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We construct three families of minimal blocks over GF(p) where
p is an odd prime. For example, we show that the points in rank-
(2p − 1) projective space PG(2p − 2, p) with p coordinates equal
to 1 and p − 1 coordinates equal to 0 form a minimal 1-block over
GF(p). The proofs use the Chevalley–Warning theorem about the
number of zeros of polynomials over finite fields.
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1. Minimal blocks

A k-block M over the finite field GF(q) can be defined as a set of points in a projective space
PG(n − 1,q) over GF(q) such that every codimension-k subspace in PG(n − 1,q) contains at least one
point in M. Equivalently, M is a k-block if for any system of k homogeneous linear equations

a j1x1 + a j2x2 + · · · + a jnxn = 0, 1 � j � k, (1.1)

there is a (nonzero) solution lying in M. The k-block M is minimal if for every point z in M, there
exists at least one codimension-k subspace U in PG(n − 1,q) such that U ∩ M = {z}. Such a subspace
is called a tangent of z. The theory of minimal blocks was initiated by Tutte in [7], in 1966. Brief
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accounts of the theory of minimal blocks (in particular, the fact that for a given q, being a minimal
block over GF(q) depends only on the matroid structure) can be found in [5,6].

Let q be a prime power and e1, e2, . . . , en be a chosen basis of PG(n − 1,q). Let z be a point in
PG(n − 1,q). Then up to a nonzero factor, z can be expressed uniquely as a nonzero linear combina-
tion z = ∑n

i=1 ziei or z = (z1, z2, . . . , zn). Its support supp(z) (relative to the chosen basis) is the set
{i: zi �= 0} and its (Hamming) weight weight(z) is the size of its support. As the origin is deleted when
constructing a projective geometry, points always have positive weight. If I ⊆ {1,2, . . . ,n}, let

e[I] =
∑
i: ∈I

ei .

Let α divide q − 1 and B(q;n, s,α) be the set of points z in PG(n − 1,q) such that weight(z) = s and
there exists a nonzero element a in GF(q) such that every nonzero coordinate in (az1,az2, . . . ,azn)

satisfies the condition (azi)
α = 1, or equivalently, azi has order dividing α in the multiplicative group

GF(q)×. For example, since the only element in GF(q)× of order 1 is the identity 1,

B(q;n, s,1) = {
e[I]: |I| = s

}
,

the set of points with exactly s coordinates equal to 1 and the other coordinates equal to 0. At the
other extreme, by Fermat’s little theorem for finite fields, every element has order dividing q − 1.

Hence,

B(q;n, s,q − 1) = {
z: weight(z) = s

}
,

the set of all points having weight exactly s. For an example of a set in the middle, let q be odd. Then
B(q;n, s,2) is the set of points expressible as a vector u such that weight(u) = s and the nonzero
coordinates in u equal 1 or −1. We are also interested in unions of B(p;n, s,α). Let

B̃(p;n,α) =
�n/p�⋃
i=1

B(p;n, ip,α);

that is, B̃(p;n,α) is the set of points PG(n − 1, p) satisfying the same order condition on its nonzero
coordinates as B(p;n, s,α) with weight not equal to 0 and divisible by p.

We will prove the following theorems.

Theorem 1.1. Let p be a prime and m be a positive integer. If n � p + m(p − 1)/α, then B̃(p;n,α) is an
m-block. In particular, B(p;2p − 1, p,α) is an α-block and B̃(p;γ p − 1, p − 1) is a ((γ − 1)p − 1)-block.

Theorem 1.2. Let p be an odd prime. Then

(a) B(p;2p − 1, p,1) is a minimal 1-block,
(b) B(p;2p − 1, p,2) is a minimal 2-block,
(c) B̃(p;γ p − 1, p − 1) is a minimal ((γ − 1)p − 1)-block.

