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Abstract--ln discriminant analysis, class sizes are usually estimated by the proportion of a random 
sample which falls into each class. The accuracy of this method is limited by the low practicability of 
applying the ideal classification rule to large numbers of objects. How this basic estimator may be 
improved by taking advantage of the relative feasibility of applying the derived classification rule to 
large numbers of objects is discussed. Two methods are outlined and comparisons between them are 
made. resulting in a recommendation that one of the methods should be preferred. 

I .  I N T R O D U C T I O N  

This paper addresses the problem of estimating the sizes of the classes comprising a population. 
We adopt the usual discriminant analysis and statistical pattern recognition formulation[4]: we 
suppose there exists some infallible classification rule (commonly called, in pattern recognition 
terminology, a " teacher" ,  but which we shall simply refer to as the perfect classification rule), 
that this has been applied to a sample of objects, and that from this correctly classified sample 
a new classification rule has been derived. Typically this new rule is imperfect--it misclassifies 
some of the objects--but it is also more practicable to apply than the perfect rule. "More 
practicable" here may mean less expensive, but it can also have other meanings as we illustrate 
in the next section. Whatever meaning is used, we intend it to have the implication that it is 
feasible to apply the imperfect classifier to a large sample, but it is not feasible to apply the 
perfect classifier to a large sample. 

In common with much other discriminant analysis work we also assume we have a test 
set. This is a set of objects, independent of the set used to formulate the decision rule, sampled 
(using a simple random sampling scheme) from the same population and which has also been 
classified by both rules. This set provides an independent assessment of the performance of the 
imperfect classification rule. It also provides a sample of objects cross-classified by the perfect 
and imperfect rules. 

Given this situation, our aim is to apply either the perfect rule or the imperfect rule, or 
both, to yield an estimate of the sizes of the classes in the population being classified. It is 
worth noting that this population could but need not be the original one from which the design 
sample was taken. The test set, however, must be sampled from the population being studied. 

There are two obvious elementary approaches: 

(i) One can simply examine the results of the perfect classifier applied to the test set. 
This ignores the imperfect classifier. 

(ii) One can apply the imperfect classifier to a large sample (feasible in view of the 
discussion above), a sample which might include the test set. Typically this large 
sample would be the objects to which the classifier is applied when it becomes op- 
erational. Apart from the role of the perfect classifier in designing the imperfect rule 
(and in classifying the test set) this method ignores the perfect classifier. 

Since methods (i) and (ii) each ignore part of the available information one is naturally 
led to ask whether they can be combined to yield a more effective method. This paper discusses 
two such methods and explores their relative merits. 

After introducing the problem in its general form, for reasons of expository convenience 
as well as because this is the single most common special case, much of the discussion below 
will be restricted to the case of two classes. In particular this means that we can concern 
ourselves with estimating just the proportion of objects in one class, the other estimator having 
symmetric properties and being obtained by subtraction. 

289 



290 D.J. HAND 
2. AREAS OF APPLICATION 

The problem of estimating class sizes when both perfect and imperfect classifiers are 
available, as described in Sec. l, arises in a great number of domains. Some examples are as 
follows: 

(i) Disease prevalence estimation is a very common application. Typically the "perfect" 
classification is a full medical examination, perhaps involving lengthy and expensive tests (CAT 
scanning, NMR scanning, histological examination, bacteriological examination, etc.) Cost 
alone could prevent this from being used on a large sample, but another reason could be the 
length of time the tests involve. In a psychiatric environment, the "perfect" classification is 
typically an interview with a trained and standardised psychiatrist. The imperfect rule in this 
kind of situation could be based on the results of a few quick or cheap tests or could be a score 
on a questionnaire. This latter is common in psychiatry and some other areas of medicine. 

(ii) Estimating the proportion of faulty items in quality control is another example. The 
aim is to decide whether the production system is functioning within acceptable bounds, or 
whether it is producing too many faulty products. Identification of individual faulty items is 
not the objective. The perfect classifier might involve extremely complex and time-consuming 
sets of tests, whereas the imperfect classifier might utilise only a few relatively straightforward 
tests. 

