1. Introduction

Sparse elimination theory concerns the study of Chow forms and discriminants associated with toric varieties, that is, subvarieties of projective space which are parametrized by monomials (Sturmfels, 1993; Gel’fand et al., 1994). This theory has its origin in the work of Gel’fand et al. on multivariate hypergeometric functions (Gel’fand et al., 1989). The singularities of these functions occur on the projectively dual hypersurfaces to the torus orbit closures on the given toric variety X. The singular locus of the hypergeometric system is described by the full discriminant of X, which is a natural specialization of the Chow form.

Classical hypergeometric functions in one variable arise when X is a toric hypersurface, defined by one homogeneous binomial equation $x_1^{b_1} \cdots x_r^{b_r} = x_{r+1}^{b_{r+1}} \cdots x_n^{b_n}$. The Chow form of this hypersurface X is just its defining polynomial. The discriminant of X equals, up to an integer factor (Gel’fand et al., 1994, Section 9.1),

$$ D_X = b_{r+1}^{b_1} \cdots b_n^{b_r} \cdot x_1^{b_1} \cdots x_r^{b_r} - (-1)^{\deg(X)} b_1^{b_1} \cdots b_r^{b_r} \cdot x_{r+1}^{b_{r+1}} \cdots x_n^{b_n}, \quad (1.1) $$

and the full discriminant equals D_X times $\prod_{i=1}^n x_i^{\deg(X) - b_i}$. It is the purpose of this article to generalize these formulae to toric varieties of codimension 2.

We introduce our objects of study by means of an example. Let X be the toric 6-fold in projective 8-space given parametrically by the cubic monomials

$$(a : b : \cdots : i) = (u_1 x^2 : u_2 y^2 : u_3 z^2 : u_4 u_1 : u_5^2 u_2 : u_6 u_3 : u_0 u_4 x : u_0 u_4 y : u_0 u_4 z).$$

The prime ideal of the toric variety X is generated by the 2×2-minors of

$$ \left(\begin{array}{ccc} a & b & c \\ d g^2 & e h^2 & f i^2 \end{array} \right). \quad (1.2) $$

§Corresponding author: E-mail: alidick@dm.uba.ar
¶E-mail: bernd@math.berkeley.edu

0747–7171/02/020119 + 17 $35.00/0 © 2002 Elsevier Science Ltd. All rights reserved.
Thus X is arithmetically Cohen–Macaulay and has degree 13. The Chow form of X is

given by eliminating the variable t from the 2×2-minors of

$$
\begin{pmatrix}
 a_0 + ta_1 & b_0 + tb_1 & c_0 + tc_1 \\
 (d_0 + td_1)(g_0 + tg_1)^2 & (e_0 + te_1)(h_0 + th_1)^2 & (f_0 + tf_1)(i_0 + ti_1)^2
\end{pmatrix}.
$$

(1.3)

The Chow form is an irreducible polynomial of degree 26 in the 18 variables $a_0, a_1, b_0, b_1, \ldots, i_0, i_1$ having exactly 57 726 terms. It equals the determinant

$$
\begin{vmatrix}
 123 & 124 & 125 & 126 \\
 134 & 135 + 234 & 136 + 235 & 236 \\
 135 & 136 + 145 + 235 & 146 + 236 + 25 & 246 \\
 136 & 146 + 236 & 156 + 246 & 256
\end{vmatrix}
$$

(1.4)

where ijk is the 3×3-minor with row indices i, j and k of the 6×3-matrix

$$
\begin{pmatrix}
 a_0 & b_0 & c_0 \\
 a_1 & b_1 & c_1 \\
 d_0g_0 + 2d_0g_0g_1 & e_0h_0 + 2e_0h_0h_1 & f_0i_0 + 2f_0i_0i_1 \\
 d_1g_1 + 2d_1g_0g_1 & e_1h_1 + 2e_1h_0h_1 & f_1i_1 + 2f_1i_0i_1 \\
 d_1g_1^2 & e_1h_1^2 & f_1i_1^2
\end{pmatrix}.
$$

(1.5)

Note that the Chow form can also be written as a polynomial of degree 13 in the brackets $[ab] = a_0b_1 - a_1b_0$, $[ac] = a_0c_1 - a_1c_0$, \ldots, $[hi] = h_0i_1 - h_1i_0$. We obtain the full discriminant of X from the Chow form by substituting

$$
\begin{pmatrix}
 a_0 & a_1 \\
 b_0 & b_1 \\
 \vdots & \vdots \\
 i_0 & i_1
\end{pmatrix} \mapsto \text{diag}(a, b, c, d, e, f, g, h, i) \cdot B,
$$

(1.6)

where B is the 9×2-matrix with row vectors $(1, 0), (0, 1), (-1, 0), (-1, 0), (0, -1), (1, 1), (-2, 0), (0, -2), (2, 2)$. The result of this substitution is the dual full discriminant \bar{E}_X. It has exactly 12 terms and factors as follows:

$$
\bar{E}_X = 2^{14} \cdot (ach^2 - bgd^2) \cdot (afh - ceg^2) \cdot (bfh^2 - ceh^2) \cdot \hat{D}_X,
$$

(1.7)

where the last factor \hat{D}_X is the irreducible polynomial

$$
a^2e^2f^2h^4 + b^2d^2g^4 + c^2e^2g^4 + 2abdefg^2h^4 + 2aefg^2h^4 + 2bcedf^2g^2h^4.
$$

Replacing each variable in \hat{D}_X by its reciprocal, that is, $a \mapsto 1/a, b \mapsto 1/b, \ldots$ and clearing denominators, we get the discriminant \hat{D}_X, an irreducible polynomial of degree 10 which defines the hypersurface projectively dual to X.

In this paper we establish exact formulae for the Chow form (Theorems 2.1 and 2.7), the full discriminant (Proposition 3.2), and the discriminant (Theorem 4.2) associated with an arbitrary toric variety X of codimension 2 in a projective space. A combinatorial construction is given for the secondary polynomial (Theorem 3.4) and the Newton polygon of the discriminant (Theorem 4.3). This construction shows that the dual variety X^\vee is a hypersurface if and only if the secondary polynomial is not centrally symmetric (Corollary 4.5). In Section 5 we study mixed resultants, that is, we apply our theory to codimension 2 toric varieties which arise from the Cayley trick (Gel’fand et al., 1994, Section 3.2.D).
The Chow form of the codimension 2 lattice ideal I_B equals
\[
\tilde{C}_B = \frac{\text{Res}_t(H_1, H_2)}{\prod_{1 \leq r < s \leq n} \text{Res}_s^r},
\]
where Res_t denotes the Sylvester resultant of two univariate polynomials.

The toric 6-fold X in our example does arise from the Cayley trick. This can be seen from the defining parametrization $(u_1x^2 : \cdots : u_nu_4z)$. Hence the discriminant D_X is actually a resultant. Indeed, if we eliminate x, y, z from
\[
a \cdot x^2 + d = b \cdot y^2 + e = c \cdot z^2 + f = g \cdot x + h \cdot y + i \cdot z = 0
\]
then the result is precisely the six-term discriminant D_X described earlier.

