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Abstract

At high-energy colliders, jets of hadrons are the observable counterparts of the perturbative concepts of quarks and gluons. Good procedures for
identifying jets are central to experimental analyses and comparisons with theory. The kt family of successive recombination jet finders has been
widely advocated because of its conceptual simplicity and flexibility and its unique ability to approximately reconstruct the partonic branching
sequence in an event. Until now however, it had been believed that for an ensemble of N particles the algorithmic complexity of the kt jet
finder scaled as N3, a severe issue in the high multiplicity environments of LHC and heavy-ion colliders. We here show that the computationally
complex part of kt jet-clustering can be reduced to two-dimensional nearest neighbour location for a dynamic set of points. Borrowing techniques
developed for this extensively studied problem in computational geometry, kt jet-finding can then be performed in N lnN time. Code based on
these ideas is found to run faster than all other jet finders in current use.
© 2006 Elsevier B.V. Open access under CC BY license.
1. Introduction

Partons (quarks and gluons), are the concepts that are cen-
tral to discussions of the QCD aspects of high-energy colli-
sions such as those at the Fermilab Tevatron and the future
Large Hadron Collider (LHC) at CERN. Quarks and gluons,
however, are not observable, and in their place one sees jets,
collimated bunches of high-energy hadrons which are the re-
sult of the fragmentation and hadronisation of the original hard
(high-energy) partons. Today’s limited understanding of non-
perturbative QCD is such that it is not currently possible to pre-
dict the exact patterns of hadrons produced. Instead one makes
predictions in terms of quarks and gluons and relates these to
observations in terms of hadron jets.

Naively, jets are easily identified—one simply searches for
bunches of collimated hadrons. However, to carry out accurate
comparisons between parton-level predictions and hadron-level
observations one needs a well-defined ‘jet-finding’ procedure.
The jet-finder is applied both to perturbatively predicted par-
tonic configurations and to observed hadronic configurations
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and one then directly compares distributions for the predicted
partonic jets and the observed hadronic jets. Though partonic
and hadronic jets are not equivalent, there is strong evidence
(theoretical [1] and experimental [2]) that the comparison can
be performed with controlled accuracy.

Insofar as jet-finding is an approximate attempt to invert
the quantum mechanical processes of QCD branching and
hadronisation, it is not a unique procedure. Various kinds of
jet-finders have been proposed, among them cone-type [1,3]
and sequential-clustering [4–7] jet-finders (for alternatives, see
[8–11]).

Cone jet-finders are the most frequently used at the Teva-
tron. They are based on identifying energy-flow into cones in
(pseudo)rapidity η = − ln tan θ/2 and azimuth φ, together with
various steps of iteration, merging and splitting of the cones
to obtain the final jets. Cone jet-finders tend to be rather com-
plex, different experiments have used different variants (some
of them infrared unsafe), and it is often difficult to know exactly
which jet-finder to use in theoretical comparisons.

In contrast, the cluster-type jet-finders, generally based on
successive pair-wise recombination of particles, have simple
definitions and are all infrared safe (for reviews see [12,13]).
We shall focus here on the most widely used of them, the kt jet-
finder [5], defined below. Among its physics advantages are (a)
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that it purposely mimics a walk backwards through the QCD
branching sequence, which means that reconstructed jets nat-
urally collect most of the particles radiated from an original
hard parton, giving better particle mass measurements [14,15],
general kinematic reconstruction [16] and gaps-between-jets
identification [17] (of relevance to Higgs searches); and (b) it
allows one to decompose a jet into constituent subjets, which is
useful for identifying decay products of fast-moving heavy par-
ticles (see e.g. [18]) and various QCD studies. This has led to
the widespread adoption of the kt jet-finder in the LEP (e+e−
collisions) and HERA (ep) communities.

Despite its advantages, kt clustering has so far seen only
limited study [19–21] at the Tevatron. The reasons for this are
not entirely clear. One known drawback of the kt jet finder for
high-multiplicity hadron-collider environments is its apparent
algorithmic slowness: to cluster N particles into jets requires
O(N3) operations in current implementations [22]. For a typ-
ical event at the upcoming LHC, with an expected multiplic-
ity of N = O(2000), this translates into a clustering time of
O(10 s) of CPU time on a modern O(3 GHz) processor; this
is considerable given that the clustering has to be repeated for
millions of events. For a typical heavy-ion event at LHC, where
N = O(50 000), the clustering time would grow to an unsus-
tainable O(105 s), i.e. more than one day! Even at the Tevatron,
where the multiplicity is quite modest, the fact that noise may
cause the number of active calorimeter cells to be far larger
than the number of particles has led to the use of a complex
(and physically questionable) preclustering procedure prior to
running the kt jet finder, so as to reduce the effective value of
N to something that is manageable [20].

