Minimal blocks of points with weight divisible by p over GF (p)

Joseph P.S. Kung ${ }^{1}$
Department of Mathematics, University of North Texas, Denton, TX 76203, USA

A R TICLE I N F O

Article history:

Available online 15 September 2012
Dedicated to Geoff Whittle on his 60th birthday

MSC:

05B35
11 T99
15A06
Keywords:
Critical problem
Minimal block
Chevalley-Warning theorem

Abstract

We construct three families of minimal blocks over $\operatorname{GF}(p)$ where p is an odd prime. For example, we show that the points in rank$(2 p-1)$ projective space $\operatorname{PG}(2 p-2, p)$ with p coordinates equal to 1 and $p-1$ coordinates equal to 0 form a minimal 1-block over $\mathrm{GF}(p)$. The proofs use the Chevalley-Warning theorem about the number of zeros of polynomials over finite fields.

© 2012 Elsevier Inc. All rights reserved.

1. Minimal blocks

A k-block M over the finite field $G F(q)$ can be defined as a set of points in a projective space $\operatorname{PG}(n-1, q)$ over $\operatorname{GF}(q)$ such that every codimension-k subspace in $\operatorname{PG}(n-1, q)$ contains at least one point in M. Equivalently, M is a k-block if for any system of k homogeneous linear equations

$$
\begin{equation*}
a_{j 1} x_{1}+a_{j 2} x_{2}+\cdots+a_{j n} x_{n}=0, \quad 1 \leqslant j \leqslant k \tag{1.1}
\end{equation*}
$$

there is a (nonzero) solution lying in M. The k-block M is minimal if for every point z in M, there exists at least one codimension- k subspace U in $\operatorname{PG}(n-1, q)$ such that $U \cap M=\{z\}$. Such a subspace is called a tangent of z. The theory of minimal blocks was initiated by Tutte in [7], in 1966. Brief

[^0]accounts of the theory of minimal blocks (in particular, the fact that for a given q, being a minimal block over $\mathrm{GF}(q)$ depends only on the matroid structure) can be found in $[5,6]$.

Let q be a prime power and $e_{1}, e_{2}, \ldots, e_{n}$ be a chosen basis of $\operatorname{PG}(n-1, q)$. Let z be a point in $\operatorname{PG}(n-1, q)$. Then up to a nonzero factor, z can be expressed uniquely as a nonzero linear combination $z=\sum_{i=1}^{n} z_{i} e_{i}$ or $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$. Its support $\operatorname{supp}(z)$ (relative to the chosen basis) is the set $\left\{i: z_{i} \neq 0\right\}$ and its (Hamming) weight weight (z) is the size of its support. As the origin is deleted when constructing a projective geometry, points always have positive weight. If $I \subseteq\{1,2, \ldots, n\}$, let

$$
e[I]=\sum_{i: \in I} e_{i} .
$$

Let α divide $q-1$ and $B(q ; n, s, \alpha)$ be the set of points z in $\operatorname{PG}(n-1, q)$ such that weight $(z)=s$ and there exists a nonzero element a in $\operatorname{GF}(q)$ such that every nonzero coordinate in ($a z_{1}, a z_{2}, \ldots, a z_{n}$) satisfies the condition $\left(a z_{i}\right)^{\alpha}=1$, or equivalently, $a z_{i}$ has order dividing α in the multiplicative group $\mathrm{GF}(q)^{\times}$. For example, since the only element in $\operatorname{GF}(q)^{\times}$of order 1 is the identity 1 ,

$$
B(q ; n, s, 1)=\{e[I]:|I|=s\},
$$

the set of points with exactly s coordinates equal to 1 and the other coordinates equal to 0 . At the other extreme, by Fermat's little theorem for finite fields, every element has order dividing $q-1$. Hence,

$$
B(q ; n, s, q-1)=\{z: \text { weight }(z)=s\},
$$

the set of all points having weight exactly s. For an example of a set in the middle, let q be odd. Then $B(q ; n, s, 2)$ is the set of points expressible as a vector u such that weight $(u)=s$ and the nonzero coordinates in u equal 1 or -1 . We are also interested in unions of $B(p ; n, s, \alpha)$. Let

$$
\tilde{B}(p ; n, \alpha)=\bigcup_{i=1}^{\lfloor n / p\rfloor} B(p ; n, i p, \alpha) ;
$$

that is, $\tilde{B}(p ; n, \alpha)$ is the set of points $\operatorname{PG}(n-1, p)$ satisfying the same order condition on its nonzero coordinates as $B(p ; n, s, \alpha)$ with weight not equal to 0 and divisible by p.