2. The Chow Form

Let $B = (b_{ij})$ be an $n \times 2$-integer matrix of rank 2 with both column sums equal to zero. The lattice ideal I_B is the ideal in $k[x_1, \ldots, x_n]$, k any field, generated by the binomials $x^{u_+} - x^{u_-}$ where $u = u_+ - u_-$ runs over the two-dimensional lattice $L_B \subset \mathbb{Z}^n$ spanned by the columns of B. An explicit description of the minimal generators and the higher syzygies of I_B was given in Peeva and Sturmfels (1998). The ideal I_B is homogeneous with respect to the usual \mathbb{Z}-grading and hence defines a subscheme X_B of projective $(n - 1)$-space \mathbb{P}^{n-1}. The lattice ideal I_B is prime if and only if \mathbb{Z}^n/L_B is a free Abelian group, or equivalently, if and only if the row vectors of B generate the two-dimensional lattice \mathbb{Z}^2.

In this section we compute the Chow form and the Chow polygon of the projective scheme X_B. The degree of X_B, denoted $d_B = \text{degree}(X_B)$, is the number of intersection points with a generic 2-plane in \mathbb{P}^{n-1}. Let $Y = (y_{ij})$ be an $n \times 2$-matrix of indeterminates. It represents a generic parametric line $(y_{11} + ty_{12}, \ldots, y_{n1} + ty_{n2})$ in \mathbb{P}^{n-1}. Following (Gelfand et al., 1994, Section 3.2.B), the Chow form \tilde{C}_B of the homogeneous lattice ideal I_B is the unique (up to sign) irreducible homogeneous polynomial in $\mathbb{Z}[y_{ij}]$ which vanishes if and only if the corresponding line in \mathbb{P}^{n-1} meets X_B. The degree of \tilde{C}_B equals $2 \cdot d_B$.

Classical invariant theory (cf. Gelfand et al., 1994, Proposition 3.1.6) tells us that the Chow form \tilde{C}_B can be written (non-uniquely) as a polynomial of degree d_B in the (dual) Plücker coordinates of a generic line, which we write as brackets
\[
[ij] := y_{i1}y_{j2} - y_{i2}y_{j1} \quad \text{for } 1 \leq i < j \leq n.
\]
We further introduce a non-negative integer ν_{ij} for any $1 \leq i < j \leq n$ as follows: if the ith row vector b_i and the jth row vector b_j of $B = (b_{ij})$ have the same sign in one of the two coordinates then set $\nu_{ij} = 0$; otherwise we set
\[
\nu_{ij} := \min\{|b_{i1}b_{j2}|, |b_{i2}b_{j1}|\}.
\]
Thus, $\nu_{ij} = 0$ unless b_i and b_j lie in the interior of opposite quadrants. Let
\[
H_{\ell}(t) = \prod_{i:b_i>0} (y_{i1} + ty_{i2})^{b_{i\ell}} - \prod_{i:b_i<0} (y_{i1} + ty_{i2})^{b_{i\ell}}, \quad \ell = 1, 2.
\]
We regard H_1 and H_2 as polynomials in a single variable t with coefficients in $\mathbb{Z}[y_{i\ell}, i = 1, \ldots, n, \ell = 1, 2]$. Let β_{ℓ} denote the sum of the positive entries in the ℓth column of B, for $\ell = 1, 2$. Clearly, $\text{degree}(H_{\ell}) = \beta_{\ell}$, $\ell = 1, 2$.

Theorem 2.1. The Chow form of the codimension 2 lattice ideal I_B equals
\[
\tilde{C}_B = \text{Res}_t(H_1, H_2) \prod_{1 \leq r < s \leq n} |s|^{\nu_{rs}},
\]
PROOF. The binomials \(\prod_{b_{ij} > 0}^{b_{ij}} - \prod_{b_{ij} < 0}^{b_{ij}^*} \), \(j = 1, 2 \), defined by the two columns of \(B \) determine a complete intersection \(Y_B \) of degree \(\beta_1 \beta_2 \) in \(\mathbb{P}^{n-1} \) which coincides with \(X_B \) over \((k^n)^{n-1} \). The irreducible decomposition of \(Y_B \) consists of the components of \(X_B \)—of which there is only one if \(\mathbb{Z}^n/L_B \) is free Abelian—together with subschemes supported on coordinate flats \(x_r = x_s = 0 \), whose Chow forms are the bracket monomials \([r,s] \). The theorem will be proved if we show that the cycle \(\{ x_r = x_s = 0 \} \) occurs with multiplicity \(\nu_{rs} \) in the complete intersection.

Suppose first that \(\nu_{rs} = 0 \). We may assume that \(b_{11}, b_{12} \geq 0 \). Then, \(\{ x_r = x_s = 0 \} \) is not contained in \(Y_B \), and thus occurs with multiplicity 0. Suppose now that \(\nu_{rs} > 0 \). We may assume that \(b_{11}, b_{12} > 0 \) and \(b_{12}, b_{12} < 0 \). Then, \(\{ x_r = x_s = 0 \} \) is contained in \(Y_B \), and after localizing and changing variable names, we are lead to the following situation:

\[
\nu_{rs} = \text{Res}_y((x_0 + x_1 t)^a - \alpha(y_0 + y_1 t)^b, (x_0 + x_1 t)^c - \beta(y_0 + y_1 t)^d) \cdot \text{Res}_t((x_0 + x_1 t)^a - \alpha(y_0 + y_1 t)^b, (x_0 + x_1 t)^c - \beta(y_0 + y_1 t)^d) \cdot \text{Res}_x((x_0 + x_1 t)^a - \alpha(y_0 + y_1 t)^b, (x_0 + x_1 t)^c - \beta(y_0 + y_1 t)^d).
\]

We want to show that \(x_0 y_1 - y_0 x_1 \) appears with exponent \(bc \) as a factor of \(r \).

Indeed, when \(x_1, y_1 \neq 0 \), the condition \(x_0 y_1 - y_0 x_1 = 0 \) holds if and only if there exists \(t \) such that \(x_0 + x_1 t = y_0 + y_1 t = 0 \), and so \(x_0 y_1 - y_0 x_1 \) occurs in \(r \) with exponent \(\mu \) equal to the intersection multiplicity at the origin of the artinian ideal \(I = (x^a - \alpha y^b, x^c - \beta y^d) \) in \(K[x,y] \). We claim \(\mu = bc \).

When \(ad > bc \), the given equations are a Gröbner basis with leading terms \(x^a \) and \(\beta y^d \), for the term order defined by weight \(x = b + d \) and weight \(y = a + c \). Hence \(\dim K[x,y]/I = ad \), that is, there are \(ad \) roots in the affine plane counting multiplicity. Of those, \(ad - bc \) lie in the torus, i.e. have both coordinates non-zero. No root of \(I \) has precisely one zero coordinate. Therefore the multiplicity of \(I \) at the origin is the difference \(\mu = ad - (ad - bc) = bc \). In the case \(ad = bc \), the polynomials \(x^a - \alpha y^b, x^c - \beta y^d \) are quasi-homogeneous. By a weighted version of Bezout’s theorem, they have \(ad = bc \) common roots, but as \(i \) is artinian the only possible root is the origin, with this multiplicity. \(\Box \)

Corollary 2.2. The degree of a homogeneous lattice ideal \(I_B \) of codimension 2 can be computed from the defining \(n \times 2 \)-matrix \(B \) by the following formula

\[
\deg(X_B) = \beta_1 \beta_2 - \sum_{1 \leq r < s \leq n} \nu_{rs}.
\]

The polynomial ring \(\mathbb{Z}[y_{il}] \) has a natural \(\mathbb{Z}^n \)-grading defined by \(\deg(y_{il}) = e_i \), the \(i \)th unit vector. The Chow polytope \(\mathcal{C}_B \) is, by definition (Gelfand et al., 1994, Section 6.3), the convex hull in \(\mathbb{R}^n \) of the degrees of all monomials appearing in the expansion of \(\mathcal{C}_B \). Its faces correspond to toric deformations of the algebraic cycle \(X_B \).