The slowness of the kt jet-finder has been one of the moti-
vating factors behind proposals for alternative jet-finders [9,10].
Here we will show that the kt jet-finder can in fact be formu-
lated in an algorithmically fast (N lnN ) manner. A C++ imple-
mentation of this (and a related N2) algorithm1 will be shown
to run orders of magnitude faster than currently available im-
plementations, making it feasible (and easy) to use the kt jet
finder for efficiently studying high-multiplicity events.

2. The kt jet-finder

The kt jet finder, in the longitudinally invariant formulation
suitable for hadron colliders, is defined as follows:

(1) For each pair of particles i, j work out the kt distance dij =
min(k2

t i , k
2
tj )R

2
ij with R2

ij = (ηi − ηj )
2 + (φi −φj )

2, where
kti , ηi and φi are the transverse momentum, rapidity and
azimuth of particle i; for each parton i also work out the
beam distance diB = k2

t i .
(2) Find the minimum dmin of all the dij , diB . If dmin is a dij

merge particles i and j into a single particle, summing their
four-momenta (alternative recombination schemes are pos-

1 ‘Jet-algorithm’ is often used in the literature to refer to the choice of the
rules for finding a jet; here instead ‘algorithm’ refers to the translation of a
given set of jet-finding rules into explicit steps on a computer.
sible); if it is a diB then declare particle i to be a final jet
and remove it from the list.

(3) Repeat from step 1 until no particles are left.

There exist extensions of this basic procedure, (a) where dij is
rescaled relative to diB by a user-chosen factor 1/R2 ∼ 1 or (b)
where clustering is stopped when all dij , diB are above a jet
resolution threshold dcut. We here consider only the simplest
version, as given above, but the arguments below are identical
for the general case.

Now we reconsider the above procedure, making explicit the
computational overheads of the various steps as implemented in
standard jet finding codes [22].

(1) Given the initial set of particles, construct a table of all the
dij , diB .

[O(N2) operations, done once.]
(2) Scan the table to find the minimal value dmin of the dij , diB .

[O(N2) operations, done N times.]
(3) Merge or remove the particles corresponding to dmin as ap-

propriate.
[O(1) operations, done N times.]

(4) Update the table of dij , diB to take into account the merging
or removal, and if any particles are left go to step (2).

[O(N) operations, done N times.]

Step (2) dominates, requiring O(N2 × N = N3) operations.2

3. The FastJet algorithm

To obtain a better algorithm we isolate the geometrical as-
pects of the problem, with the help of the following observation.

Lemma. If i, j form the smallest dij , and kti < ktj , then Rij <

Ri� for all � �= j , i.e. j is the geometrical nearest neighbour of
particle i.

Proof. Suppose the lemma is wrong and that there exists a par-
ticle � such that Ri� � Rij : then di� = min(k2

t i , k
2
t�)R

2
i� and

since min(k2
t i , k

2
t�) � k2

t i , we have that di� � dij , in contradic-
tion with the statement that i and j have the smallest dij . �

This means that if we can identify each particle’s geomet-
rical nearest neighbour (in terms of the geometrical Rij dis-
tance), then we need not construct a size-N2 table of dij =
min(k2

t i , k
2
tj )R

2
ij , but only the size-N array, diGi

, where Gi is

i’s geometrical nearest neighbour.3 We can therefore write the
following algorithm:

2 One notes also the storage requirement in step (1) of 4N2 + O(N) bytes
(double precision), which is manageable for N = 1000 but becomes an issue
in heavy-ion environments with up to 50 000 particles. At the (substantial) ex-
pense of recalculating the O(N2) dij at each iteration, the storage issue can be
eliminated.

3 We shall drop ‘geometrical’ in the following, speaking simply of a ‘nearest
neighbour’.
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(1) For each particle i establish its nearest neighbour Gi and
construct the arrays of the diGi

and diB .
(2) Find the minimal value dmin of the diGi

, diB .
(3) Merge or remove the particles corresponding to dmin as ap-

propriate.
(4) Identify which particles’ nearest neighbours have changed

and update the arrays of diGi
and diB . If any particles are

left go to step (2).