We will prove the following theorems.
Theorem 1.1. Let p be a prime and m be a positive integer. If $n \geqslant p+m(p-1) / \alpha$, then $\tilde{B}(p ; n, \alpha)$ is an m-block. In particular, $B(p ; 2 p-1, p, \alpha)$ is an α-block and $\tilde{B}(p ; \gamma p-1, p-1)$ is $a((\gamma-1) p-1)$-block.

Theorem 1.2. Let p be an odd prime. Then
(a) $B(p ; 2 p-1, p, 1)$ is a minimal 1 -block,
(b) $B(p ; 2 p-1, p, 2)$ is a minimal 2-block,
(c) $\tilde{B}(p ; \gamma p-1, p-1)$ is a minimal $((\gamma-1) p-1)$-block.

Since $B(p ; 2 p-1, p, 1)$ is contained in the codimension-1 subspace or hyperplane defined by the equation $x_{1}+x_{2}+\cdots+x_{2 p-1}=0$, it does not span $\operatorname{PG}(2 p-2, p)$. It is easy to show that $B(p ; 2 p-1$, $p, 1)$ has rank $2 p-2$. The other two blocks, $B(p ; 2 p-1, p, 2)$ and $\tilde{B}(p ; \gamma p-1, p-1)$, span their ambient projective space when p is odd. Note that $B(2 ; 3,2,1)=\{(1,1,0),(1,0,1),(0,1,1)\}$ and its matroid is $U_{2,3}$, the 3 -point line. Hence, $B(2 ; 3,2,1)$ is a tangential 1-block over $\operatorname{GF}(2)$. Results for finite fields of characteristic 2 similar to those in this paper have appeared in [6].

2. Solving polynomial equations over finite fields

To prove Theorem 1.1, we will use the Chevalley-Warning theorem [2,8] from number theory. This theorem is elementary and an accessible self-contained exposition of this theorem can be found in [4], p. 143.

The Chevalley-Warning theorem. For $1 \leqslant i \leqslant t$, let $f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a polynomial in n variables of total degree d_{i}, with no constant term, having coefficients in the finite field $\operatorname{GF}(q)$. If $n>\sum_{i=1}^{t} d_{i}$, then the polynomial equations $f_{1}=0, f_{2}=0, \ldots, f_{t}=0$ have at least two common solutions over $\mathrm{GF}(q)^{n}$. In particular, the polynomial equations have a common solution not equal to the origin.

Proof of Theorem 1.1. We begin with a lemma.

Lemma 2.1. Let α divide $p-1$ and $\left[a_{j i}\right]_{1 \leqslant j \leqslant m, 1 \leqslant i \leqslant n}$ be an $m \times n$ matrix over $\mathrm{GF}(p)$. If the polynomial equations

$$
\begin{equation*}
a_{j 1} x_{1}^{(p-1) / \alpha}+a_{j 2} x_{2}^{(p-1) / \alpha}+\cdots+a_{j n} x_{n}^{(p-1) / \alpha}=0, \quad 1 \leqslant j \leqslant m, \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{1}^{p-1}+x_{2}^{p-1}+\cdots+x_{n}^{p-1}=0 \tag{2.2}
\end{equation*}
$$

have a common nonzero solution $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ in $\operatorname{GF}(p)^{n}$, then the system of linear equations

$$
\begin{equation*}
a_{j 1} x_{1}+a_{j 2} x_{2}+\cdots+a_{j n} x_{n}=0, \quad 1 \leqslant j \leqslant m \tag{2.3}
\end{equation*}
$$

has a nonzero solution $\left(z_{1}^{\prime}, z_{2}^{\prime}, \ldots, z_{n}^{\prime}\right)$ in $\operatorname{GF}(p)^{n}$ with weight congruent to 0 modulo p and each nonzero coordinate z_{i}^{\prime} having order dividing α in $\mathrm{GF}(p)^{\times}$.

Proof. Let $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ and $z^{\prime}=\left(z_{1}^{(p-1) / \alpha}, z_{2}^{(p-1) / \alpha}, \ldots, z_{n}^{(p-1) / \alpha}\right)$. Note that z and z^{\prime} have the same support. Suppose that z is a nonzero common solution of the polynomial Eqs. (2.1). Then z^{\prime} is a nonzero solution of the system (2.3) of linear equations.

