary sequence; the second one is the number of additional digits up to and including the second 1 read, and so on.

Example 4.4. Reading off the values from Table 1, we obtain $\Omega_{1}(13)=\{1,2,1\}$ and $\Omega_{1}(14)=\{2,1,1\}$. Therefore $\Omega_{1}(13)=\Omega(13)$ and $\Omega_{1}(14)=\Omega(14)$. Corollary 5.6 shows that this is always true.

The next result describes the formation of $\Omega_{1}(l)$ from $\Omega_{1}([l / 2\rfloor)$.
Lemma 4.5. Given the values of $\Omega_{1}(l)$ for $2^{j} \leqslant l \leqslant 2^{j+1}-1$, the list for $2^{j+1} \leqslant l \leqslant 2^{j+2}-1$ is formed according to the following rule:
l is even: add 1 to the first part of $\Omega_{1}(l / 2)$ to obtain $\Omega_{1}(l)$;
l is odd: prepend a 1 to $\Omega_{1}\left(\frac{l-1}{2}\right)$ to obtain $\Omega_{1}(l)$.
Proof. Let $x_{1} x_{2} \cdots x_{t}$ be the binary representation of l. Then $x_{1} x_{2} \cdots x_{t} 0$ corresponds to $2 l$. Thus, the first part of $\Omega_{1}(2 l)$ is increased by 1 , due to the extra 0 on the right. The relative position of the remaining 1 s stays the same. A similar argument takes care of $\Omega_{1}(2 l+1)$. The extra 1 that is placed at the end of the binary representation gives the first 1 in $\Omega_{1}(2 l+1)$.

We now relate the 2 -adic valuation of $A_{l, m}$ to that of $A_{\lfloor l / 2\rfloor, m}$.

Proposition 4.6. Let

$$
\begin{equation*}
\lambda_{l}:=\frac{1-(-1)^{l}}{2}, \quad M_{0}:=\left\lfloor\frac{m+\lambda_{l}}{2}\right\rfloor . \tag{4.5}
\end{equation*}
$$

Then

$$
\begin{equation*}
\nu_{2}\left(A_{l, m}\right)=2 l-\lfloor l / 2\rfloor+\lambda_{l} \nu_{2}\left(M_{0}-\lfloor l / 2\rfloor\right)+\nu_{2}\left(A_{\lfloor l / 2\rfloor, M_{0}}\right) . \tag{4.6}
\end{equation*}
$$

Proof. We present the details for $\nu_{2}\left(A_{21,2 m}\right)$. Theorem 2.1 gives

$$
\begin{aligned}
\nu_{2}\left(A_{2 l, 2 m}\right) & =v_{2}\left((2 m-2 l+1)_{4 l}\right)+2 l \\
& =v_{2}((2 m-2 l+1)(2 m-2 l+2) \cdots(2 m+2 l-1)(2 m+2 l))+2 l \\
& =v_{2}\left(2^{2 l}(m-l+1)(m-l+2) \cdots(m+l)\right)+2 l \\
& =4 l+v_{2}\left((m-l+1)_{2 l}\right) \\
& =3 l+v_{2}\left(A_{l, m}\right) .
\end{aligned}
$$

A similar calculation shows that

$$
\begin{equation*}
\nu_{2}\left(A_{2 l+1,2 m}\right)=3 l+2+\nu_{2}\left(A_{l, m}\right)+v_{2}(m-l) . \tag{4.7}
\end{equation*}
$$

The general case then follows from Theorem 3.1.
Corollary 4.7. The 2 -adic valuation of $A_{l, m}$ satisfies

$$
\begin{equation*}
v_{2}\left(A_{l, m}\right)=2 l+v_{2}(l!)+\sum_{k \geqslant 0} \lambda_{\left\lfloor l / 2^{k}\right\rfloor} \nu_{2}\left(M_{k}-\left\lfloor l / 2^{k+1}\right\rfloor\right) \tag{4.8}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{k}=\left\lfloor\frac{m+\lambda_{l}+2 \lambda_{\lfloor l / 2\rfloor}+\cdots+2^{k} \lambda_{\left\lfloor l / 2^{k}\right\rfloor}}{2^{1+k}}\right\rfloor=\left\lfloor\frac{m+\sum_{n=0}^{k} 2^{n} \lambda_{\left\lfloor l / 2^{n}\right\rfloor}}{2^{1+k}}\right\rfloor . \tag{4.9}
\end{equation*}
$$