This already reduces the problem to one of complexity N2:
for each particle we can find its nearest neighbour by scanning
through all O(N) other particles [O(N2) operations]; calculat-
ing the diGi

, diB requires O(N) operations; scanning through
the diGi

, diB to find the minimal value dmin takes O(N) opera-
tions [to be repeated N times]; and after a merging or removal,
updating the nearest neighbour information will require O(N)

operations [to be repeated N times].4

We note, though, that three steps of this algorithm—initial
nearest neighbour identification, finding dmin at each itera-
tion, and updating the nearest neighbour information at each
iteration—bear close resemblance to problems studied in the
computer science literature and for which efficient solutions are
known:

• Given an ensemble of vertices in a plane (specified by
the ηi and φi of the particles), to find the nearest neigh-
bour of each vertex one can use a structure known as a
Voronoi diagram [23] or its dual, a Delaunay triangulation.
The Voronoi diagram divides the plane into cells (one per
vertex), such that every point in the cell surrounding a ver-
tex i has i as its nearest vertex. The structure is useful for
nearest-neighbour location because the vertex Gi nearest to
vertex to i is always in one of the (few, i.e. O(1)) cells
that share an edge with the cell of vertex i. An example is
shown in Fig. 1. Voronoi diagrams for N points can be con-
structed with O(N lnN) operations (see e.g. [24]), and the
nearest neighbour identification for all N points can then
be performed with a further O(N) operations.

• Dynamic insertion and removal of a point in the Voronoi
diagram, and corresponding updating of all nearest neigh-
bour information, can be performed with O(lnN) opera-
tions [25] (to be repeated N times).

• The array of diGi
changes only by O(1) entries per iter-

ation. Therefore one can represent it with a binary tree
structure, whose construction requires O(N lnN) opera-
tions and in which finding the minimal value, insertion and
removal are all guaranteed to require at most O(lnN). The
binary tree is constructed once at start-up, and there are

4 This last point is not strictly speaking trivial: when particle i is removed or
merged we have to update the nearest neighbour information for all particles
that previously had i as their nearest neighbour—fortunately one can show that
on average, the number of particles that had i as a nearest neighbour is of O(1).
One also needs to establish if any particles acquire the newly created particle �

as their nearest neighbour—this can be done in O(N) time by comparing each
particle’s current nearest neighbour distance with its distance to �.
Fig. 1. The Voronoi diagram for ten random points. The Delaunay triangulation
(red) connecting the ten points is also shown. In this example the points 1, 4, 2,
8 and 3 are the ‘Voronoi’ neighbours of 7, and 3 is its nearest neighbour.

then O(N) updates and searches for the minimum, leading
to a total of O(N lnN) operations.

Therefore both the geometrical and minimum-finding aspects
of the kt jet-finder can be related to known problems whose
solutions require O(N lnN) operations.

4. Timings

The program FastJet5 codes concrete implementations of
the N2 and N lnN algorithms described above. It has been writ-
ten in C++ and for the N lnN case makes use of a number of
pre-existing components. Construction of a Voronoi diagram
is a sufficiently common task (useful in areas of science rang-
ing from astronomy to zoology) that several codes are publicly
available. Of these, the only one that we found that also straight-
forwardly allows the addition and removal of points from a pre-
constructed Voronoi diagram, was the Computational Geometry
Algorithms Library (CGAL) [26], in particular its triangulation
components [27].6 For the binary tree we made use of a (red-
black) balanced tree.7

Fig. 2 shows the running times for the two algorithms in
FastJet as well as for KtJet, a standard implementation
[22] of the N3 algorithm. Our “N2 algorithm” actually departs
slightly from exact N2 behaviour owing to certain further opti-
misations carried out.8 The scaling with N of the Voronoi-based
algorithm has been verified to go as N lnN , as expected. It is
the fastest algorithm only for N � 104, owing to a large coef-
ficient in front of its N lnN behaviour, mostly associated with
the computational geometry tasks. This situation could conceiv-
ably be improved in the future by optimisations of the CGAL
package or by replacing it with a dedicated implementation of
the construction and updating of the Voronoi diagram.

5 Available from http://www.lpthe.jussieu.fr/~salam/fastjet.
6 One issue relates to the fact that we need nearest-neighbour location on

a cylinder (η–φ space) whereas CGAL works on the Euclidean plane. This
problem can solved by making mirror copies of a small (∼ 1/

√
N ) fraction of

the vertices near the 0–2π border.
7 Balanced trees are the basis of the map and set classes in the C++ standard

template library.
8 The coefficient of N2 can be reduced by tiling the plane into rectangles

of edge length � 1. Then for each vertex i one can limit the nearest neighbour
search to its own tile and adjacent tiles—vertices further away will have Rij > 1
and so dij > diB .

http://www.lpthe.jussieu.fr/~salam/fastjet
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Fig. 2. The running times (on a 3 GHz Pentium 4 processor with 1GB of
memory, 512KB of cache, and version 3.4 of the GNU g++ compiler) of the
KtJet [22] and FastJet implementations of the kt -clustering jet-finder ver-
sus the number of initial particles. Different values of N have been obtained
by taking a LHC dijet event with pt � 60 GeV and adding on variable num-
bers of minimum bias events. Both kinds of events have been simulated with
Pythia 6.3 [28].

