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Identification of a Subunit
of a Novel Kleisin-�/SMC Complex
as a Potential Substrate of Protein Phosphatase 2A

Results and Discussion

Identification of a B/PR55-Interacting Protein
with Homologies to HCP-6 and hCAP-D2
To isolate targets of the B/PR55 regulatory subunit, we
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1Institute of Medical Biochemistry carried out a yeast two-hybrid screen by using the �

isoform of B/PR55 as the bait and a HeLa cDNA libraryDivision of Molecular Biology
Vienna Biocenter as the prey. We coexpressed the mammalian A subunit

(� isoform) to provide the scaffold for interaction be-University of Vienna
Dr. Bohr-Gasse 9 tween the bait B/PR55 fusion protein and the yeast C

subunits PPH21 and PPH22, which are each 76% identi-A-1030 Vienna
Austria cal to the mammalian C subunit. Apart from mimicking

a B/PR55-containing PP2A complex, coexpression of2 Research Institute of Molecular Pathology
Dr. Bohr-Gasse 7 the A subunit should lower the probability of obtaining

A subunit as an interactor in the screen. In two screensA-1030 Vienna
Austria performed, we isolated four cDNAs encoding different

B/PR55 interacting proteins, none of which encoded the3 Computational Biology Branch
National Center for Biotechnology Information PP2A A subunit.

Here we describe the characterization of one of theNational Institutes of Health
Bethesda, Maryland 20894 B/PR55 interactors. A BLAST search (Figure 1A) re-

vealed that its cDNA is identical to the 3� coding region
of a 5623 bp cDNA (GI:30156565) that encodes the hypo-
thetical protein KIAA0056 consisting of 1498 aminoSummary
acids with a predicted molecular weight of 169 kDa [13].
KIAA0056 cDNA’s of various lengths were isolated inProtein phosphatase 2A (PP2A) holoenzymes consist
the two-hybrid screen, with the largest correspondingof a catalytic C subunit, a scaffolding A subunit, and
to the carboxy-terminal 288 amino acids and the small-one of several regulatory B subunits that recruit the
est to the carboxy-terminal 190 amino acids (Figure 1A).AC dimer to substrates [1, 2]. PP2A is required for
This indicates that the C-terminal 190 amino acids ofchromosome segregation [3–6], but PP2A’s substrates
KIAA0056 can bind to B/PR55.in this process remain unknown. To identify PP2A sub-

BLAST searches identified KIAA0056 as the mamma-strates, we carried out a two-hybrid screen with the
lian ortholog of C. elegans holocentric protein 6 (HCP-6).regulatory B/PR55 subunit. We isolated a human ho-
HCP-6 is a kinetochore protein required for maintainingmolog of C. elegans HCP6, a protein distantly related
chromosomal rigidity and has partial sequence similarityto the condensin subunit hCAP-D2, and we named this
with XCAP-D2/CNAP1/Cnd1, a non-SMC subunit ofhomolog hHCP-6. Both C. elegans HCP-6 and con-
condensin [11]. The region between amino acid residuesdensin are required for chromosome organization and
920 and 1120 of KIAA0056/hHCP-6, which is homolo-segregation [7–11]. HCP-6 binding partners are un-
gous to CAP-D2, contains HEAT (huntingtin-elongation-Aknown, whereas condensin is composed of the struc-
subunit-TOR) repeats, tandemly arranged bihelicaltural maintenance of chromosomes proteins SMC2
structures that are thought to mediate protein-proteinand SMC4 and of three non-SMC subunits [12]. Here
interactions in other proteins [14]. Various chromosome-we show that hHCP-6 becomes phosphorylated during
associated proteins including condensin’s non-SMCmitosis and that its dephosphorylation by PP2A in vitro
subunits hCAP-D2 and hCAP-G also contain HEAT re-depends on B/PR55, suggesting that hHCP-6 is a
peats [15]. Using a modified search method based onB/PR55-specific substrate of PP2A. Unlike condensin,
a hidden Markov model (http://hmmer.wustl.edu), wehHCP-6 is localized in the nucleus in interphase, but
identified several HEAT repeat-containing regions insimilar to condensin, hHCP-6 associates with chromo-
KIAA0056 (Figure 1A).somes during mitosis. hHCP-6 is part of a complex that

contains SMC2, SMC4, kleisin-�, and the previously
uncharacterized HEAT repeat protein FLJ20311.

hHCP-6 Is Phosphorylated during MitosishHCP-6 is therefore part of a condensin-related com-
and Dephosphorylated by PP2Aplex that associates with chromosomes in mitosis and
in a B/PR55-Dependent Mannermay be regulated by PP2A.
Immunoprecipitation from lysates of NIH3T3 fibroblasts
expressing HA-tagged hHCP-6 showed an interaction