Since B(p;2p − 1, p,1) is contained in the codimension-1 subspace or hyperplane defined by the
equation x1 + x2 +· · ·+ x2p−1 = 0, it does not span PG(2p − 2, p). It is easy to show that B(p;2p − 1,

p,1) has rank 2p − 2. The other two blocks, B(p;2p − 1, p,2) and B̃(p;γ p − 1, p − 1), span their
ambient projective space when p is odd. Note that B(2;3,2,1) = {(1,1,0), (1,0,1), (0,1,1)} and its
matroid is U2,3, the 3-point line. Hence, B(2;3,2,1) is a tangential 1-block over GF(2). Results for
finite fields of characteristic 2 similar to those in this paper have appeared in [6].
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2. Solving polynomial equations over finite fields

To prove Theorem 1.1, we will use the Chevalley–Warning theorem [2,8] from number theory. This
theorem is elementary and an accessible self-contained exposition of this theorem can be found in [4],
p. 143.

The Chevalley–Warning theorem. For 1 � i � t, let f i(x1, x2, . . . , xn) be a polynomial in n variables of total
degree di, with no constant term, having coefficients in the finite field GF(q). If n >

∑t
i=1 di, then the polyno-

mial equations f1 = 0, f2 = 0, . . . , ft = 0 have at least two common solutions over GF(q)n. In particular, the
polynomial equations have a common solution not equal to the origin.

Proof of Theorem 1.1. We begin with a lemma.

Lemma 2.1. Let α divide p − 1 and [a ji]1� j�m,1�i�n be an m × n matrix over GF(p). If the polynomial
equations

a j1x(p−1)/α
1 + a j2x(p−1)/α

2 + · · · + a jnx(p−1)/α
n = 0, 1 � j �m, (2.1)

and

xp−1
1 + xp−1

2 + · · · + xp−1
n = 0 (2.2)

have a common nonzero solution (z1, z2, . . . , zn) in GF(p)n, then the system of linear equations

a j1x1 + a j2x2 + · · · + a jnxn = 0, 1 � j �m, (2.3)

has a nonzero solution (z′
1, z′

2, . . . , z′
n) in GF(p)n with weight congruent to 0 modulo p and each nonzero

coordinate z′
i having order dividing α in GF(p)×.

Proof. Let z = (z1, z2, . . . , zn) and z′ = (z(p−1)/α
1 , z(p−1)/α

2 , . . . , z(p−1)/α
n ). Note that z and z′ have the

same support. Suppose that z is a nonzero common solution of the polynomial Eqs. (2.1). Then z′ is a
nonzero solution of the system (2.3) of linear equations.

Since z is a nonzero solution of Eq. (2.2) and zp−1
i equals 1 when zi �= 0 and 0 if zi = 0,

(zp−1
1 , zp−1

2 , . . . , zp−1
n ) is a solution with coordinates equal to 0 or 1 of the equation

x1 + x2 + · · · + xn = 0.

The only such solutions are e[I], where I = supp(z) and |I| ≡ 0 mod p. Since supp(z′) = supp(z), we
conclude that

∣∣supp
(
z′)∣∣ = |I| ≡ 0 mod p.

To finish the proof, observe that if zi �= 0, then (z(p−1)/α
i )α = zp−1

i = 1. Hence, every nonzero coordi-
nate z′

i in z satisfies (z′
i)

α = 1. �
Returning to the proof of Theorem 1.1, let n > m(p −1)/α+ p −1. Then the Chevalley–Warning the-

orem implies that there exists a nonzero solution of the polynomial equations, and hence, a solution
in B̃(p;n,α) of the system (2.3) of linear equations. We conclude that B̃(p;n,α) is an m-block. �
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Proof of Theorem 1.2. We construct a tangent for each point in the 1-block B(p;2p − 1, p,1). Let
I ⊆ {1,2, . . . ,2p − 1} and |I| = p. Consider the hyperplane H defined by the linear equation

∑
i: i∈I

xi = 0. (2.4)

Since e[I] is a solution of Eq. (2.4), e[I] ∈ H . To finish, suppose that e[ J ] is another point in
B(p;2p − 1, p,1). Then | J | = p, J �= I, and hence, 1 � |I ∩ J | � p − 1. In particular, e[ J ] is not a
solution to Eq. (2.4) and e[ J ] /∈ H .