Fig. 3. The running times of various jet-finders versus the number of initial
particles. JetClu is a widely-used cone-type jet-finder, however it is ‘almost
infrared unsafe’, i.e. perturbative predictions have large logarithmic dependence
on small parameters (e.g. seed threshold) [29,30]. MidPoint [29] is an infrared
safe cone-type jet finder. For both we use code and parameters from CDF [31].
The optimal jet finder [9] (OJF) has been run with Ωcut = 0.15 and a maximum
of 8 jets, so as to produce a final state similar to that returned by the kt and cone
jet-finders and to limit its run time.

The better of the N2 and N lnN algorithms (which can be
selected based on the value of N ) runs at least an order of mag-
nitude faster than the N3 algorithm for all values of N shown,
vastly more at large N .

Fig. 3 compares the running time of our combined N2–
N lnN FastJet implementation of the kt jet-finder with other
jet-finders whose code is publicly available. One sees that it
runs at least an order of magnitude faster than all others (except
the almost IR unsafe JetClu).
5. Perspectives

Since the FastJet algorithm is functionally equivalent to
the standard N3 algorithms used for the kt jet finder till now, the
results of the clustering are of course identical to those of other
implementations. Howewer, its enhanced speed opens up new
ways of using kt clustering in the analysis of high-multiplicity
events.

Historically, one apparent drawback of kt -type jets with re-
spect to cone-type jets in hadron–hadron collisions was consid-
ered to be the larger fluctuations of the areas of the jets defined
by the clustering procedure. Such fluctuations would seem to
make it more difficult to subtract, from the hard event, the en-
ergy coming from the non-perturbative underlying event and
from any additional minimum bias interactions taking place in
the same bunch crossing (pileup).

However, the fluctuations become irrelevant if one can eas-
ily estimate the area of each individual jet. This can be done
on an event-by-event basis, as follows: because of the infrared
safety of the kt jet-finder algorithm, one can add a large number
of extremely soft particles (“ghosts”) to the event without mod-
ifying the properties of the hard jets. After clustering, each jet
will contain a subset of the ghosts, and if the ghosts had a uni-
form density in η and φ, then the number of ghosts in a given
jet will be a measure of its area. In practice we have found that
the use of O(104) ghost particles is necessary to obtain reliable
area estimations. This definition for the area of a kt jet can of
course be implemented with any coding of the jet-finder. It is
however impractical, indeed nearly impossible, to deal with the
required large number of ghost particles without a fast code.

Preliminary studies have shown that with simple assump-
tions about the uniformity of the underlying event and pileup,
one can readily determine its size and subtract it from the hard
jets, leading to good determinations of kinematical quantities
(e.g. invariant masses) in high-luminosity pp collisions, or of
single inclusive jet distributions in Pb–Pb collisions at the LHC.
Full results will be shown in [32].

Two more observations are worth making before closing this
section. They will both be discussed in more detail in [32].

The first is that it can also be interesting to examine alter-
native definitions of jet areas. One option is to make use of the
areas of the Voronoi cells of all the real particles belonging to
a given jet. This definition avoids the need to cluster thousands
of ghost particles together with the real ones. It instead rests
on the geometrical properties of the event, and on the computa-
tional geometry component of the FastJet implementation.

The second observation is that there exist clustering-type jet-
finders other than the kt jet-finder that share a large fraction
of its features (including, of course, infrared safety), and the
possibility of a fast implementation. One such example is the
“Cambridge” jet-finder. It was originally formulated in the con-
text of e+e− collisions in [33] and an inclusive version, adapted
to hadron collisions, was given in [34]. We shall call this inclu-
sive version the Cambridge/Aachen algorithm. It is defined in
the same way as the kt jet-finder at the beginning of Section 2,
but replacing the particle–particle distance by dij = R2

ij /R
2,

and the particle–beam distance by diB = 1. We shall show in
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[32] that the Cambridge/Aachen jet-finder has smaller average
areas than the kt jet-finder, making it perhaps even better suited
for jet studies in high-multiplicity environments.

6. Conclusions

To conclude, we have identified an unexpected relation be-
tween clustering type jet-finders and a widely studied problem
in computational geometry. The resulting reduction of the com-
plexity of the kt jet-finding problem, from N3 to N lnN , opens
up the previously inconceivable option of using the kt jet-finder
for the large values of N that arise when considering all cells
of a finely segmented calorimeter and for heavy-ion events. For
moderate N , the one or two orders of magnitude in speed that
we gain with a related N2 approach pave the way to much wider
use of the kt jet finder for normal hadron-collider jet studies, es-
pecially at the LHC. More generally, the speed gains discussed
in this Letter also suggest novel ways of using the kt jet finder,
which are the subject of ongoing investigation. One example,
given in Section 5, is the determination of jet areas, knowledge
of which is crucial for optimal subtraction of pileup contamina-
tion in high luminosity environments.
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