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1. Minimal blocks

A k-block M over the finite field GF(q) can be defined as a set of points in a projective space
PG(n — 1, q) over GF(q) such that every codimension-k subspace in PG(n — 1, q) contains at least one
point in M. Equivalently, M is a k-block if for any system of k homogeneous linear equations

ajix1 +ajppx2 4+ +ajpxn =0, 1< j<k, (1.1)

there is a (nonzero) solution lying in M. The k-block M is minimal if for every point z in M, there
exists at least one codimension-k subspace U in PG(n — 1, q) such that U N M = {z}. Such a subspace
is called a tangent of z. The theory of minimal blocks was initiated by Tutte in [7], in 1966. Brief
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accounts of the theory of minimal blocks (in particular, the fact that for a given g, being a minimal
block over GF(q) depends only on the matroid structure) can be found in [5,6].

Let g be a prime power and eq,e>,...,e, be a chosen basis of PG(n — 1,q). Let z be a point in
PG(n — 1, q). Then up to a nonzero factor, z can be expressed uniquely as a nonzero linear combina-
tion z = 2?21 zie; or z=(z1, 22, ...,2n). Its support supp(z) (relative to the chosen basis) is the set
{i: z; #0} and its (Hamming) weight weight(z) is the size of its support. As the origin is deleted when
constructing a projective geometry, points always have positive weight. If I € {1, 2,...,n}, let
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Let o divide ¢ — 1 and B(q; n, s, ) be the set of points z in PG(n — 1, q) such that weight(z) =s and
there exists a nonzero element a in GF(q) such that every nonzero coordinate in (azi,az, ..., az,)
satisfies the condition (az;)® =1, or equivalently, az; has order dividing « in the multiplicative group
GF(q)*. For example, since the only element in GF(q)* of order 1 is the identity 1,

B(g;n,s, 1) ={e[l]: |I| =s},

the set of points with exactly s coordinates equal to 1 and the other coordinates equal to 0. At the
other extreme, by Fermat’s little theorem for finite fields, every element has order dividing q — 1.
Hence,

B(g;n,s,q — 1) = {z: weight(z) =s},

the set of all points having weight exactly s. For an example of a set in the middle, let g be odd. Then
B(q;n,s,2) is the set of points expressible as a vector u such that weight(u) = s and the nonzero
coordinates in u equal 1 or —1. We are also interested in unions of B(p;n,s, o). Let

) Ln/p)
B(p;n.a)= | B(p;n,ip,@);
i=1

that is, B(p; n, ) is the set of points PG(n — 1, p) satisfying the same order condition on its nonzero
coordinates as B(p;n, s, ) with weight not equal to 0 and divisible by p.
We will prove the following theorems.

Theorem 1.1. Let p be a prime and m be a positive integer. If n > p +m(p — 1)/, then B(p;n, ) is an
m-block. In particular, B(p; 2p — 1, p, &) is an a-block and B(p; yp —1,p — 1) isa ((y — 1)p — 1)-block.

Theorem 1.2. Let p be an odd prime. Then

(a) B(p;2p — 1, p, 1) is a minimal 1-block,
(b) B(p;2p —1, p, 2) is a minimal 2-block,
(c) B(p; yp—1,p—1)isaminimal ((y — 1)p — 1)-block.

Since B(p;2p — 1, p, 1) is contained in the codimension-1 subspace or hyperplane defined by the
equation x1 +xp +---+X2p_1 =0, it does not span PG(2p — 2, p). It is easy to show that B(p;2p —1,
p, 1) has rank 2p — 2. The other two blocks, B(p;2p — 1, p,2) and B(p;yp — 1, p — 1), span their
ambient projective space when p is odd. Note that B(2;3,2,1) ={(1,1,0), (1,0, 1), (0,1, 1)} and its
matroid is Uy 3, the 3-point line. Hence, B(2;3,2,1) is a tangential 1-block over GF(2). Results for
finite fields of characteristic 2 similar to those in this paper have appeared in [6].



J.PS. Kung / Advances in Applied Mathematics 50 (2013) 69-74 71

2. Solving polynomial equations over finite fields

To prove Theorem 1.1, we will use the Chevalley-Warning theorem [2,8] from number theory. This
theorem is elementary and an accessible self-contained exposition of this theorem can be found in [4],
p. 143.

The Chevalley-Warning theorem. For1 <i <t, let fij(x1, X2, ..., X) be a polynomial in n variables of total
degree d;, with no constant term, having coefficients in the finite field GF(q). Ifn > Zle d;, then the polyno-
mial equations f1 =0, f, =0, ..., fy = 0 have at least two common solutions over GF(q)". In particular, the
polynomial equations have a common solution not equal to the origin.

Proof of Theorem 1.1. We begin with a lemma.