(iii) Of course, any situation in which the perfect classifier destroys or damages the objects 
can gain from the kind of approaches discussed in this paper. Examples of this occur in quality 
control and in biological studies (e.g. exploring the effect of drugs on metabolism. This fre- 
quently involves killing animals). The imperfect classifier will produce its classification with 
comparatively mild consequences. 

(iv) Apart from epidemiological examples, as in (i) above, many social survey questions 
can benefit from this kind of approach. For example, one might be trying to correct bias in 
stated voting intention (the imperfect classifier) through the use of a complex model of attitude 
which involves extensive questioning of a respondent (the perfect classifier). 

(v) Many predictive situations fall into this class. For example the perfect classification 
is death or survival after 5 years, and the imperfect classifier is a questionnaire given now. 

3. THE ESTIMATORS 

The data for the estimators consist of two parts. The first is a random sample size m from 
the population under study. This sample has been classified only by the imperfect classifier, 
yielding mi classified into class i. M is the vector with ith element mi. The second part of the 
data consists of a random sample of size n (the test set), to which both classifiers have been 
applied, n o of the elements are classified simultaneously as class i by the imperfect classifier 
and class j by the perfect classifier. N is the matrix with i j th element nij. Generally, as implied 
in Section 1, m >> n, so that we shall assume m infinite in much of what follows. 

We let 'rt be the vector of true class sizes, and ~ be an estimator. 
Then in terms of this notation the two elementary estimators introduced in Section 1 are 

as follows. 

Est imator  solely using perfect  classif ier 
This is the first case of Sec. 1 and is the estimator based only on the test set simple random 

sample of size n. Then 

= N ' l / n  (1 is a vector of l's). 

Est imator  solely using imperfect  classif ier 
The second case of Sec. 1. 

"iT = M /  m. 
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Each of the above estimators only makes use of part of the available information. We now 

introduce alternatives which make better use of the available data. In the asymptotic case of m 
infinitely large, we shall put "h- = M / m  = P. 

Estimator using probabilities conditional on imperfect classifications 
If A is the matrix whose ijth element is the probability of having a true (perfect) classi- 

fication i when the imperfect classifier assigns to class j ,  then 

rt = A'P.  

The estimator based on this identity is 

~a = N' diag(N1)-IP, 

where diag(X) is the diagonal matrix with the vector X down its leading diagonal. 

Estimator using probabilities conditional on perfect classifications 
If B is the matrix whose/jth element is the probability that the imperfect classifier assigns 

an object to class i, given that the perfect classifier has assigned it to class j ,  then 

"n = B-IP. 

The estimator derived from this is 

'fr B = diag(N'l)N-tp.  

The reader will note from the definitions of A and B that cross-classifications of simple 
random sample test sets are not in fact necessary for ~a and ¢ra. For example, in the first case 
all that is necessary is that the probabilities of perfect results conditional on imperfect results 
can be estimated. This could be estimated from a wide variety of sampling schemes. For example, 
we could force each row of N to sum to the same total, N, say. That is, the estimated conditional 
probabilities within any given row are obtained by using the perfect classifier to classify N 
objects known to have imperfect classifications assigning them to this row. Or one might choose 
the row totals proportional to a prior estimate of within row variation, or proportional to the 
observed mi values. Similar comments apply to the column conditional probabilities in B. Such 
possibilities have various merits and are worth consideration. However, the fact is that in 
discriminant analysis and statistical pattern recognition work, in general, a simple randomly 
sampled test set seems to be by far the most common case. 

Further discussion of these points may be found in [1,3,5,7-10]. Much of this work 
describes the two-class case. In particular, the reader should note that any results on using 
stratified sampling or double sampling schemes to estimate means of interval scale variables 
can be applied in this case because a two-class (binary) variable can be regarded as an interval 
variable. Particularly relevant here are the results in [21. 

In the next section we consider the properties of the above estimators for the two-class 
case in some detail. As noted in Sec. 1, in the two-class case we can simply concern ourselves 
with estimating the size of one class, since the other's size is complementary. In what follows 
we give results for Class 2. 