*Correspondence: eo@mol.univie.ac.at between hHCP-6 and endogenous B/PR55 (data not
4 These authors contributed equally to this work. shown). Immunoprecipitation assays using polyclonal5 Present address: Department of Obstetrics and Gynecology, Uni-

hHCP-6 antibodies (His1a) also revealed an interactionversity of Vienna, Währinger Guertel 18-20, A-1090, Vienna, Austria.
between endogenous hHCP-6 and B/PR55 in HeLa ly-6 Present address: Department of Biochemistry, National University

of Singapore, 8 Medical Drive, Singapore 117597. sates (data not shown). However, this interaction was
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pearance of cyclin B and the partial dephosphorylation
of Cdc27, a subunit of the anaphase-promoting complex
(APC) (Figure 2A, upper panel, lane 4). The more slowly
migrating forms of hHCP-6 also disappeared when cells
were released for 3 hr from a nocodazole arrest (Figure
2B, lane 3). We conclude that hHCP-6 is modified during
mitosis.

To determine whether PP2A is required for the re-
moval of hHCP-6’s modification during mitotic exit, we
treated nocodazole-arrested MCF-7 cells for 1 hr with
DMSO, 0.1 �M okadaic acid (OA), or 1 �M OA, released
the cells from the nocodazole block in the presence or
absence of OA, and analyzed cell lysates 3 hr after the
release by SDS-PAGE/immunoblotting (Figure 2B). We
performed these experiments in MCF-7 cells whose
treatment with 1 �M OA is known to inhibit PP2A specifi-
cally, whereas the activity of PP1 is unaffected [16]. As
a control for the specific inhibition of PP2A, we analyzed
the activation of the MAP kinases Erk1 and Erk2 by
using a phospho-p44/42-specific antibody (Figure 2B
bottom panel). It is known that inhibition of PP2A acti-
vates the MAP kinase pathway by inhibiting dephosphory-
lation of MEK and ERK [17, 18]. Only the OA-treated
cells showed increased phospho-Erk levels, indicating
PP2A inhibition. FACS analyses of DNA content revealed
that cell division was inhibited by OA (Figure S1B), and
immunoblotting showed that the electrophoretic mobil-Figure 1. Schematic Presentation of KIAA0056/hHCP-6 and Model
ity of Cdc27 remained retarded, indicating that Cdc27of Condensin and hHCP-6 Complex Composition
had not been dephosphorylated and that cells had failed(A) The conserved domains of KIAA0056/hHCP-6. The B/PR55-inter-
to exit mitosis (Figure 2B, middle panel). The electropho-acting clone (prey fusion clone 1) is identical to the C-terminal 288

amino acids of KIAA0056. KIAA0056/hHCP-6 contains a putative retic mobility of hHCP-6 remained slightly reduced in the
nuclear localization signal (NLS) (black box), a region homologous presence of 0.1 �M OA, whereas the mobility remained
to CAP-D2 (dotted box), and HEAT repeats indicated by horizontal more strongly reduced in the presence of 1 �M OA
lines.

(Figure 2B, upper panel, lanes 4 and 5). The incomplete(B) Condensin and the hHCP-6 complex possess a similar subunit
block of hHCP-6 dephosphorylation at 0.1 �M OA corre-composition. Both complexes share the heterodimeric SMC core
lates with partial inhibition of PP2A, which is indicatedand contain a kleisin (hCAP-H/kleisin-� in condensin and kleisin-�

in the hHCP-6 complex) and two HEAT repeat proteins (hCAP-D2 by the partial activation of ERK. This result implies that
and hCAP-G in condensin and hHCP-6 and FLJ20311 in the hHCP-6 PP2A is required to reverse the mitotic modification of
complex). The presentation of condensin and hHCP-6 complexes hHCP-6, either directly by dephosphorylating hHCP-6
as V-shaped structures connected by a kleisin is hypothetical but

or indirectly by blocking exit from mitosis.is consistent with electron microscopy data [26] and with the subunit
Treatment of hHCP-6 with calf intestine alkaline phos-topology of cohesin, a related kleisin/SMC complex [27, 28].

phatase (CIP) removed its mitotic modification, indicat-
ing that hHCP-6 is modified by phosphorylation (Figure

very weak, raising the possibility that hHCP-6 and B/ S2). To test if hHCP-6 is specifically dephosphorylated
PR55 only associate transiently, possibly because by PP2A and if this reaction depends on B/PR55, we
hHCP-6 is a substrate of PP2A. immunopurified phosphorylated hHCP-6 from lysates of