Proof. This is a repeated application of Proposition 4.6. The first term results from

$$
\sum_{k \geqslant 0}\left(2\left\lfloor\frac{l}{2^{k}}\right\rfloor-\left\lfloor\frac{l}{2^{k+1}}\right\rfloor\right)=2 l+\sum_{k \geqslant 1}\left\lfloor\frac{l}{2^{k}}\right\rfloor=2 l+\nu_{2}(l!) .
$$

5. Verification of the algorithm and the reduction sequence

In this section we show that the algorithm presented in Section 4 terminates after a finite numbers of cycles. Moreover, we prove that $\Omega(l)$, the reduction sequence of l, is identical to the composition sequence of l.

Notation. The constant sequences will be denoted by $(t)=\{t, t, t, \ldots\}$.
Definition 5.1. A sequence $(a)=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ is a translate of $(b)=\left\{b_{1}, b_{2}, b_{3}, \ldots\right\}$ if $(a)=(b)+(t)$, for some constant sequence (t). Addition of sequences is performed term by term.

We first consider the base case $l=1$.
Lemma 5.2. The initial case $l=1$ satisfies

$$
\begin{equation*}
W(1)=F(T(X(1))-c)=(2), \tag{5.1}
\end{equation*}
$$

where (c) is given in (4.3).
Proof. Since $\nu_{2}\left(A_{1, m}\right)=\nu_{2}(m(m+1))+1$ and $\nu_{2}(2 m-1)=0$, we have

$$
T(X(1))=\left\{v_{2}((2 m-1)(2 m))+1: m \geqslant 1\right\}=\left\{v_{2}(m)+2: m \geqslant 1\right\}=c+(2)
$$

Then the assertion follows from $F((t))=(t)$ for a constant (t).
Theorem 5.3. The algorithm terminates after finitely many iterations. Furthermore, in each cycle, $W(l)$ is a translate of $X(j)$, for some $j<l$.

Proof. Start by rewriting the terms in $X(l)$ as

$$
v_{2}\left(\frac{(m-1+2 l)!}{(m-1)!}\right)+l=v_{2}((m-1+2 l)(m-2+2 l) \cdots(m+1) m)+l, \quad m \geqslant 1 .
$$

Then, the operator T acts on these to yield (for $m \geqslant 1$)

$$
\begin{align*}
v_{2}((2 m-2+2 l)(2 m-3+2 l) \cdots(2 m)(2 m-1))+l & =v_{2}((m-1+l) \cdots(m))+2 l \\
& =v_{2}\left(\frac{(m-1+l)!}{(m-1)!}\right)+2 l . \tag{5.2}
\end{align*}
$$

Case I: l is even. From (5.2), we can easily obtain the relation

$$
T(X(l))=\left\{v_{2}\left(\frac{(m-1+l)!}{(m-1)!}\right)+l / 2+t: m \geqslant 1\right\}=X(l / 2)+(t), \quad t=3 l / 2 .
$$

Case II: l is odd. Upon subtracting the sequence $c=\left\{\nu_{2}(m): m \geqslant 1\right\}$ from (5.2) we get that

$$
v_{2}\left(\frac{(m+l-1)!}{m!}\right)+2 l=v_{2}\left(\frac{(m+l-1)!}{m!}\right)+\frac{l-1}{2}+\frac{3(l-1)}{2}+2,
$$

for $m \geqslant 1$. Then, apply the operator F to the last sequence and find

$$
W(l)=\left\{v_{2}\left(\frac{(m-2+l)!}{(m-1)!}\right)+\frac{l-1}{2}+t: m \geqslant 1\right\}=X\left(\frac{l-1}{2}\right)+(t), \quad t=(3 l+1) / 2 .
$$

Here, we have utilized the property that $\nu_{2}(r!)=\nu_{2}((r-1)!)$, when $r \geqslant 1$ is odd. This justifies that the first term augmented in the sequence, as a result of the action of F, coincides with the next term (these are values at $m=1$ and $m=2$, respectively).