It is now useful to abandon the earlier general matrix notation and restate the two-class 
expressions algebraically. The fact that we are only dealing with two classes permits certain 
notational simplifications. Thus, in what follows, we let rr represent the true proportion of 
objects which are Class 2 (i.e. this is the value which would be obtained were the perfect 
classifier to be applied to all objects). 

Other notation is given in Fig. 1. In particular 

Oz = P (perfect classification = 2[imperfect classification = 1), 
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0: = P (perfect classification = l timperfect classification = 2), 

,b~ = P (imperfect classification = 2]perfect classification = 1), 

6., = P (imperfect classification = l iperfect classification = 2), 

From these, using the data in the cross-classification matrix N, we get 

01 = nl,./(ntl + /112)" 

6,. = n,_./(n,., + n,._,), 

d)l = n,_l/(nll + n,.~), 

~z  = nz,./(nr_ + n,.z). 

Using this notation, the two adjusted estimators become 

,A ~_. ~l~(I __ 62 ) q.. ( t  --  / l~)6l ,  

* '  = - $ , ) / ( =  - $ ,  - $ 2 ) ,  

with P = m , / m .  
One could explore the distributions of  ~a and ~B by transforming the multinomial variables 

ntt, nt.,, n_,l and n,__, to two new sets containing, respectively, the functions ~A = 4ra(N) and 
4r a = 4&(N), and then integrating out the unwanted functions. It seems, however, that this will 
lead to a complicated expression. Rather than this. we have chosen to pursue an analytic 
approximate large-sample approach and a computer enumeration small-sample approach. 

4. PROPERTIES OF THE ESTIMATORS 

The simple binomial estimator based solely on the test set of  size n has the merit of  being 
simple. It is also unbiased. However, since n is typically not large, its variance of 
ar(l - ~r)/n could be excessive. 

Matr ix  N P e r f e c t  c lass i f ie r  

Class t 2 

I m p e r f e c t  t 

C lass i f i e r  2 

nt 1 nt2 

n2t n22 

Matrix A 

t - e t e 1 

e 2 1 - e 2 

Matr ix  B 

t - ¢1 ~2 

t - ¢ 2  

Fig. I. Notation for the two-class case. 
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Complementary to this, by virtue of the large size of M, the binomial estimate based solely 
on the imperfect classifier has small (and we take it to be zero) variance. However, it is typically 
biased. 

,fi.A is unbiased, and Tenenbein[7] gives the large sample variance. Comparisons between 
,fi.a and the two elementary estimators may be found in the references given in Sec. 3. In this 
paper we concentrate chiefly on the comparative properties of ~'~ and ~.8. 

"fr B is more interesting. This estimator can behave strangely. If B is singular, ~8 is not 
defined. In the two-class case this occurs when ~ + :a_, = 1, and it is generally the case if 
any of the imperfect classifier conditional distributions are linear functions of the others. In 
fact, things are rather worse than this because such linear dependence can occur in the sample 
matrix N even if it does not occur in B. This means that although z :  may be well defined, 
• fr B is not. 

This sample dependence can occur whenever B is such that it cannot be arranged into 
diagonal form by permuting rows and columns. In such cases there is always a nonzero (though 
perhaps very small) probability of N being singular. The implication of this is that there is a 
nonzero probability that ~.B will be infinite (via (b~ + ~, = 1 in the two-class case). Hence, 
whenever B cannot be arranged into diagonal form by permuting rows and columns, "fr 8 has 
infinite variance, l fB could be so arranged then, by simple relabelling of the imperfect classifier's 
classes, we would obtain a perfect classifier. Thus straightforward variance is not a useful 
descriptor of the distribution of "?r, B. 

White and Castleman[10] use the 'fr a form and side-step the problem by assuming N fixed 
and error-free. (For this case they give an expression for asymptotic variance.) However, in 
our experience it is the variation in N which is typically the dominant factor, rather than that 
of M. This arises because of the relative ease (and inexpensiveness) of applying the imperfect 
classifier compared with the perfect one. 