We assume that the row vectors \(b_1, b_2, \ldots, b_m \) of the matrix \(B \) are ordered counterclockwise in cyclic order, and that \(b_{m+1}, \ldots, b_n = 0 \). It may happen that \(b_{i+1} \) is a positive multiple of \(b_i \). Let \(P_B \) denote the unique (up to translation) lattice polygon whose boundary consists of the directed edges \(b_1, b_2, \ldots, b_m \). For each vector \(b_i = (b_{i1}, b_{i2}) \), the linear functional

\[
u = (u_1, u_2) \mapsto \det(b_i, u) = b_{i1} u_2 - b_{i2} u_1 \]

attains its minimum value over \(P_B \) at the edge parallel to \(b_i \) for \(i = 1, \ldots, m \) and is identically zero for \(i = m + 1, \ldots, n \). Let \(\mu_i \) denote the maximum value of the linear functional \(u \mapsto \det(b_i, u) \) as \(u \) ranges the polygon \(P_B \). For \(i = 1, \ldots, m \), this maximum is
attained at a unique vertex of \(P_B \) unless \(b_j = \lambda b_i \) for some \(j \) and \(\lambda < 0 \). For every lattice point \(v \) in \(P_B \), the quantity
\[
v^{(i)} := \mu_i - \det(b_i, v)
\]
is a non-negative integer, invariant under translation of \(P_B \). The vector \((v^{(1)}, v^{(2)}, \ldots, v^{(n)})\) expresses the point \(v \) in \(P_B \) in intrinsic coordinates.

Theorem 2.3. The Chow polygon \(CP_B \) of a codimension 2 lattice ideal \(I_B \) is the image of the polygon \(P_B \) under the affine isomorphism \(v \mapsto (v^{(1)}, \ldots, v^{(n)}) \).

The proof of this theorem will be given in the next section, after Gale duality and duality of Plücker coordinates have been introduced. See Theorem 3.4 for the same theorem in dual formulation. Theorems 2.3 and 3.4 will then be derived from the constructions in Sections 7.1, D and 8.3, B of Gel’fand et al. (1994).

Example 2.4. For the example in the Introduction we take \(b_1 = (1,0) \), \(b_2 = (1,1) \), \(b_3 = (2,2) \), \(b_4 = (0,1) \), \(b_5 = (-1,0) \), \(b_6 = (-2,0) \), \(b_7 = (-1,-1) \), \(b_8 = (0,-1) \), \(b_9 = (0,-2) \), and \(P_B \) the hexagon with vertices \((0,0)\), \((1,0)\), \((4,3)\), \((4,4)\), \((1,4)\), \((0,3)\). The edges of \(P_B \) are labelled by the variables as follows: \(a, \{f, i\}, b, \{d, g\}, c, \{e, h\} \), and we have \(\mu = (4,3,6,0,0,0,0,1,4,8) \). The 12 points on the boundary of \(P_B \) correspond to the 12 monomials in the expansion of \(\hat{E}_X \). For instance, the vertex \(v = (0,0) \) has intrinsic coordinates \((v^{(1)}, \ldots, v^{(9)}) = (4,3,6,0,0,0,1,4,8) \) and corresponds to \(a^4c^e^f^i^g^h^j^k^l \).

For any \(v \in P_B \), the coordinate sum \(\sum_{i=1}^n v^{(i)} \) coincides with \(\sum_{i=1}^n \mu_i \), and this equals the degree of the Chow form \(C_B \) as a polynomial in the \(y_i \). From this we get an alternative formula for the degree of our lattice ideal.

Corollary 2.5. The degree of the variety \(X_B \) equals \(d_B = \frac{1}{2} \cdot \sum_{i=1}^n \mu_i \).

Counting lattice points in the polygon \(P_B \) gives an upper bound for the number of monomials appearing in the full discriminant \(D_X \) (see Section 3):

Remark 2.6. The number of lattice points in the polygon \(P_B \) equals
\[
1 + \frac{1}{2} \left(\sum_{i=1}^n \gcd(b_{i1}, b_{i2}) + \sum_{1 \leq i < j \leq n} (b_{i2}b_{j1} - b_{i1}b_{j2}) \right).
\]

Proof. This is a reformulation of Pick’s formula which states that the area of a lattice polygon equals the number of lattice points in that polygon minus half the number of lattice points in its boundary, minus one. \(\square \)

If the lattice ideal \(I_B \) is a complete intersection then the denominator in Theorem 2.1 is 1 and we get a determinantal formula for the Chow form, namely, \(\hat{C}_B \) equals the univariate resultant in the numerator, which can be computed as the determinant of a Sylvester or Bézoutian matrix.

It would be desirable to have a division-free determinantal formula for the Chow form \(\hat{C}_B \) of any codimension 2 lattice ideal. At the current time we know such formulae only for special classes of matrices \(B \). We present a formula for a class which includes the example in the Introduction. Recall from Peeva and Sturmfels (1998) that the lattice ideal \(I_B \) is
Cohen–Macaulay if and only if I_B is generated by the 2×2-minors of a 2×3-matrix of monomials in x_1, \ldots, x_n:

\[
\begin{pmatrix}
m_1 & m_2 & m_3 \\
m_4 & m_5 & m_6
\end{pmatrix}.
\]

Let d_i denote the total degree of the monomial m_i. In order for the lattice ideal I_B to be homogeneous it is necessary and sufficient that

\[d_1 + d_5 = d_2 + d_4 \quad \text{and} \quad d_1 + d_6 = d_3 + d_4.\]

For the following discussion we make an even more restrictive assumption:

\[d_1 = d_2 = d_3 \geq d_4 = d_5 = d_6.\] (2.4)

We introduce four new indeterminates s, t, u, v. Let $m_i[t]$ denote the image of the monomial m_i under the substitution $x_i \mapsto y_{11} + y_{12}t$ for $i = 1, 2, \ldots, n$. We define the Bézout polynomial to be the following expression:

\[
\frac{1}{(s - u)(t - v)} \det \begin{pmatrix}
m_1[t] + m_4[t] & s & m_1[t] + m_4[t] \cdot u \\
m_2[t] + m_5[t] & s & m_2[t] + m_5[t] \cdot u \\
m_3[t] + m_6[t] & s & m_3[t] + m_6[t] \cdot u
\end{pmatrix}.
\]

Set $\delta := d_1 + d_4$. The Bézout polynomial can be written uniquely in the form

\[(1, v, v^2, \ldots, v^{d_4-1}, u, uv, uv^2, \ldots, uv^{d_4-1}) \cdot B \begin{pmatrix} 1 \\ t \\ \vdots \\ t^\delta \end{pmatrix},
\]

where $B = B(y_{ij})$ is a $\delta \times \delta$-matrix with entries in $k[y_{11}, y_{12}, \ldots, y_{n2}]$.