Lemma 2.1. Let « divide p — 1 and [ajil1<j<m,1<i<n be an m x n matrix over GF(p). If the polynomial
equations

aﬂxgp_l)/a +aj2x§p_1)/“ +"'+aan,E,p_])/a =0, 1<j<m, (2.1)
and
xf71+x§71+---+x57]:0 (2.2)
have a common nonzero solution (z1, z2, . .., zn) in GF(p)", then the system of linear equations
ajix1 +apxa+---+apx, =0, 1<j<m, (2.3)
has a nonzero solution (2}, 2,, ..., z;) in GF(p)" with weight congruent to 0 modulo p and each nonzero

coordinate z; having order dividing o in GF(p)*.

Proof. Let z = (z1,23,...,2q) and Z' = (zgpfl)/a,zépq)/a, ..., zP7D/%) Note that z and z’ have the
same support. Suppose that z is a nonzero common solution of the polynomial Egs. (2.1). Then Z’ is a
nonzero solution of the system (2.3) of linear equations.

Since z is a nonzero solution of Eq. (2.2) and zf’_l equals 1 when z; #0 and 0 if z; =0,
(zf_],zg_l, e zf,’_1) is a solution with coordinates equal to 0 or 1 of the equation

X1+x+--+x=0.

The only such solutions are e[I], where I = supp(z) and |I| =0 mod p. Since supp(z’) = supp(z), we
conclude that

|supp(Z')|=111=0 mod p.

To finish the proof, observe that if z; # 0, then (zfp_l)/“)“ = zlp—1 = 1. Hence, every nonzero coordi-
nate z; in z satisfies (z)*=1. O

Returning to the proof of Theorem 1.1, let n > m(p — 1)/ +p — 1. Then the Chevalley-Warning the-
orem implies that there exists a nonzero solution of the polynomial equations, and hence, a solution
in B(p; n, @) of the system (2.3) of linear equations. We conclude that B(p;n, @) is an m-block. O
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Proof of Theorem 1.2. We construct a tangent for each point in the 1-block B(p;2p — 1, p,1). Let
1<{1,2,...,2p—1} and |I| = p. Consider the hyperplane H defined by the linear equation

> xi=0. (2.4)

iriel

Since e[I] is a solution of Eq. (2.4), e[I] € H. To finish, suppose that e[]] is another point in
B(p;2p —1,p,1). Then |J|=p, J#1, and hence, 1 < |IN J| < p — 1. In particular, e[J] is not a
solution to Eq. (2.4) and e[J] ¢ H.

Next, we prove (b) by constructing a tangent for each point z in the 2-block B(p;2p —1, p, 2). The
points in this block have p nonzero coordinates equal to 1 or —1, and p — 1 coordinates equal to 0’s.
Since B(p;2p — 1, p,2) is invariant under a permutation of coordinates, we may assume that z has
the form

a,1,...,1,-1,-1,...,-1,0,0,...,0),

where there are ¢ 1's, d —1's, and ¢ + d = p. Consider the codimension-2 subspace U defined by the
two linear equations
C p
(Zx,-) _( 3 x,»> o 25)
i=1 i=c+1

2p—1

Z x;i =0. (2.6)

i=p+1

and

Then z € U. Suppose that y is another point in B(p; 2p—1, p, 2). Suppose, in addition, that its support
is {1,2, ..., p}. Then the product y;z;, where y; and z; are respectively the i-th coordinates of y and z,
equals 1 or —1. Consider the sum y1z1 4+ y222 +--- + ypZzp. Since y # z, there is at least one 1 and
one —1 amongst the products y;z;. Since p is odd and the sum is over p terms, the sum is nonzero
modulo p and y is not a solution of Eq. (2.5). Hence, y ¢ U.

Now suppose that supp(y) # {1,2,...,p}. Let J =supp(y) N {1,2,...,p} and J* = supp(y) N
{p+1,p+2,...,2p — 1}. Since y is a solution to Eq. (2.5), |J| is even. This implies |J*| is odd.
Since |J*| < p and y has nonzero coordinates equal to 1 or —1, y is not a solution to Eq. (2.6).
Hence, y ¢ U. We conclude that z is the only point in B(p;2p —1, p,2) in U.

To prove (c), we construct a tangent for each point z in the ((y —1)p —1)-block B(p; yp—1,p—1).
Permuting coordinates, it suffices to consider a point z of the form

(ay,az,...,a,,0,0,...,0)

where a; #0 and 1 <t <y — 1. Let W be the codimension-((y — 1)p — 1) subspace defined by the
system of (y —1)p — 1 linear equations

aj1Xj—ajxjp1 =0, 1<j<tp—1, (2.7)

and

x=0, kek, (2.8)
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where K C{tp+1,tp+2,...,yp—1} and |K|=(y — 1 —1t)p. For example, we may take K = {tp + 1,
tp+2,...,(y — Dp}. It is easily checked that ze W.