Next, we prove (b) by constructing a tangent for each point z in the 2-block B(p;2p −1, p,2). The
points in this block have p nonzero coordinates equal to 1 or −1, and p − 1 coordinates equal to 0’s.
Since B(p;2p − 1, p,2) is invariant under a permutation of coordinates, we may assume that z has
the form

(1,1, . . . ,1,−1,−1, . . . ,−1,0,0, . . . ,0),

where there are c 1’s, d −1’s, and c + d = p. Consider the codimension-2 subspace U defined by the
two linear equations

(
c∑

i=1

xi

)
−

( p∑
i=c+1

xi

)
= 0 (2.5)

and

2p−1∑
i=p+1

xi = 0. (2.6)

Then z ∈ U . Suppose that y is another point in B(p;2p−1, p,2). Suppose, in addition, that its support
is {1,2, . . . , p}. Then the product yi zi , where yi and zi are respectively the i-th coordinates of y and z,
equals 1 or −1. Consider the sum y1z1 + y2z2 + · · · + yp zp . Since y �= z, there is at least one 1 and
one −1 amongst the products yi zi . Since p is odd and the sum is over p terms, the sum is nonzero
modulo p and y is not a solution of Eq. (2.5). Hence, y /∈ U .

Now suppose that supp(y) �= {1,2, . . . , p}. Let J = supp(y) ∩ {1,2, . . . , p} and J∗ = supp(y) ∩
{p + 1, p + 2, . . . ,2p − 1}. Since y is a solution to Eq. (2.5), | J | is even. This implies | J∗| is odd.
Since | J∗| < p and y has nonzero coordinates equal to 1 or −1, y is not a solution to Eq. (2.6).
Hence, y /∈ U . We conclude that z is the only point in B(p;2p − 1, p,2) in U .

To prove (c), we construct a tangent for each point z in the ((γ −1)p−1)-block B̃(p;γ p−1, p−1).
Permuting coordinates, it suffices to consider a point z of the form

(a1,a2, . . . ,atp,0,0, . . . ,0)

where ai �= 0 and 1 � t � γ − 1. Let W be the codimension-((γ − 1)p − 1) subspace defined by the
system of (γ − 1)p − 1 linear equations

a j+1x j − a jx j+1 = 0, 1 � j � tp − 1, (2.7)

and

xk = 0, k ∈ K , (2.8)
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where K ⊆ {tp + 1, tp + 2, . . . , γ p − 1} and |K | = (γ − 1 − t)p. For example, we may take K = {tp + 1,

tp + 2, . . . , (γ − 1)p}. It is easily checked that z ∈ W .

Let y be a point in B̃(p;γ p − 1, p − 1) and y = (y1, y2, . . . , yγ p−1). There are several cases de-
pending on supp(y). Suppose first that {1,2, . . . , tp} � supp(y). Then there is at least one index i,
1 � i � tp such that exactly one of the indices i or i + 1 is in supp(y). If y is a solution of Eqs. (2.7),
then the i-th linear equation implies that both yi and yi+1 are zero, a contradiction. Hence y /∈ W .