Theorem 2.7. If I_B is a Cohen–Macaulay lattice ideal of codimension 2 satisfying (2.4) then its Chow form \tilde{C}_B equals the determinant of $B(y_{ij})$.

Proof. Consider the rational normal scroll of type (d_1, d_4), a toric surface of degree δ in a projective space of dimension $\delta + 1$. Its Chow form has an exact determinantal formula in terms of a Bézout matrix. A nice proof of this fact follows from recent results of Eisenbud and Schreyer (preprint), since the rational normal scroll is given by the 2×2-minors of a matrix of variables. This Chow form is the unmixed, sparse resultant for three polynomials with support

\[
\{1, t, t^2, \ldots, t^{d_1}, s, st, st^2, \ldots, st^{d_4}\}.
\]

The three polynomials $m_i[t] + m_{i+3}[t] \cdot s$ have exactly this support. Our formula is gotten by specializing the Bézout matrix for the scroll. \qed

Example 2.8. The ideal in (1.2) satisfies the hypotheses of Theorem 2.7, with $\delta = 4$. The matrix (1.4) is precisely the matrix $B(y_{ij})$ in this case. \qed

3. The Full Discriminant

There are two different ways of presenting a toric variety of codimension 2: by an $n \times 2$-matrix B as in Peeva and Sturmfels (1998), or by an $(n \times 2) \times n$-matrix A as in...
et al. (1994, Section 5.1). The two matrices are Gale dual, which means that the image of B equals the kernel of A. Up to this point in the paper, we have only used the B-representation. We now make a switch and introduce the A-representation.

Let $A = (a_1, \ldots, a_n)$ be an $(n - 2) \times n$-integer matrix of rank $n - 2$, and suppose there exists a vector $w \in \mathbb{Q}^n$ such that $w \cdot a_i = 1$ for $i = 1, 2, \ldots, n$. We can choose an integral $n \times 2$ matrix B whose columns are a \mathbb{Z}-basis of $\ker_A(A)$. The matrix B has rank 2 and $A \cdot B = 0$. It is unique modulo right multiplication by $GL(2, \mathbb{Z})$. Let $I_A = I_B$ denote the corresponding toric ideal in $k[x_1, \ldots, x_n]$ and $X = X_A = X_B$ the corresponding toric variety in \mathbb{P}^{n-1}.

Here it is important to note that not all integer matrices B arise as the Gale dual of some matrix A as earlier. For this it is necessary and sufficient that $\mathbb{Z}^n/\text{im}_B(B)$ is torsion-free, or equivalently, that the ideal I_B is prime. On the other side, by possibly replacing \mathbb{Z}^{n-2} by the lattice generated by the column vectors of A, we assume w.l.o.g that the columns of A generate \mathbb{Z}^{n-2}, or equivalently, that the maximal minors of A are relatively prime.

The A-discriminant D_A is an irreducible polynomial in $\mathbb{Z}[x_1, \ldots, x_n]$ which vanishes under a specialization if the corresponding Laurent polynomial

$$f = \sum_{i=1}^{n} x_i \cdot t_1^{a_{i1}} t_2^{a_{i2}} \cdots t_{n-2}^{a_{in-2}} \quad \text{where } x_1, \ldots, x_n \in \mathbb{C}^*$$

has a multiple root $t = (t_1, \ldots, t_{n-2})$ in $(\mathbb{C}^*)^{n-2}$, i.e. f and all its partial derivatives vanish at t. Equivalently, the hypersurface $\{D_A = 0\}$ is projectively dual to the toric variety X, when the dual variety X^\vee is a hypersurface, and $D_A = 1$ otherwise; see Gel’fand et al. (1994, Sections 1.1 and 9.1).

In the next section we give a formula for the A-discriminant D_A and its degree. In this section, we study a larger polynomial E_A which contains D_A as a factor. It is called the principal A-determinant in Gel’fand et al. (1994) but we prefer the term full discriminant. Actually, our full discriminant agrees with expression (1.1) in Gel’fand et al. (1994, 10.1.A), but there is a slight inaccuracy in Gel’fand et al. (1994, Theorem 10.1.2) since E_A does not generally have content 1. An extra integer factor is needed. This integer factor would be $2!^4$ for the example (1.7) in the Introduction.

Before stating the definition of E_A, we first review the duality between primal and dual Plücker coordinates, and see how it ties in with Gale duality. For $1 \leq i < j \leq n$, let $B(i, j)$ be the submatrix of B consisting of the ith and jth rows, and let $A(i, j)$ denote the submatrix of A obtained by omitting the ith and jth columns. Here signs are adjusted so that $\det A(i, j) = \det B(i, j)$. In Section 2 we used an $n \times 2$ matrix $Y = (y_{ij})$ of indeterminates. The dual Plücker coordinates of a line in \mathbb{P}^{n-1} are

$$[ij] := \det Y(i, j) = y_{i1} y_{j2} - y_{i2} y_{j1} \quad \text{for } 1 \leq i < j \leq n. \quad (3.1)$$

Here we consider an $(n - 2) \times n$-matrix $Z = (z_{ij})$ of indeterminates. The primal Plücker coordinates of our line are the $(n - 2) \times (n - 2)$-subdeterminants

$$\langle ij \rangle = \det Z(i, j) \quad \text{(with the sign adjusted as usual).}$$

The dual Chow form \hat{C}_B is a polynomial of degree d_B in the brackets (3.1). Replacing $[ij] \mapsto \langle ij \rangle$ in \hat{C}_B gives a homogeneous polynomial of degree $(n - 2)d_B$ in the variables z_{ij}. It is denoted \hat{C}_A and called the primal Chow form. Note that \hat{C}_A coincides with the A-resultant defined in Gel’fand et al. (1994, Section 8.2.A).
Definition 3.1. The full discriminant E_A is the image of the primal Chow form C_A under the specialization $z_{ij} \mapsto a_{ij}x_j$ for $i = 1, \ldots, n - 2$, $j = 1, \ldots, n$.

We next show how to compute the full discriminant directly from the dual Chow form \tilde{C}_B and hence from the formulae in Theorems 2.1 and 2.7.

Proposition 3.2. The full discriminant E_A and the dual Chow form $\tilde{C}_B(y_{i\ell})$ are related by the following formula:

$$E_A(x_1, \ldots, x_n) = (x_1 \ldots x_n)^{d_B} \cdot \tilde{C}_B(b_{i\ell}/x_i, i = 1, \ldots, n, \ell = 1, 2).$$ (3.2)

The exponent d_B is the degree of the toric variety X and hence coincides with the normalized volume of the $(n - 3)$-dimensional polytope $\text{conv}(A)$. Gale dual formulae for this volume are given in Corollaries 2.2 and 2.5.