Let y be a point in B(p; yp—1,p—1 and y = (¥1,y2,...,Yyp—1). There are several cases de-
pending on supp(y). Suppose first that {1,2,...,tp} € supp(y). Then there is at least one index i,
1 <i < tp such that exactly one of the indices i or i + 1 is in supp(y). If y is a solution of Egs. (2.7),
then the i-th linear equation implies that both y; and y;y; are zero, a contradiction. Hence y ¢ W.

We may now suppose that {1,2,...,tp} C supp(y). If supp(y) ={1,2,...,tp}, then Egs. (2.7) im-
ply that y is a nonzero multiple of z, that is, y and z represent the same point in PG(yp — 2, p). If
{1,2,...,tp} C supp(y), then there are at least p indices in supp(y) and |supp(y)NK| > 1. In particu-
lar, there exists an index i in supp(y) N K. If y € W, then Egs. (2.8) imply that y; =0, a contradiction.
We conclude that y ¢ W. Having covered all possible cases, we conclude that z is the unique point
in E(p;yp—],p—]) inW. O

To say that B(p;2p — 1, p, 1) is a 1-block is equivalent to saying that in any sequence of length
2p — 1 with terms in GF(p), there is a subsequence of length p whose terms sum to zero. This was
proved earlier in [3] (by elementary means) and [1] (using the Chevalley-Warning theorem). In [3],
the general result, with the additive group of GF(p) replaced by a finite abelian group, was proved.
(As [3] is not easily accessible, we note that the “multiplication” argument given in [1] works over an
abelian group as well.) The general result, applied to the additive group of GF(q), implies that for a
prime power q, B(q;2q —1,q, 1) is a 1-block over GF(q).

Our method can be used to obtained other kinds of blocks. We will give one example. Recall that
an element a of GF(p) is a quadratic residue (respectively, nonresidue) if a # 0 and there exists an
element r in GF(p) such that r? = a (respectively, if r> # a for all r in GF(p)). For (z1,22,...,2,) a
point in GF(p)", let qo (respectively, q1) be thenumber of coordinates z; that are quadratic residues
(respectively, nonresidues). Let Q (p; n) be the set of points z in PG(n—1, p) such that when expressed
as a linear combination of the chosen basis, gg — g1 =0 mod p.

Theorem 2.2. Let p be an odd prime andn > m + (p — 1)/2. Then Q (p; n) is an m-block.

Proof. We use Euler’s theorem that if a # 0, then a is a quadratic residue if a? /2 =1 and a
quadratic nonresidue if a®®~1/2 = —1. Thus a point z is in Q (p;n) if and only if z is a solution to the
polynomial equation

(p=1)/2

(p—1)/2
X1

+X2 +~--+X,(,p_])/2:0. (2.9)

By the Chevalley-Warning theorem, Eqs. (2.3) and (2.9) have a common nonzero solution. The propo-
sition now follows. 0O

3. Blocks from projective algebraic varieties

That the set B(p;yp —1,p — 1) is a ((y — 1)p — 1)-block is a special case of a general

theorem. A polynomial f(xq,x3,...,%;) with coefficients in GF(q) is homogeneous if there exists
an integer d such that for all elements A in GF(q), f(AX1,AX2,...,A%:) = A4f(x1,X2,...,Xn). Let
fi(X1,x%2,...,%7), 1 < j < t, be a set of homogeneous polynomials in n variables with coefficients

in GF(q). The (projective algebraic) variety Var(f;) is the set of points (z1,23,...,2;) in PG(n —1,q)
such that fj(z1,23,...,zp) =0 forall j, 1< j<t.

Theorem 3.1. Let f;, 1 < j <t, be a set of homogeneous polynomials with f; having total degree d; and
coefficients in GF(q). Ifn > m + Zgzl d;, then Var(f;) in PG(n — 1, q) is an m-block over GF(q).

Theorem 3.1 gives an insight into the g-cone (also known as the g-lift) construction of Geoff
Whittle [9]. Let B = Var(f;) and B* be the variety defined by the same polynomials fj (but in the
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variables x1, X2, ..., Xp, Xp+1) in PG(n, q), the projective space of one higher dimension. Since the vari-
able xp41 does not appear in any of the polynomials f;, the points in B* are the points in PG(n, q)
of the form (z1, 2, ..., zy, Zn+1), Where (21,22, ...,2z,) € B and z,41 € GF(q), together with the point
(0,0,...,0,1). Thus, B* is the g-cone of B as defined in [9]. Note that B¥ is an (m + 1)-block. This
follows from a general result in [9] holding for all g-cones, or from Theorem 3.1 and the observation
that since the number of variables increases fromnton+1, n+1>@m+1) + Z§=1 d;.
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