We can now conclude that in either of the two cases (or a combination thereof), the index l shrinks dyadically. Thus the reduction algorithm must end in a finite step into a translate of $X(1)$. Since Lemma 5.2 handles $X(1)$, the proof is completed.

Corollary 5.4. For general $k \in \mathbb{N}$, the sequence $X_{k}(l)$ is $2^{n_{k}}$-simple for some $n_{k} \in \mathbb{N}$.
Theorem 5.5. Let $\left\{k_{1}, \ldots, k_{n}: 0 \leqslant k_{1}<k_{2}<\cdots<k_{n}\right\}$, be the unique collection of distinct nonnegative integers such that

$$
\begin{equation*}
l=\sum_{i=1}^{n} 2^{k_{i}} . \tag{5.3}
\end{equation*}
$$

Then the reduction sequence $\Omega(l)$ of l is $\left\{k_{1}+1, k_{2}-k_{1}, \ldots, k_{n}-k_{n-1}\right\}$.
Proof. The argument of the proof is to check that the rules of formation for $\Omega_{1}(l)$ also hold for the reduction sequence $\Omega(l)$. The proof is divided according to the parity of l. The case l odd starts with $l=1$, where the block length is 2 . From Theorem 2.1 we obtain a constant sequence after iterating the algorithm once. Thus the algorithm terminates and the reduction sequence for $l=1$ is $\Omega(1)=\{1\}$.

Now consider the general even case: $X(2 l)$. Theorem 5.3 shows that applying T to this sequence yields a translate of $X(l)$. This does not affect the reduction sequence $\Omega(l)$, but the doubling of block length increases the first term of $\Omega(l)$ by 1 . Therefore

$$
\begin{equation*}
\Omega(2 l)=\left\{k_{1}+2, k_{2}-k_{1}, \ldots, k_{n}-k_{n-1}\right\} . \tag{5.4}
\end{equation*}
$$

This is precisely what happens to the binary digits of l : if

$$
l=\sum_{i=1}^{n} 2^{k_{i}}, \quad \text { then } 2 l=\sum_{i=1}^{n} 2^{k_{i}+1} .
$$

This concludes the argument for even indices.
For the general odd case, $X(2 l+1)$, we apply T, subtract c and then apply F. Again, by Theorem 5.3, this gives us a translate of $X(l)$. We conclude that, if the reduction sequence of l is

$$
\begin{equation*}
\left\{k_{1}+1, k_{2}-k_{1}, \ldots, k_{n}-k_{n-1}\right\}, \tag{5.5}
\end{equation*}
$$

then that of $2 l+1$ is

$$
\begin{equation*}
\left\{1, k_{1}+1, k_{2}-k_{1}, \ldots, k_{n}-k_{n-1}\right\} \tag{5.6}
\end{equation*}
$$

This is precisely the behavior of Ω_{1}. The proof is complete.
Corollary 5.6. The reduction sequence $\Omega(l)$ associated to an integer l is the sequence of compositions of l, that is,

$$
\begin{equation*}
\Omega(l)=\Omega_{1}(l) \tag{5.7}
\end{equation*}
$$

Corollary 5.7. The reduced constant is $2 l+v_{2}(l!)=v_{2}\left(A_{l, l}\right)$.
Proof. In Corollary 4.7, subtract the last term as per the reduction algorithm.
Corollary 5.8. The set $\Omega(l)$ has cardinality

$$
\begin{equation*}
s_{2}(l)=\text { the number of ones in the binary expansion of } l \text {. } \tag{5.8}
\end{equation*}
$$

Note. The function $s_{2}(l)$ defined in (5.8) has recently appeared in a different divisibility problem. Lengyel [7] conjectured, and De Wannemacker [10] proved, that the 2-adic valuation of the Stirling numbers of the second kind $S(n, k)$ is given by

$$
\begin{equation*}
v_{2}\left(S\left(2^{n}, k\right)\right)=s_{2}(k)-1 \tag{5.9}
\end{equation*}
$$

The reader will find in [1] a general study of the 2-adic valuation of Stirling numbers.