"fr a infinite is not the only situation in which it produces unacceptable values. More generally 
than this, anything outside the bounds 0 and i is useless. This means we must have 

6 _ d~, 
O ~  ~ I ,  

1 - $ ~ - $ 2  

which is only true if/5 can be expressed as a linear combination of ~b, and (1 - ~.,): 

with 0 -< et -< 1. [The reader is reminded that (1 - ~b I - d~2) can be negative.] The symmetry 
between the role of the pair (rr, P) in "fr a and (P, ~ = ct) in ~a is evident here. Since the 
samples for `6 and the (b~ are independent, there is no guarantee that this condition will be 
satisfied. 

This discussion suggests that ~a is a worse choice than 4r a. However, it might be the case 
that there are other criteria for comparison, judged by which ~a is superior. In the next section 
we explore this suggestion. Yet a further possibility is that some pragmatic modification of 
"tra might yield an estimator exhibiting advantages. This is explored in Sec. 6. 

5. LARGE-n COMPARISON 

When n is large, for reasonable values of "rr, ~bt and 62, the probability that ̀6 falls outside 
~b~ and (I - (b~) can be vanishingly small. This suggests that variance might be an inappropriate 
criterion in which to base a comparison. (No matter how small is the probability that "8 a = ~, 
if it is nonzero then the variance is infinite.) As an alternative, we examined the rate of change 
of ~'~ and ~a with d~t and tb_, in the neighbourhood of the true <hi. This shows how rapidly 
4r a and ~.a deviate from the true values. (We used the d~, rather than the 0i, because the former 
have a more obvious intuitive interpretation.) 

The gradient vectors 

O~ ~ c~r A 

12:2A-I 
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O-~ O.rr B 

o,;' 04, 

are given by ('rr a) using 

01 = ~b,_rr/[(l - c~) ( l  - ,-r) + cb.,rr], 

Oz = ~)(1 - ~)/[~bt(l - ~ )  + ( i  - cb.,)'rr], 

and 

0 ~  a Orr a 00t + 0 ~  a 00, 

O~t 001 " O~i 002 Ocbt' 

O'rr A 00, O,.rf a ~,ffA 1901 + 

c~), OOi 0 6 ,  00: 0 6 : '  

with 

~.r¢ A 

dO) 

OO.__L) 

Oct, 

O0.._.~z 

Oc~t 

#O..__kl 

002 

06z 

~3TI .a 
= l - P ,  = P ,  

002 

62~r(1 - rr) 

[ ( l  - d~l)(1 - "rr) + ~ z r r ]  z '  

(1 - 6z) 'rr(l  - ~r) 

[6 , (1  - ~r) + (1 - 4,2)~r1"' 

( I  - d~,) ' rr( l  - rr) 

[(1 - , ~ 0 ( 1  - ~r) + ~:~rl  ~'' 

6~(1 - rr)rr 

[6,(1 - ~r) + (1 - 6,)~r] -~' 

and xra: 

0"rr a (1 - d~., - P )  

0~,, [1 - 6 ,  - ~_,1-" 

O~r a P - d~t 

0~2 [1 - cb, - be]'- '  

where P = ~b, + ~r(l - 6, - cb2). 
Now it is clear from these expressions that the direction of maximum change of ~r ~ (given 

by its gradient vector with respect to 6, and (52) is not the same as that of ~.a. This means that 
there are some directions of (5 perturbation for which ~ deviates from the true value more 
rapidly than does .~s. That is, for some classes of cbi change, ~r s is better. In practice, of course, 
it would be impossible to identify these. We therefore considered the change induced in ~r A by 
a small step in the direction of its maximum change compared with the change induced in ~r s 
by a small step of the same length in the direction of its maximum change. Computer search 
failed to locate any Or, ~1, cb2) combination for which ~a had a larger maximum change than 

To il lustrate this,  cons ider  the special  case  of  cb~ - 4., = ~ = ~ '~ 1, such that ~z can be 
neglec ted .  Then f rom the above  der ivat ives  we find that the change in 4r A due to a smal l  step 
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• in the direction of maximum change is ~. + .~8)•. For ~B, however, the change due to a 
small step • in the direction of its maximum change is •. Thus ~.a appears to degrade less due 
to sampling fluctuations from the true d)~. That is, -?r ~ is less sensitive to small sampling 
fluctuations than is ~8. 