Proof. The specialization $z_{ij} \mapsto a_{ij}x_j$ in Definition 3.1 is equivalent to

$$\langle rs \rangle \mapsto \det A(r, s) \prod_{k \neq r, s} x_k \quad \text{for } 1 \leq r < s \leq n \quad (3.3)$$

at the level of primal Plücker coordinates. The dual Chow form \tilde{C}_B is a \mathbb{Z}-linear combination of bracket terms $\prod [r \ s]$ of degree d_B. If we substitute $b_{i\ell}/x_i$ for $y_{i\ell}$ in the expansion of such a bracket term $\prod [r \ s]$ then we get

$$\prod [r \ s] \mapsto \prod (\det B(r, s)/(x_r x_s)) = \prod (\det A(r, s)/(x_r x_s))$$

$$= (x_1 \ldots x_n)^{-d_B} \cdot \prod (\det A(r, s) \prod_{k \neq r, s} x_k)^{a_{i\ell}} (x_1 \ldots x_n)^{-d_B} \cdot \prod [r \ s].$$

Hence the specialized dual Chow form on the right-hand side of (3.2) equals the specialization of the primal Chow form C_A under (3.3), as desired. □

It is known from Gel’fand et al. (1994, Theorem 10.1.2) that the full discriminant E_A is a product of irreducible factors $D_{A'}$ where A' ranges over facial discriminants. In particular, each monomial x_i corresponding to a vertex a_i of $\text{conv}(A)$ appears to some positive power in the factorization of E_A. It is curious to note that the monomial factors disappear when we pass to dual coordinates. We define the dual full discriminant by specializing the dual Chow form:

$$\tilde{E}_B(x_1, \ldots, x_n) = \tilde{C}_B(b_{i\ell} x_i, i = 1, \ldots, n, \ell = 1, 2).$$ (3.4)

Proposition 3.2 is equivalent to the reciprocity formula:

$$\tilde{E}_B(x_1, \ldots, x_n) = (x_1 \ldots x_n)^{d_B} \cdot E_A(1/x_1, \ldots, 1/x_n).$$ (3.5)

Lemma 3.3. The dual full discriminant \tilde{E}_B has no monomial factors.

Proof. Suppose that the variable x_i divides \tilde{E}_B. Then every bracket monomial appearing in the dual Chow form \tilde{C}_B contains the letter i. Equivalently, every bracket monomial in the primal Chow form C_A contains a bracket $\langle rs \rangle$ with $r = i$ or $s = i$. In view of Gel’fand et al. (1994, Theorem 8.3.3), this means that every regular triangulation of A contains
a simplex for which \(a_i \) is not a vertex. But this is false, since \(a_i \) lies in every maximal simplex of the reverse lexicographic triangulation of \(A \), for \(x_i \) smallest; see Sturmfels (1995, Proposition 8.6). \(\square \)

The secondary polygon \(\Sigma(A) \) of the configuration \(A \) coincides with the Newton polygon of the full discriminant \(E_A \), by Gel’fand et al. (1994, Theorem 10.1.4). It is a two-dimensional convex polytope lying in \(\mathbb{R}^n \). Let \(P_B \) be the polygon considered in Section 2. For \(v \in P_B \), let \((v^{(1)}, \ldots, v^{(n)}) \) be the vector defined in (2.3).

Theorem 3.4. The secondary polytope \(\Sigma(A) \) is the image of the polygon \(P_B \) under the affine isomorphism which sends \(v \) to \((d_B - v^{(1)}, \ldots, d_B - v^{(n)}) \).

Proof. It suffices to prove this Theorem for the case when all \(b_i \) are non-zero. Indeed, if \(b_{m+1} = \cdots = b_n = 0 \) then (Gel’fand et al., 1994, Theorem 10.1.2) implies that

\[
E_A(x_i, \ldots, x_m) = (x_{m+1} \ldots x_n)^{d_B} \cdot E_{A'}(x_1, \ldots, x_m),
\]

where \(A' \) is a Gale dual of the configuration \((b_1, \ldots, b_m) \). Our assertion for \(\Sigma(A) \) implies that for \(\Sigma(A) \). We hence assume that \(b_i \neq 0 \) for all \(i = 1, \ldots, n \).

Each vertex \(w = (w_1, \ldots, w_n) \) of \(\Sigma(A) \) corresponds uniquely to a regular triangulation \(\Delta_w \) of \(A \). This triangulation corresponds to a pair of adjacent linearly independent vectors \(b_k, b_{k+1} \), the index \(k \) is determined by the property that \(\sum_{i=1}^n w_i b_i \) lies in the cone spanned by \(b_k \) and \(b_{k+1} \). (Indices are understood modulo \(n \); recall that \(\sum_i b_i = 0 \).) More precisely, let \(C_k \) denote the set of index pairs \((r, s) \) such that \(b_k \) and \(b_{k+1} \) lie in the cone spanned by \(b_r \) and \(b_s \). Then, by Billera et al. (1990, Lemma 4.3), the pairs in \(C_k \) are the complements of the maximal cell in the triangulation \(\Delta_w \) of \(A \) which is indexed by \(k \). The normalized volume of such a maximal cell equals \(|\det(b_r, b_s)| \).

By Gel’fand et al. (1994, Definition 7.1.6), the \(i \)th coordinate of \(w \) equals the sum of the normalized volumes of those simplices in \(\Delta_w \) which contain the point \(a_i \). Hence

\[
w_i = \sum_{r,s} |\det(b_r, b_s)| \quad \text{where the sum is over all indices } r \neq i, s \neq i \quad \text{such that } b_k \text{ and } b_{k+1} \text{ lie in the cone spanned by } b_r \text{ and } b_s.
\]

Let \(v_w \) be the vertex of \(P_B \) between the edges parallel to \(b_k \) and \(b_{k+1} \). We claim that \(v_w \in \mathbb{Z}^2 \) is mapped to \(w \in \mathbb{Z}^n \) under the affine isomorphism given earlier.

We note that the maximum \(\mu_i \) of the values \(\det(b_i, v) \) is attained at the vertex \(v \in P_B \) between the edges parallel to two independent vectors \(b_r, b_{r+1} \) such that \(\det(b_r, b_s) \geq 0 \) and \(\det(b_r + b_{r+1}) < 0 \) (indices modulo \(n \)). What we are claiming is the identity \(w_i = d_B - \det(b_i, v) + \det(b_i, v_w) \).

Since the set \(C_k \) is Gale dual to our regular triangulation, we have \(d_B = \vol(\conv(A)) \) equals \(\sum_{(r,s)\in C_k} |\det(b_r, b_s)| \). If we start drawing \(P_B \) from the origin, then, \(v = \sum_{j=1}^\ell b_j \) and \(v_w = \sum_{j=1}^k b_j \). Our assertion takes the following form:

\[
\sum_{(r,s)\in C_k, r\neq i, s\neq i} |\det(b_r, b_s)| = \sum_{(r,s)\in C_k} |\det(b_r, b_s)| - \sum_{j=1}^\ell \det(b_i, b_j) + \sum_{j=1}^k \det(b_i, b_j).
\]

After erasing equal terms on both sides, the following remains to be proved:

\[
\sum_{j=1}^\ell \det(b_i, b_j) - \sum_{j=1}^k \det(b_i, b_j) = \sum_{j:(i,j)\in C_k} |\det(b_i, b_j)|.
\]
Proof of Theorem 2.3. First assume that b_1, \ldots, b_n span the lattice \mathbb{Z}^2 and fix a corresponding matrix A. By Gel’fand et al. (1994, Theorem 10.1.4), the secondary polytope $\sigma(A)$ is the Newton polytope of E_A. By Theorem 2.3, the monomials appearing in E_A are $\prod_{i=1}^n x_i^{d_{B_v}(i)}$ where $v \in P_B$. In view of the reciprocity formula (3.5), the monomials appearing in \tilde{E}_B are $(x_1 \cdots x_n)^{d_B} \prod_{i=1}^n \frac{1}{x_i} x_i^{d_{B_v}(i)} = \prod_{i=1}^n x_i^{d_{B_v}(i)}$ where $v \in P_B$. Hence P_B is the Newton polytope of \tilde{E}_B, and, in view of (3.4), it also equals the Chow polytope of X_B.