Since z is a nonzero solution of Eq. (2.2) and z_{i}^{p-1} equals 1 when $z_{i} \neq 0$ and 0 if $z_{i}=0$, $\left(z_{1}^{p-1}, z_{2}^{p-1}, \ldots, z_{n}^{p-1}\right)$ is a solution with coordinates equal to 0 or 1 of the equation

$$
x_{1}+x_{2}+\cdots+x_{n}=0
$$

The only such solutions are $e[I]$, where $I=\operatorname{supp}(z)$ and $|I| \equiv 0 \bmod p$. Since $\operatorname{supp}\left(z^{\prime}\right)=\operatorname{supp}(z)$, we conclude that

$$
\left|\operatorname{supp}\left(z^{\prime}\right)\right|=|I| \equiv 0 \quad \bmod p
$$

To finish the proof, observe that if $z_{i} \neq 0$, then $\left(z_{i}^{(p-1) / \alpha}\right)^{\alpha}=z_{i}^{p-1}=1$. Hence, every nonzero coordinate z_{i}^{\prime} in z satisfies $\left(z_{i}^{\prime}\right)^{\alpha}=1$.

Returning to the proof of Theorem 1.1, let $n>m(p-1) / \alpha+p-1$. Then the Chevalley-Warning theorem implies that there exists a nonzero solution of the polynomial equations, and hence, a solution in $\tilde{B}(p ; n, \alpha)$ of the system (2.3) of linear equations. We conclude that $\tilde{B}(p ; n, \alpha)$ is an m-block.

Proof of Theorem 1.2. We construct a tangent for each point in the 1-block $B(p ; 2 p-1, p, 1)$. Let $I \subseteq\{1,2, \ldots, 2 p-1\}$ and $|I|=p$. Consider the hyperplane H defined by the linear equation

$$
\begin{equation*}
\sum_{i: i \in I} x_{i}=0 . \tag{2.4}
\end{equation*}
$$

Since $e[I]$ is a solution of Eq. (2.4), $e[I] \in H$. To finish, suppose that $e[J]$ is another point in $B(p ; 2 p-1, p, 1)$. Then $|J|=p, J \neq I$, and hence, $1 \leqslant|I \cap J| \leqslant p-1$. In particular, $e[J]$ is not a solution to Eq. (2.4) and $e[J] \notin H$.

Next, we prove (b) by constructing a tangent for each point z in the 2 -block $B(p ; 2 p-1, p, 2)$. The points in this block have p nonzero coordinates equal to 1 or -1 , and $p-1$ coordinates equal to 0 's. Since $B(p ; 2 p-1, p, 2)$ is invariant under a permutation of coordinates, we may assume that z has the form

$$
(1,1, \ldots, 1,-1,-1, \ldots,-1,0,0, \ldots, 0)
$$

where there are $c 1$'s, $d-1$'s, and $c+d=p$. Consider the codimension- 2 subspace U defined by the two linear equations

$$
\begin{equation*}
\left(\sum_{i=1}^{c} x_{i}\right)-\left(\sum_{i=c+1}^{p} x_{i}\right)=0 \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=p+1}^{2 p-1} x_{i}=0 \tag{2.6}
\end{equation*}
$$

Then $z \in U$. Suppose that y is another point in $B(p ; 2 p-1, p, 2)$. Suppose, in addition, that its support is $\{1,2, \ldots, p\}$. Then the product $y_{i} z_{i}$, where y_{i} and z_{i} are respectively the i-th coordinates of y and z, equals 1 or -1 . Consider the sum $y_{1} z_{1}+y_{2} z_{2}+\cdots+y_{p} z_{p}$. Since $y \neq z$, there is at least one 1 and one -1 amongst the products $y_{i} z_{i}$. Since p is odd and the sum is over p terms, the sum is nonzero modulo p and y is not a solution of Eq. (2.5). Hence, $y \notin U$.

Now suppose that $\operatorname{supp}(y) \neq\{1,2, \ldots, p\}$. Let $J=\operatorname{supp}(y) \cap\{1,2, \ldots, p\}$ and $J^{*}=\operatorname{supp}(y) \cap$ $\{p+1, p+2, \ldots, 2 p-1\}$. Since y is a solution to Eq. (2.5), $|J|$ is even. This implies $\left|J^{*}\right|$ is odd. Since $\left|J^{*}\right|<p$ and y has nonzero coordinates equal to 1 or $-1, y$ is not a solution to Eq. (2.6). Hence, $y \notin U$. We conclude that z is the only point in $B(p ; 2 p-1, p, 2)$ in U.