6. A symmetry conjecture on the graphs of $v_{2}\left(A_{l, m}\right)$

The graphs of the function $v_{2}\left(A_{l, m}\right)$, where we take every other $2^{1+\nu_{2}(l)}$-element to reduce the repeating blocks to a single value, are shown in the next figures. We conjecture that these graphs have a symmetry property generated by what we call an initial segment from which the rest is determined by adding a central piece followed by a folding rule. We conclude with sample pictures of this phenomenon.

Example 6.1. For $l=1$, the first few values of the reduced table are

$$
\{2,3,2,4,2,3,2,5,2,3, \ldots\}
$$

The ingredients are:

- initial segment: $\{2,3,2\}$,
- central piece: the value at the center of the initial segment, namely 3 ,
- rules of formation: start with the initial segment and add 1 to the central piece and reflect.

This produces the sequence

$$
\begin{aligned}
\{2,3,2\} & \rightarrow\{2,3,2,4\} \rightarrow\{2,3,2,4,2,3,2\} \rightarrow\{2,3,2,4,2,3,2,5\} \\
& \rightarrow\{2,3,2,4,2,3,2,5,2,3,2,4,2,3,2\}
\end{aligned}
$$

The details are shown in Fig. 1.
Remark. We have found no way to predict the initial segment nor the central piece. Fig. 2 shows the beginning of the case $l=9$. From here one could be tempted to anticipate that this graph extends as in the case $l=1$. This is not correct however, as can be seen in Fig. 3. In fact, the initial segment is depicted in Fig. 3 and its extension is shown in Fig. 4.

The initial pattern can be quite elaborate. Fig. 5 illustrates the case $l=53$ and Fig. 6 shows it for $l=59$. A complete description of these initial segments is open to further exploration.

Fig. 1. The 2-adic valuation of $A_{1, m}$.

Fig. 2. The beginning for $l=9$.

Fig. 3. The continuation of $l=9$.

Fig. 4. The pattern for $l=9$ persists.

Fig. 5. The initial pattern for $l=53$.

Fig. 6. The initial pattern for $l=59$.

Acknowledgment

The last author acknowledges the partial support of NSF-DMS 0409968. The second author was partially supported as a graduate student by the same grant. The authors wish to thank Aaron Jaggard for identifying their data with the composition sequence.

References

[1] T. Amdeberhan, D. Manna, V. Moll, The 2-adic valuation of Stirling numbers, Experiment. Math. 17 (2008) 69-82.
[2] T. Amdeberhan, V. Moll, A formula for a quartic integral: A survey of old proofs and some new ones, Ramanujan J., 2008, in press.
[3] G. Boros, V. Moll, A criterion for unimodality, Electron. J. Combin. 6 (1999) 1-6.
[4] G. Boros, V. Moll, An integral hidden in Gradshteyn and Ryzhik, J. Comput. Appl. Math. 106 (1999) 361-368.
[5] G. Boros, V. Moll, J. Shallit, The 2-adic valuation of the coefficients of a polynomial, Scientia Ser. A 7 (2001) 37-50.
[6] M. Kauers, P. Paule, A computer proof of Moll's log-concavity conjecture, Proc. Amer. Math. Soc. 135 (2007) 3837-3846.
[7] T. Lengyel, On the divisibility by 2 of the Stirling numbers of the second kind, Fibonacci Quart. 32 (1994) 194-201.
[8] V. Moll, The evaluation of integrals: A personal story, Notices Amer. Math. Soc. 49 (2002) 311-317.
[9] M. Petkovsek, H. Wilf, D. Zeilberger, $A=B$, first ed., A.K. Peters, Ltd., 1996.
[10] S. De Wannemacker, On the 2-adic orders of Stirling numbers of the second kind, Integers 5 (1) (2005) A-21.

[^0]: E-mail addresses: tamdeberhan@math.tulane.edu (T. Amdeberhan), dmanna@mathstat.dal.ca (D. Manna), vhm@math.tulane.edu (V.H. Moll).