Suppose next the index of the sublattice spanned by b_1, \ldots, b_n in \mathbb{Z}^2 is $r > 1$. Then the scheme X_B is the equidimensional union of r torus translates of a fixed toric variety $X_{B'}$. Following Gel’fand et al. (1994, Section 4.1.A), the Chow form \tilde{C}_B factors into r irreducible polynomials, each of which is a torus translate of the irreducible Chow form $C_{B'}$. Therefore the Chow polygon CP_B equals $r \cdot CP_{B'}$. The configuration B' is $GL(\mathbb{R}^2)$-equivalent to B, and it does possess a Gale dual A'. Our assertion holds for CP_B and it follows for $CP_{B'}$ by scaling. □

Let us now take a look at what happens to the formula in Theorem 2.1 under the specialization $y_{it} \mapsto b_{it} \cdot x_i$ in (3.4). A line through the origin in \mathbb{R}^2 is said to be relevant if it contains two vectors b_r, b_s in opposite directions. So, if the rows of B are in the general position, then there are no relevant lines. The example in the introduction has three relevant lines.

Consider the specializations of the two polynomial $H_\ell(t)$ in (2.2):

$$h_\ell(t) := \prod_{i: b_{it} > 0} (b_{i1} + b_{i2} t)^{b_{it}} x_i^{b_{it}} - \prod_{i: b_{it} < 0} (b_{i1} + b_{i2} t)^{b_{it}} x_i^{b_{it}}, \quad \ell = 1, 2. \quad (3.6)$$

Remark 3.5. The polynomials h_1, h_2 have a common factor if and only if there exists a relevant line which is not a coordinate axis.

The presence of two vectors b_r, b_s in opposite directions in the interior of two quadrants then causes the resultant $\text{Res}_t(h_1, h_2)$ to vanish. Also, $\det(B(r, s)) = 0$, while $\nu_{rs} \neq 0$. When there are two opposite vectors on a coordinate axis, both numbers are zero and $\det(B(r, s))^{\nu_{rs}} = 1$. We deduce:

Proposition 3.6. Assume there are no relevant lines for the configuration B except for the coordinate axes. Then the dual full discriminant equals

$$\tilde{E}_B = \frac{\text{Res}_t(h_1, h_2)}{\prod_{1 \leq r < s \leq n} \det(B(r, s))^{\nu_{rs}} \prod_{1 \leq r < s \leq n} (x_r \cdot x_s)^{\nu_{rs}}}. $$

In the next section we will show how to use Theorem 2.1 to compute discriminants even if the hypothesis of the earlier proposition is not satisfied.
4. The A-discriminant

Let $A \in \mathbb{Z}^{(n-2)\times n}$ and $B \in \mathbb{Z}^{n\times 2}$ be Gale dual matrices as before, and let X be the corresponding toric variety of codimension 2 in \mathbb{P}^{n-1}. The A-discriminant D_A is the defining irreducible polynomial of the dual variety X^v, unless $\text{condim}(X^v) > 1$ in which case $D_A = 1$. Gel’fand et al. (1994, Theorem 10.1.2) proved that D_A appears with exponent 1 in the factorization of the full discriminant E_A. In this section we compute D_A and all other factors of E_A in terms of the row vectors $b_i \in \mathbb{R}^2$ of B.

Throughout this section we shall assume that $b_i \neq 0$ for $i = 1, \ldots, n$. This means that X is not a cone over a coordinate point, or that X^v does not lie in a coordinate hyperplane. All results in Section 4 require this hypothesis.

Each relevant line in the plane is identified with one of the two primitive vectors $v \in \mathbb{Z}^2$ on that line. We abbreviate $b_i^v := \det(b_i, v)$. With each such line v, we associate a codimension 1 discriminant as in (1.1).

$$D_v := \prod_{j : b_j^v < 0} (b_j^v)^{v^j} \prod_{v^j > 0} x_j^{v^j} = \prod_{j : b_j^v < 0} (b_j^v)^{v^j} \prod_{j : b_j^v > 0} x_j^{-b_j^v}. \tag{4.1}$$

Let b_1, \ldots, b_s be all the row vectors of B which lie on the relevant line v. There is a unique integer vector $(\lambda_1, \ldots, \lambda_s)$ such that $b_i = \lambda_j \cdot v$ for $j = 1, \ldots, s$. We direct the primitive vector $v \in \mathbb{Z}^2$ so that the coordinate sum $\alpha_v := \lambda_1 + \cdots + \lambda_s$ is non-negative, and we define

$$\delta_v := \sum \{-\lambda_i : \lambda_i < 0\}. \tag{4.2}$$

Using this notation, Remark 3.5 can now be defined as follows:

Remark 4.1. If $v = (v_1, v_2)$ is a relevant line for B then $v_1 + v_2 t$ appears with exponent $\delta_v \cdot v_i$ in the factorization of the polynomial $h_i(t)$ in (3.6).

Denote by $p_1(t), p_2(t)$ the respective remaining factors, that is,

$$h_i(t) = p_\ell(t) \cdot \prod_{v \text{ relevant}} (v_1 + v_2 t)^{\delta_v v_i} \quad \ell = 1, 2. \tag{4.3}$$

Now the resultant $r_B := \text{Res}_t(p_1, p_2)$ is a non-zero polynomial in x_1, \ldots, x_n. It is customary to call r_B the residual resultant of h_1 and h_2. We shall prove the following formulae for the full discriminant and the A-discriminant.

Theorem 4.2. There exist monomials $x^u, x^{u'}$ and integers v, v' such that

$$D_A(x_1, \ldots, x_n) = (1/v) \cdot x^u \cdot r_B^v(1/x_1, \ldots, 1/x_n) \quad \text{and}$$

$$E_A(x_1, \ldots, x_n) = v' \cdot x^{u'} \cdot D_A(x_1, \ldots, x_n) \cdot \prod_{v \text{ relevant}} D_v(x_1, \ldots, x_n)^{\delta_v}. \quad \text{Proof.} \quad \text{We shall first prove the following claim about the full discriminant:}$$

$$r_B^v(1/x_1, \ldots, 1/x_n) \cdot \prod_{v \text{ relevant}} D_v(x_1, \ldots, x_n)^{\delta_v} \text{ divides } E_A(x_1, \ldots, x_n)$$

in the Laurent polynomial ring $k[x_1, \ldots, x_n, x_1^{-1}, \ldots, x_n^{-1}]$.