To prove (c), we construct a tangent for each point z in the $((\gamma-1) p-1)$-block $\tilde{B}(p ; \gamma p-1, p-1)$. Permuting coordinates, it suffices to consider a point z of the form

$$
\left(a_{1}, a_{2}, \ldots, a_{t p}, 0,0, \ldots, 0\right)
$$

where $a_{i} \neq 0$ and $1 \leqslant t \leqslant \gamma-1$. Let W be the codimension- $((\gamma-1) p-1)$ subspace defined by the system of $(\gamma-1) p-1$ linear equations

$$
\begin{equation*}
a_{j+1} x_{j}-a_{j} x_{j+1}=0, \quad 1 \leqslant j \leqslant t p-1, \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{k}=0, \quad k \in K, \tag{2.8}
\end{equation*}
$$

where $K \subseteq\{t p+1, t p+2, \ldots, \gamma p-1\}$ and $|K|=(\gamma-1-t) p$. For example, we may take $K=\{t p+1$, $t p+2, \ldots,(\gamma-1) p\}$. It is easily checked that $z \in W$.

Let y be a point in $\tilde{B}(p ; \gamma p-1, p-1)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{\gamma p-1}\right)$. There are several cases depending on $\operatorname{supp}(y)$. Suppose first that $\{1,2, \ldots, t p\} \nsubseteq \operatorname{supp}(y)$. Then there is at least one index i, $1 \leqslant i \leqslant t p$ such that exactly one of the indices i or $i+1$ is in $\operatorname{supp}(y)$. If y is a solution of Eqs. (2.7), then the i-th linear equation implies that both y_{i} and y_{i+1} are zero, a contradiction. Hence $y \notin W$.

We may now suppose that $\{1,2, \ldots, t p\} \subseteq \operatorname{supp}(y)$. If $\operatorname{supp}(y)=\{1,2, \ldots, t p\}$, then Eqs. (2.7) imply that y is a nonzero multiple of z, that is, y and z represent the same point in $\operatorname{PG}(\gamma p-2, p)$. If $\{1,2, \ldots, t p\} \subset \operatorname{supp}(y)$, then there are at least p indices in $\operatorname{supp}(y)$ and $|\operatorname{supp}(y) \cap K| \geqslant 1$. In particular, there exists an index i in $\operatorname{supp}(y) \cap K$. If $y \in W$, then Eqs. (2.8) imply that $y_{i}=0$, a contradiction. We conclude that $y \notin W$. Having covered all possible cases, we conclude that z is the unique point in $\tilde{B}(p ; \gamma p-1, p-1)$ in W.

To say that $B(p ; 2 p-1, p, 1)$ is a 1 -block is equivalent to saying that in any sequence of length $2 p-1$ with terms in $\operatorname{GF}(p)$, there is a subsequence of length p whose terms sum to zero. This was proved earlier in [3] (by elementary means) and [1] (using the Chevalley-Warning theorem). In [3], the general result, with the additive group of $\operatorname{GF}(p)$ replaced by a finite abelian group, was proved. (As [3] is not easily accessible, we note that the "multiplication" argument given in [1] works over an abelian group as well.) The general result, applied to the additive group of $\mathrm{GF}(q)$, implies that for a prime power $q, B(q ; 2 q-1, q, 1)$ is a 1 -block over $\operatorname{GF}(q)$.

Our method can be used to obtained other kinds of blocks. We will give one example. Recall that an element a of $\operatorname{GF}(p)$ is a quadratic residue (respectively, nonresidue) if $a \neq 0$ and there exists an element r in $\operatorname{GF}(p)$ such that $r^{2}=a$ (respectively, if $r^{2} \neq a$ for all r in $\left.\operatorname{GF}(p)\right)$. For $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ a point in $\operatorname{GF}(p)^{n}$, let q_{0} (respectively, q_{1}) be thenumber of coordinates z_{i} that are quadratic residues (respectively, nonresidues). Let $Q(p ; n)$ be the set of points z in $\operatorname{PG}(n-1, p)$ such that when expressed as a linear combination of the chosen basis, $q_{0}-q_{1} \equiv 0 \bmod p$.