To test this possibility, we first asked if different post- nocodazole-arrested MCF-7 cells and incubated ali-
translational modification states of hHCP-6 exist. When quots of the immunoprecipitate with different immuno-
logarithmically proliferating HeLa cells were lysed di- purified PP2A holoenzymes. The catalytic C subunit was
rectly in SDS sample buffer, hHCP-6 migrated predomi- isolated with the 7A6 antibody (Upstate), which recog-
nantly as a band of 175–180 kDa, whereas hHCP-6 nizes a C-terminal 8 amino acid epitope. Because anti-
appeared as two bands with slower electrophoretic mo- body binding to this epitope blocks the association of
bility in lysates from HeLa cells that had been arrested the B/PR55 subunit with the AC heterodimer [19], the
in prometaphase by nocodazole (Figure 2A, upper 7A6 immunoprecipitates contain a mixture of the C sub-
panel). In cells progressing through mitosis after syn- unit, AC heterodimers, and presumably trimers with B���
chronization and release from a double thymidine block, subunits, but not trimers containing the B/PR55, B�/
hHCP-6 underwent a similar change in electrophoretic PR56 or B″/PR59 subunits (data not shown) [20]. PP2A
mobility (Figure 2A, upper panel, lanes 2–4; for FACS consisting of AC associated with the B/PR55 subunit
analyses, see Figure S1A in the Supplemental Data avail- was immunoprecipitated with HA antibodies from ly-
able with this article online). Ten hours after the second sates of NIH3T3 cells stably expressing HA-tagged B/
thymidine release, the more slowly migrating forms of PR55�. Only PP2A holoenzymes containing B/PR55�
hHCP-6 had been partially converted back to the form subunit but not tenfold excess of 7A6 immunoprecipi-

tated holoenzymes had the ability to dephosphorylatethat migrated more quickly, concomitant with the disap-
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hHCP-6 in vitro (Figure 2C, compare lanes 4 and 5). This
activity was inhibited in the presence of OA (Figure 2C,
lane 6). Taken together, these results suggest that the
mitotically phosphorylated hHCP-6 is a substrate of a
B/PR55-containing PP2A holoenzyme.

hHCP-6 Is a Nuclear Protein that Associates
with Chromosomes in Mitosis
In C. elegans, HCP-6 displays a dotted staining in in-
terphase nuclei and colocalizes with the kinetochore
protein HCP-3 during mitosis [11]. To determine the sub-
cellular localization of hHCP-6, we carried out cell frac-
tionation and immunofluorescence experiments by us-
ing two different polyclonal hHCP-6 antibodies raised
against different regions of hHCP-6. The specificity of
anti-hHCP-6 (His1a) antibodies used in the immunofluo-
rescence analyses (Figures 3A and 3B) was confirmed
by immunoblot analysis (Figure S3). Cell fractionation of
logarithmically proliferating HeLa and 293 cells revealed
that the majority of hHCP-6 was found in the nucleoplas-
mic fraction, whereas only small amounts of hHCP-6
could be detected in the cytoplasmic fraction (Figure
S4). In agreement with these results, hHCP-6 showed
nuclear localization in interphase cells in immunofluo-
rescence microscopy experiments (Figure 3A, panel b).
The staining appeared as a small-dotted/granulated pat-
tern overlapping with DNA but excluding the nucleoli
throughout the nucleus. Nuclear localization was also
seen when a GFP-tagged version of hHCP-6 was tran-
siently expressed in HeLa cells (Figure S5). This localiza-
tion is furthermore consistent with the presence of a
putative NLS in the N terminus of the hHCP-6 coding
sequence (Figure 1A). When transiently transfected into
HeLa cells (Figure S5), a mutant hHCP-6 lacking the
N-terminal 313 amino acids including the putative NLS

SDS sample buffer from logarithmically proliferating MCF-7 cells
(lane 1), from nocodazole-arrested MCF-7 cells (lanes 2 and 6), and
from MCF-7 cells that were released for 3 hr from a nocodazole
block in the presence of DMSO (lane 3), 0.1 �M OA (lane 4), or 1
�M OA (lane 5). Lysates were analyzed by 7.5% SDS-PAGE and
immunoblotting with antibodies against hHCP-6 (His1a), Cdc27, and
phospho-p44/42 MAP kinase (Cell Signaling). Lanes 1–2 and 3–6
were not adjacent to each other on the original blot.
(C) Mitotically phosphorylated hHCP-6 is a substrate of a B/PR55-
containing PP2A holoenzyme. Lysates were prepared from logarith-
mically proliferating (DMSO) or nocodazole-arrested MCF-7 cells as
described in Figure S2 except that lysis buffer was supplemented
with 50 mM sodium fluoride, 20 mM sodium pyrophosphate, 1 mM
sodium orthovanadate, 10 mM �-glycerophosphate, and 4 mM
EDTA. An aliquot of these lysates was analyzed by 7.5% SDS-PAGE