Fix any relevant line v. Choose an isomorphism in $SL_2(\mathbb{Z})$ which maps v to $(0, 1)$, and apply this isomorphism to the rows of B. Also reorder the rows of B so that the
proof. Suppose first that there are no relevant lines. Then, \(Q_B \neq P_B \), and the secondary polygon \(\Sigma(A) \) and the Newton polygon \(N(D_A) \) are equal up to translation. More precisely, \(\Sigma(A) = N(D_A) + a \) where \(a_i \) is the exponent of \(x_i \) as a factor of \(E_A \). We claim that

\[
\alpha_i = d_B - \sum_{j: \det(b_i, b_j) > 0} \det(b_i, b_j).
\]

This can be seen as follows: the exponent of \(X_i \) in the factorization of \(E_A \) is the normalized volume of \(\text{conv}(A) \setminus \text{conv}(A \setminus \{a_i\}) \), which is the sharp lower bound for the total
volume of all simplices with vertex a_i appearing in any regular triangulation. Now, the normalized volume of $\text{conv}(A)$ equals d_B, while the normalized volume of $\text{conv}(A \setminus \{a_i\})$ equals $\sum_{j: \det(b_j, b_i) > 0} \det(b_j, b_i)$. In light of Theorem 3.4, it suffices to show that
\[d_B - \mu_i + \det(b_i, v) = \alpha_i + \det(b_i, v) - \nu_i \quad \text{for all } v \in Q_B, i = 1, \ldots, n. \]

After cancelling terms common to both sides, what remains to be shown is
\[\sum_{j: \det(b_j, b_i) > 0} \det(b_i, b_j) = \mu_i - \nu_i. \]

This identity holds because both sides are equal to the normalized lattice width of the polygon $Q_B = P_B$ in the direction orthogonal to b_i.

We next assume that relevant lines exist. Then ν_i generally differs from $\nu'_i := \min \{\det(b_i, u), u \in P_B\}$. The secondary polytope $\Sigma(A)$ equals $N(D_A) + \alpha$ plus the Minkowski sum of the Newton segments of the binomials (4.1) where v runs over all relevant lines. Hence, if we draw P_B and Q_B from the same point,
\[P_B = Q_B + \sum_{v \text{ relevant}} \text{conv}\{0, v\}. \quad (4.6) \]

The minimum value of the linear functional $\det(b_i, *)$ over the line segment $\text{conv}\{0, v\}$ is $\det(b_i, v)$, when this value is negative and zero otherwise. Therefore (4.6) translates into the identity
\[\nu'_i = \nu_i + \sum_{v \text{ relevant}} \delta_v \cdot \min \{0, \det(b_i, v)\} \quad \text{for } i = 1, \ldots, n. \]

The argument for the case of no relevant lines now completes the proof. □

We deduce the following formula for the degree of the A-discriminant:

Corollary 4.4.
\[\text{degree}(D_A) = - \sum_{i=1}^n \nu_i \]

We can also extract the following characterization from Theorem 4.3.

Corollary 4.5. The A-discriminant D_A is equal to 1 if and only if the polygon P_B is centrally symmetric.

Proof. The condition $D_A = 1$ is equivalent to Q_B being a point. This happens if and only if all vectors b_i lie in a relevant line, and $\alpha_v = 0$ for each relevant line v. This last condition is equivalent to P_B being centrally symmetric. □

The following variant to the formula of Theorem 4.2 works well in practice for computing the A-discriminant D_A. In the affine plane with coordinates (w_1, w_2), consider the following parametrically presented rational curve:
\[w_\ell = \frac{\prod_{b_{\ell t} > 0} (b_{1t} + b_{2t})^{b_{\ell t}}}{\prod_{b_{\ell t} < 0} (b_{1t} + b_{2t})^{-b_{\ell t}}}, \quad \ell = 1, 2. \quad (4.7) \]

This is the *Horn uniformization* in Gel’fand et al. (1994, Section 9.3.C). Let $\Delta(w_1, w_2)$ be the irreducible polynomial defining this curve. This is a dehomogenization of the
A-discriminant, by Theorem 4.2 or by Gel’fand et al. (1994, Theorem 9.3.3. (a)). More precisely,
\[D_A(x_1, \ldots, x_n) = (\text{a monomial}) \cdot \Delta \left(\prod_{i=1}^{n} x_i^{b_{i1}}, \prod_{i=1}^{n} x_i^{b_{i2}} \right). \]
(4.8)

The common factors in the numerator and denominator of (4.7) are precisely the relevant lines which are not a coordinate axis. In other words, cancelling common factors in (4.7) is equivalent to replacing \(h_i(t) \) by \(p_i(t) \) in (4.3).

We can get a description of the Newton polygon \(N(\Delta) \) of \(\Delta(w_1, w_2) \) by “dehomogenizing” the result in Theorem 4.3 as follows. Let \(\bot \) denote the linear rotation in the plane defined by \(v_\bot := (v_2, -v_1) \).

Corollary 4.6. Let \(B_\bot = \{ b_1^\bot, \ldots, b_n^\bot \} \) and consider the polygon \(Q_{B_\bot} \) translated so that it lies in the first quadrant and its boundary intersects both coordinate axes. Then \(N(\Delta) = Q_{B_\bot} \).

This result has been obtained independently by Sadykov (to appear), under the hypothesis that there are no relevant lines outside the coordinate axes.

Proof. Write \(\Delta(w_1, w_2) = \sum_{\alpha \in N(\Delta)} \Delta_\alpha w^\alpha \). Then, by (4.8) \(D_A(x) \) equals, up to a monomial, \(\sum_{\alpha \in N(\Delta)} \Delta_\alpha \prod_{i=1}^{n} x_i^{\langle b_i, \alpha \rangle} \). On the other side, we deduce from Theorem 4.3 that \(D_A(x) \) has the form
\[
\prod_{i=1}^{n} x_i^{-\nu_i} \sum_{\beta \in Q_{B_\bot}} D_{A, \beta} \prod_{i=1}^{n} x_i^{\det(b_i, \beta)}.
\]

Note that \(\det(b_i, \beta) \) equals the inner product \(\langle b_i, \beta^\bot \rangle \). Since \(Q_{B_\bot} \) is precisely the image under the rotation of \(Q_B \) and \(\Delta \) cannot have any monomial factors, the result follows. \(\square \)

Example 4.7. We consider the toric 3-fold of degree 43 in \(\mathbb{P}^5 \) which appears as Example 5.10 in Peeva and Sturmfels (1998). It is defined by the \(6 \times 2 \) integer matrix
\[
B = \begin{pmatrix}
-1 & -3 \\
-5 & 1 \\
-1 & 4 \\
2 & 3 \\
3 & -2 \\
2 & -3
\end{pmatrix}.
\]

The lattice ideal \(I_B \) has seven minimal generators. There are no relevant lines. The polygon \(P_B = Q_B \) is a hexagon. Using Remark 2.6 we find that \(Q_B \) contains 40 lattice points. They correspond to the 40 terms in the A-discriminant \(D_A \). The six vertices of \(P_B \) correspond to the various leading terms in \(D_A \). Using (4.8) in any computer algebra system we easily compute:
\[
D_A = - (7)^7 (17)^{17} (19)^{19} x_1^{16} x_2^{11} x_3^{23} x_4^{22} \\
- (2)^{36} (3)^{15} (5)^{15} (13)^{13} x_1^{13} x_2^{20} x_3^{30} x_4^{11} x_5 \\
+ (2)^{10} (5)^{15} (11)^{11} (17)^{17} x_1^{13} x_2^{19} x_3^{14} x_4^{17} x_5 \\
+ (2)^{64} (7)^{14} (13)^{13} x_3^{19} x_4^{28} x_5^{16} x_6^{9} \\
+ (3)^{21} (7)^{7} (11)^{11} (13)^{13} x_2^{14} x_3^{16} x_4^{26} x_5^{25} x_6^{5}
\]
where the rows of the submatrix \tilde{I} are reducible, i.e. the configuration of its row vectors can be partitioned into 2×1-minor is diagonal.