Theorem 2.2. Let p be an odd prime and $n>m+(p-1) / 2$. Then $Q(p ; n)$ is an m-block.
Proof. We use Euler's theorem that if $a \neq 0$, then a is a quadratic residue if $a^{(p-1) / 2}=1$ and a quadratic nonresidue if $a^{(p-1) / 2}=-1$. Thus a point z is in $Q(p ; n)$ if and only if z is a solution to the polynomial equation

$$
\begin{equation*}
x_{1}^{(p-1) / 2}+x_{2}^{(p-1) / 2}+\cdots+x_{n}^{(p-1) / 2}=0 \tag{2.9}
\end{equation*}
$$

By the Chevalley-Warning theorem, Eqs. (2.3) and (2.9) have a common nonzero solution. The proposition now follows.

3. Blocks from projective algebraic varieties

That the set $\tilde{B}(p ; \gamma p-1, p-1)$ is a $((\gamma-1) p-1)$-block is a special case of a general theorem. A polynomial $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with coefficients in $\operatorname{GF}(q)$ is homogeneous if there exists an integer d such that for all elements λ in $\operatorname{GF}(q), f\left(\lambda x_{1}, \lambda x_{2}, \ldots, \lambda x_{n}\right)=\lambda^{d} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Let $f_{j}\left(x_{1}, x_{2}, \ldots, x_{n}\right), 1 \leqslant j \leqslant t$, be a set of homogeneous polynomials in n variables with coefficients in $\mathrm{GF}(q)$. The (projective algebraic) variety $\operatorname{Var}\left(f_{j}\right)$ is the set of points $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ in $\operatorname{PG}(n-1, q)$ such that $f_{j}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=0$ for all $j, 1 \leqslant j \leqslant t$.

Theorem 3.1. Let $f_{j}, 1 \leqslant j \leqslant t$, be a set of homogeneous polynomials with f_{j} having total degree d_{i} and coefficients in $\mathrm{GF}(q)$. If $n>m+\sum_{i=1}^{t} d_{i}$, then $\operatorname{Var}\left(f_{j}\right)$ in $\operatorname{PG}(n-1, q)$ is an m-block over $\operatorname{GF}(q)$.

Theorem 3.1 gives an insight into the q-cone (also known as the q-lift) construction of Geoff Whittle [9]. Let $B=\operatorname{Var}\left(f_{j}\right)$ and $B^{\#}$ be the variety defined by the same polynomials f_{j} (but in the
variables $\left.x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right)$ in $\operatorname{PG}(n, q)$, the projective space of one higher dimension. Since the variable x_{n+1} does not appear in any of the polynomials f_{j}, the points in $B^{\#}$ are the points in $\operatorname{PG}(n, q)$ of the form $\left(z_{1}, z_{2}, \ldots, z_{n}, z_{n+1}\right)$, where $\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in B$ and $z_{n+1} \in \operatorname{GF}(q)$, together with the point $(0,0, \ldots, 0,1)$. Thus, $B^{\#}$ is the q-cone of B as defined in [9]. Note that $B^{\#}$ is an ($m+1$)-block. This follows from a general result in [9] holding for all q-cones, or from Theorem 3.1 and the observation that since the number of variables increases from n to $n+1, n+1>(m+1)+\sum_{i=1}^{t} d_{i}$.

Acknowledgments

I thank Bruce Richter for telling me about the papers [1,3].

References

[1] C. Bailey, R.B. Richter, Sum zero (mod n), size n subsets of integers, Amer. Math. Monthly 96 (1989) 240-242.
[2] C. Chevalley, Démonstration d'une hypothése de M. Artin, Abh. Math. Semin. Univ. Hambg. 11 (1936) 73-75.
[3] P. Erdős, A. Ginzburg, A. Ziv, A theorem in additive number theory, Bull. Res. Counc. Isr., Sect. F 10 (1961) 41-43.
[4] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, 2nd edition, Springer, New York, Berlin, 1990.
[5] J.P.S. Kung, Critical problems, in: J. Bonin, J.G. Oxley, B. Servatius (Eds.), Matroid Theory, Amer. Math. Soc., Providence, RI, 1996, pp. 1-127.
[6] J.P.S. Kung, Minimal blocks of binary even-weight vectors, Linear Algebra Appl. 416 (2006) 288-297.
[7] W.T. Tutte, On the algebraic theory of graph colorings, J. Combin. Theory 1 (1966) 15-50.
[8] E. Warning, Bemerkung zur vorstehenden Arbeit von herrn Chevalley, Abh. Math. Semin. Univ. Hambg. 11 (1936) 76-83.
[9] G.P. Whittle, q-Lifts of tangential k-blocks, J. Lond. Math. Soc. (2) 39 (1989) 9-15.

[^0]: E-mail address: kung@unt.edu.
 1 Supported by the National Security Agency under grant H98230-11-1-0183.