6. SMALL-n COMPARISON 

Small values for n mean that the probability of ~a taking an unacceptable value may not 
be near zero. However, such cases can be recognised if and when they occur. Thus it is worth 
exploring the properties of the restricted ~B, which is only defined when it lies in the permissible 
region. It might be the case that when one modifies the estimator in this way it leads to a 
function having properties more desirable than those of ~a, for those values for which it is 
defined. Of course, this also applies if n is large. 

We used computer enumeration to explore this. For given values of rr, d)t, d)_, and n, the 
computer worked through all assignments of the n points to the four cells of the 2 x 2 (imperfect 
by perfect) cross-classification. There are (n + 3)(n + 2)(n + 1)/6 such assignments. [This 
can easily be seen by imagining the n objects arrayed in a line. One must then place three 
partitions between them--to divide them into four cells. Since the objects are indistinguishable 
and the partitions are indistinguishable we have 

(n + 3)! 

n!3! 

distinct assignments.] 
Again for pragmatic reasons, partitions leading to zero marginals were skipped. This means, 

of course, that the resulting estimators will typically (except in rare symmetric cases) be biased. 
This is evident in Table 1, below, especially in the small-w cases. For the others the program 
calculated the probability of obtaining the distribution of n~/: 

n! 
nlt!nl,_!n,_l!n2,.! 

* r " ' : * " : : ( l  - r r ) " " + " : ' d ~ 7 : ' ( i  - ¢ , ) " " % ' : ( 1  - '1 '2)" : :  

For this N, the estimates ~a and ~e were obtained. 
The estimates and the probabilities were then combined to yield overall values for variance 

and mean-square error: the two criteria used in this part of the study. (Note in calculating 
expectations, rescaling is needed to allow for the skipping of the zero marginal cases.) Table 
1 is illustrative of the results obtained. [In fact, the results in Table 1 are based on a further 
pragmatic modification. If II - ~ - 621 < 10 -5 then the estimate was rejected (as either 
singular or, at the least, unreliable). We are bending over backwards to give "fr a the best conditions 
for demonstrating its worth.] It is clear that even with this modified version of ,fi.a, ,ha is the 
superior estimator. 

Insight can be gained into the shapes of the distributions by studying plots. We are dealing 
with discrete distributions, but the large number of points at which the probability is nonzero 
[calculated from (n + 3)(n + 2)(n + 1)/6] means that we must resort to a summarising dis- 
play. Since each nonzero point has an associated probability generated by the computer enu- 
meration, an obvious first choice for the display would be a histogram. Unfortunately such an 
approach seems very sensitive to the choice of position for the cell boundaries. Unlike standard 
applications of histograms, in which each nonzero sample point contributes a probability of 
1/n, in the present case each point contributes a different probability--and in some cases it can 
be substantial. In such circumstances, computational rounding error can be critical. 

We therefore used a modified kernel density estimate to produce the plots of Figs. 2-5[5]. 
Its form was 

](,h-) = ~ '  prob(pj)K(~r, Oj), 
J 
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Table I. Comparison of'~' and "fr B using modified ~n estimator which discounts points 
falling outside [0, l] 

MSE(A ) Var(A ) Mean(A) 
~r cb, 4): n 

MSE(B ) Var(B ) MeanlB ) 

0.0098 0.0038 0.2416 
0.2 0.1 0. l 5 ..... 