We invite the reader to draw Q_B and verify Theorem 4.3 for this example. □

5. Resultants Having Newton Triangles

Mixed resultants form a subclass among all discriminants, by the Cayley trick of elimination theory (Gel’fand et al., 1994, Section 9.1.A). This subclass is important for the theory of hypergeometric functions: conjecturally, it consists of the denominators of rational hypergeometric functions (Cattani et al., 2001, Conjecture 1.4). In this section we examine the Cayley construction and mixed resultants in codimension 2.

Let A_1, \ldots, A_{s+1} be vector configurations in \mathbb{Z}^r. Their Cayley configuration is defined as

$$A = \{e_1\} \times A_1 \cup \{e_2\} \times A_2 \cup \cdots \cup \{e_{s+1}\} \times A_{s+1} \subset \mathbb{Z}^{s+1} \times \mathbb{Z}^r,$$

(5.1)

where e_1, \ldots, e_{s+1} is the standard basis of \mathbb{Z}^{s+1}.

If we assume that A is not a pyramid, each set A_i must contain at least two points. In the codimension 2 case that we are considering, this implies that $s \leq r + 1$. When $s = r + 1$, each A_i has two elements and $D_A = 1$. We will be concerned in this section with the case $s = r$. Thus, A will be a $(2r + 1) \times (2r + 3)$ matrix and its Gale dual B is reducible, i.e. the configuration of its row vectors can be partitioned into $r + 1$ subsets which have zero sum. We can reorder B to get a $(2r + 3) \times 2$-matrix

$$B = (b_1, b_2, \ldots, b_r, c_1, c_2, -b_1, \ldots, -b_r, -c_1 - c_2)^T,$$

where the rows of the submatrix $\tilde{B} := (b_1, b_2, \ldots, b_r, c_1, c_2)^T$ span \mathbb{Z}^2. We assume that all b_i are non-zero and $\det(c_1, c_2) \neq 0$. By Corollary 4.5, $D_A \neq 1$.

If we reorder the Cayley matrix accordingly and perform row operations, we can replace it by a matrix which we also call A with the same discriminant (up to reordering the variables), which looks as follows:

$$A = \begin{pmatrix} \tilde{A} & 0 \\ I_{r+1} & I_{r+1} \end{pmatrix}.$$

(5.2)

Here, I_{r+1} is the unit matrix of size $r + 1$, $e_{r+1} = (0, 0, \ldots, 0, 1)^T$ and \tilde{A} is an $r \times (r+2)$-matrix Gale dual to B whose left $r \times r$-minor is diagonal

$$\tilde{A} = \begin{pmatrix} \gamma_1 & \alpha_1 & \beta \\ \vdots & \vdots & \vdots \\ \gamma_r & \alpha_r & \beta_r \end{pmatrix} \quad \text{where } \gamma_i \in \mathbb{Z}_{>0} \quad \text{and } (\alpha_i, \beta_i) \in \mathbb{Z}^2 \setminus \{(0, 0)\}.

The columns of A index the coefficients in a sparse system of $r + 1$ equations:

$$\begin{align*}
f_0 &= z_1 \cdot t_1^{\alpha_1} \cdot t_r^{\alpha_r} + z_2 \cdot t_1^{\beta_1} \cdot t_r^{\beta_r} + z_3 \\
f_i &= x_1 \cdot t_i^{\alpha_i} + y_i \quad \text{for } i = 1, \ldots, r.
\end{align*}
$$

This system consists of r binomials and one Laurent trinomial, as in (1.8). The sparse resultant $\text{Res}(f_0, f_1, \ldots, f_r)$ is the unique (up to sign) irreducible polynomial in $x_1, \ldots, x_r, y_1, \ldots, y_r, z_1, z_2, z_3$ which vanishes when the system has a common root in the torus $(\mathbb{C}^*)^r$. From Gel’fand et al. (1994, Section 9, Proposition 1.7) we get:
Remark 5.1. The A-discriminant D_A equals the sparse resultant of f_0, \ldots, f_r.

We now apply the product formula for resultants (Pedersen and Sturmfels, 1993), which amounts to evaluating f_0 at the common zeros of f_1, \ldots, f_r. The number of zeros equals

$$\Gamma := \gamma_1\gamma_2 \cdots \gamma_r = |\det(c_1, c_2)|.$$

Let η_i denote a primitive γ_ith root of unity. The product formula implies:

Proposition 5.2. Up to a Laurent monomial factor, the A-discriminant is

$$D_A = \text{monomial} \prod_{i_1=1}^{\gamma_1} \cdots \prod_{i_r=1}^{\gamma_r} f_0(\eta_{i_1}^{i_1} z_1, \eta_{i_2}^{i_2} z_2, \ldots, \eta_{i_r}^{i_r} z_r)$$

where $z_i = (-\frac{m}{c_{i1}})^{1/\gamma_i}$ for $i = 1, \ldots, r$.

Since f_0 is a trinomial, this formula gives an upper bound of $\binom{\Gamma + 2}{2}$ for the number of terms appearing in the expansion of $D_A = \text{Res}(f_0, \ldots, f_r)$. This bound is quadratic in Γ. In truth, this number grows linearly in Γ.

Theorem 5.3. The number of terms appearing in D_A is at most

$$\frac{5}{4} \cdot \Gamma + \frac{7}{4}.$$

This bound is tight if the vectors c_1 and c_2 span the lattice \mathbb{Z}^2. In this case, $\Gamma = \det(c_1, c_2) = 1$ and the resultant D_A has three terms. It is also tight for the example in the Introduction, where $\Gamma = 4$ and D_A has six terms.

Proof. According to Theorem 4.3, the Newton polygon of the discriminant D_A is essentially the lattice triangle $Q_B = \text{conv}\{0, c_1, c_2\}$. The number of terms in D_A is at most the number of lattice points in Q_B. Using Pick’s formula as in Remark 2.6, we find that the number $\#(Q_B \cap \mathbb{Z}^2)$ equals

$$1 + \frac{1}{2} \cdot (|\det(c_1, c_2)| + \gcd(c_{11}, c_{12}) + \gcd(c_{21}, c_{22}) + \gcd(c_{11} + c_{21}, c_{12} + c_{22})).$$

Using the inequality $a + b \leq ab + 1$, we find that the sum of any two of the three last summands is bounded above by $\Gamma + 1 = |\det(c_1, c_2)| + 1$. Therefore,

$$\#(Q_B \cap \mathbb{Z}^2) \leq 1 + \frac{1}{2} \cdot (\Gamma + 3 \cdot (\Gamma + 1)).$$

This is the desired inequality. \qed

Acknowledgements

We are grateful to Eduardo Cattani for helpful discussions. AD was supported by UBACYT TX94, ANPCyT Grant 03-6568 and CONICET, Argentina. BS was supported by NSF Grant DMS-9970254 and the Miller Institute at UC Berkeley.

References

Received 6 March 2001
Accepted 15 March 2002