We may now suppose that {1,2, . . . , tp} ⊆ supp(y). If supp(y) = {1,2, . . . , tp}, then Eqs. (2.7) im-
ply that y is a nonzero multiple of z, that is, y and z represent the same point in PG(γ p − 2, p). If
{1,2, . . . , tp} ⊂ supp(y), then there are at least p indices in supp(y) and |supp(y)∩ K | � 1. In particu-
lar, there exists an index i in supp(y)∩ K . If y ∈ W , then Eqs. (2.8) imply that yi = 0, a contradiction.
We conclude that y /∈ W . Having covered all possible cases, we conclude that z is the unique point
in B̃(p;γ p − 1, p − 1) in W . �

To say that B(p;2p − 1, p,1) is a 1-block is equivalent to saying that in any sequence of length
2p − 1 with terms in GF(p), there is a subsequence of length p whose terms sum to zero. This was
proved earlier in [3] (by elementary means) and [1] (using the Chevalley–Warning theorem). In [3],
the general result, with the additive group of GF(p) replaced by a finite abelian group, was proved.
(As [3] is not easily accessible, we note that the “multiplication” argument given in [1] works over an
abelian group as well.) The general result, applied to the additive group of GF(q), implies that for a
prime power q, B(q;2q − 1,q,1) is a 1-block over GF(q).

Our method can be used to obtained other kinds of blocks. We will give one example. Recall that
an element a of GF(p) is a quadratic residue (respectively, nonresidue) if a �= 0 and there exists an
element r in GF(p) such that r2 = a (respectively, if r2 �= a for all r in GF(p)). For (z1, z2, . . . , zn) a
point in GF(p)n, let q0 (respectively, q1) be thenumber of coordinates zi that are quadratic residues
(respectively, nonresidues). Let Q (p;n) be the set of points z in PG(n−1, p) such that when expressed
as a linear combination of the chosen basis, q0 − q1 ≡ 0 mod p.

Theorem 2.2. Let p be an odd prime and n > m + (p − 1)/2. Then Q (p;n) is an m-block.

Proof. We use Euler’s theorem that if a �= 0, then a is a quadratic residue if a(p−1)/2 = 1 and a
quadratic nonresidue if a(p−1)/2 = −1. Thus a point z is in Q (p;n) if and only if z is a solution to the
polynomial equation

x(p−1)/2
1 + x(p−1)/2

2 + · · · + x(p−1)/2
n = 0. (2.9)

By the Chevalley–Warning theorem, Eqs. (2.3) and (2.9) have a common nonzero solution. The propo-
sition now follows. �
3. Blocks from projective algebraic varieties

That the set B̃(p;γ p − 1, p − 1) is a ((γ − 1)p − 1)-block is a special case of a general
theorem. A polynomial f (x1, x2, . . . , xn) with coefficients in GF(q) is homogeneous if there exists
an integer d such that for all elements λ in GF(q), f (λx1, λx2, . . . , λxn) = λd f (x1, x2, . . . , xn). Let
f j(x1, x2, . . . , xn), 1 � j � t, be a set of homogeneous polynomials in n variables with coefficients
in GF(q). The (projective algebraic) variety Var( f j) is the set of points (z1, z2, . . . , zn) in PG(n − 1,q)

such that f j(z1, z2, . . . , zn) = 0 for all j, 1 � j � t.

Theorem 3.1. Let f j, 1 � j � t, be a set of homogeneous polynomials with f j having total degree di and
coefficients in GF(q). If n > m + ∑t

i=1 di, then Var( f j) in PG(n − 1,q) is an m-block over GF(q).

Theorem 3.1 gives an insight into the q-cone (also known as the q-lift) construction of Geoff
Whittle [9]. Let B = Var( f j) and B# be the variety defined by the same polynomials f j (but in the
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variables x1, x2, . . . , xn, xn+1) in PG(n,q), the projective space of one higher dimension. Since the vari-
able xn+1 does not appear in any of the polynomials f j, the points in B# are the points in PG(n,q)

of the form (z1, z2, . . . , zn, zn+1), where (z1, z2, . . . , zn) ∈ B and zn+1 ∈ GF(q), together with the point
(0,0, . . . ,0,1). Thus, B# is the q-cone of B as defined in [9]. Note that B# is an (m + 1)-block. This
follows from a general result in [9] holding for all q-cones, or from Theorem 3.1 and the observation
that since the number of variables increases from n to n + 1, n + 1 > (m + 1) + ∑t

i=1 di .
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