0.0163 0.0155 0.2291 
O. 0040 0.0040 0.2020 

0.2 0. I 0.1 20 
0.0090 0.0089 0.2096 
0.0027 0.0027 0.2002 

0.2 0.1 0.1 30 
0.0062 0.0061 0.2048 
0.0240 0.0211 0.2538 

0.2 0.1 0.5 5 
0.0224 0.0159 0.2805 
0.0070 0.0070 0.2021 

0.2 0. I 0.5 20 
0.0376 0.0343 0.257 I 
0.0320 0.0258 0.2789 

0.2 0.1 0.8 5 
0.0901 0.0459 0.4102 
0.0079 0.0079 0.2022 

0.2 0.1 0.8 20 .... 
0.0497 0.0409 0.2936 

~;')') 0.0222 0.0_ ,= 0.2999 
0.2 0.5 0.1 5 

0.0515 0.0299 0.347 I 
0.0071 0.0071 0.2023 

0.2 0.5 0.1 20 
0.0380 0.031 I 0.2834 
0.0344 0.0229 0.3075 

0.2 0.8 0.1 5 
0.0817 0.0306 0.4260 
0.0079 0.0079 0.2024 

0.2 0.8 0. I 20 
0.0723 0.0496 0.3506 
0.0090 0.0018 0,0949 

0.01 0.1 0.1 5 
0.0284 0.0128 0,1350 
0.0023 0.0007 0,0500 

0.01 0.1 0.1 20 
0.0098 0.0070 0.0629 

tNote that the bias, introduced by neglecting cases with zero marginals, can be 
considerable. 

where prob(pj) is the probabil i ty of obta ining the particular N yielding estimated value pj. The 
kernel used was 

K ( x )  = 

0 else, 

for ]xl < Ihl+ 

with spread parameter  h = 0.2.  (Note that this seems to be an ideal application for the kernel 
method.  Unlike other applications,  because it is merely being used to illustrate and compare  
the general  shape of  curves,  the choice of  h is not critical.) Each vertical bar in Figs. 2 - 5  gives 
the value of  the kernel estimate at that ~ value, It is apparent from these representative examples  
that ~a is the better of  the two estimators.  

7. CONCLUSION 

The simple b inomial  (or mul t inomial)  estimate of  class sizes obtained from the perfect 
classification of  the test set can be improved if we also make use of the very accurate estimates 

of  imperfect classification rates obtained by applying the inexpensive imperfect classifier to a 
large set of  objects. In this paper we have considered two ways in which this extra informat ion 
may be utilised. One  of  these estimators (~8) has some obvious shortcomings:  It can lie outside 
the range [0, I] and can even take infinite values. The latter point means that the est imator has 
infinite variance, 

Infinite variance might mean that the estimator is of  little v a l u e - - o r  it might mean  that 
variance is an inappropriate comparison criterion. In the large sample case, for instance,  the 
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,I 
o 

II, 
(a) 

,I 
o 

JI I m l l  

(b) 

Fig. 2. A kernel estimate of the distribution of (a) ~4 and (b) ~a for v = 0.2. 6, = 0.1. ,5: = 0.1. and 
n ~ 5, 

I 
T o 
II 

II I ° 

(a) 

I 
T 

o ~ 1 

(b) 

Fig. 3. A kernel estimate of the distribution of (a) "~,~ and (b) ¢r ~' for -e = 0.2. 6,  = 0.1. 6:  = 0.5. and 
, t  = 20. 

II,l , , , , , , ,  
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o~ 
It 

I ., 

(a) 

0 ~ 

II I L A I A , .  

(b) 

Fig. 4. A kernel estimate of the distribution of (a) 5r ~ and (b) ~t 8 for ~ = 0.0l. ~t -- 0. I, d~.- = 0. I and 
n = 20. 

(a) 

Ill, l i t , . .  

(b) 

Fig. 5. A kernel est imate of  the distribution of  Ca) ~r' and (b) .~A for "rr = 0 .2 ,  6~ = 0 .5 .  6 :  -- 0 .1 ,  and 
n = 2 0 .  
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probabili ty of  taking an infinite value might be exceedingly small. We explored this case by 
studying how small fluctuations of  the observed ~i values away from the true ~bi affected the 
estimators ¢ra and $r a. In all cases it seems that the maximum departure of  ~ from the true ";r 
is less than the maximum departure of  ¢r a from the true ~r. Thus, even for small fluctuations 
(the vastly more probable case) in the large sample case, ~"~ seems super iorwas  judged by this 
maximum departure criterion. 

Finally,  we studied the small sample distributions of ~'~ and ~s ,  eliminating obviously 
unreasonable 5r B estimates to see if those that remained had better distributional properties than 

¢ra. This seemed not to be the case. 
In conclusion, q~.a seems the better estimator, at least as judged by the criteria considered 

in this paper. 
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