Figure 2. hHCP-6 Is Phosphorylated during Mitosis and Dephos- and immunoblotting (lanes 1–2) with a monoclonal anti-hHCP-6 anti-
phorylated by PP2A in a B/PR55-Dependent Manner body (2B5) (raised against amino acids 706–917 of hHCP-6). Anti-
(A) hHCP-6 is posttranslationally modified in mitosis. Whole-cell hHCP-6 immunoprecipitates (with polyclonal antiserum #156 raised
lysates were prepared under denaturing conditions in SDS sample against amino acids 328–475 of hHCP-6) from lysates of nocoda-
buffer from logarithmically proliferating HeLa cells (lane 1, DMSO zole-arrested MCF-7 cells were incubated for 15 min at 30�C with
control), from HeLa cells synchronously progressing through mitosis buffer only (lane 3), with immunopurified PP2A holoenzymes (C sub-
(9, 9.5, and 10 hr after a release from a double thymidine block), unit, AC heterodimer) lacking B/PR55 subunit (lane 4), or with a
and from HeLa cells blocked in mitosis by nocodazole (lane 5). PP2A holoenzyme containing the B/PR55 subunit in the absence
Lysates were analyzed by 7.5% SDS-PAGE and immunoblotting (lane 5) or presence (lane 6) of 1 �M OA. The PP2A-treated hHCP-6
with antibodies against hHCP-6 (rabbit polyclonal antiserum His1a, immunoprecipitates were then analyzed by 7.5% SDS-PAGE and
raised against the C-terminal 143 residues of hHCP-6), Cdc27, and immunoblotting with the monoclonal anti-hHCP-6 antibody 2B5
cyclin B1 (sc-245, Santa Cruz Biotechnology). (raised against amino acids 706–917 of hHCP-6). Phosphatase activ-
(B) PP2A is required to reverse the mitotic modification of hHCP-6. ities of immunopurified PP2A holoenzymes used in the hHCP-6 de-
Whole-cell lysates were prepared under denaturing conditions in phosphorylation assays are shown as a histogram.
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was exclusively found in the cytoplasm, suggesting that
the predicted NLS is functional.

In mitosis, hHCP-6 staining overlapped with the DAPI
stain of condensed chromosomes (Figure 3A, panels
c–e). In prometaphase, hHCP-6 decorated the entire
lengths of the mitotic chromosomes in a dotted manner
(Figure 3A, panel c). At the end of mitosis when chromo-
somes decondensed, the chromosomal staining of
hHCP-6 disappeared and became more diffuse. In con-
trast to the holocentric kinetochore localization of C.
elegans HCP6, no enrichment of hHCP-6 at kineto-
chores could be detected.

To determine if mitotic phosphorylation could have
a role in the chromosome association of hHCP-6, we
prepared lysates from logarithmically proliferating or no-
codazole-arrested HeLa cells, separated chromatin/
chromosomes from the soluble fraction by centrifuga-
tion, and analyzed the resulting supernatant and pellet
fractions by immunoblotting (Figure 3C). In proliferating
cells, hHCP-6 was mostly detected in the supernatant,
with a minor fraction in the pellet, indicating that the
bulk of hHCP-6 is not stably associated with chromatin
in interphase despite its nuclear localization. Consistent
with the small percentage of mitotic cells in a proliferat-
ing cell population, only a small portion of hHCP-6 was
phosphorylated, but this form was clearly enriched in
the pellet. When cells were arrested in mitosis, the frac-
tion of hHCP-6 that was recovered in the pellet increased
significantly. Also, under these conditions the pellet
bound hHCP-6 consisted almost exclusively of the
phosphorylated form. It is therefore possible that the
chromosomal association of hHCP-6 is regulated by
phosphorylation.

hHCP-6 Is Part of a Protein Complex that Contains
SMC2, SMC4, Kleisin-�, and an
Uncharacterized HEAT Repeat Protein
The partial homology between hHCP-6 and the con-
densin subunit hCAP-D2, the localization of hHCP-6 on
mitotic chromosomes, and the previously described role
of C. elegans HCP-6 in chromosome organization [11]
raised the possibility that hHCP-6 is a previously uniden-
tified subunit of condensin or part of a condensin-related
complex. The existence of condensin-related com-
plexes has recently been predicted by Schleiffer et al.
based on bioinformatic analyses [21]. Condensin is com-
posed of the subunits SMC2, SMC4, hCAP-D2, hCAP-G,
and hCAP-H [22]. Schleiffer et al. noticed that hCAP-HFigure 3. hHCP-6 Is a Nuclear Protein that Associates with Chromo-

somes in Mitosis is distantly related to the Scc1 subunit of cohesin, a
complex that contains the SMC1 and SMC3 members(A) Immunolocalization of hHCP-6 during the cell cycle. Logarithmi-

cally proliferating HeLa cells were immunostained either with preim- of the SMC family, and they proposed naming Scc1 and
mune serum (panel a) or anti-hHCP-6 antibodies (His1a) (panels b–e) hCAP-H kleisin-� and -�, respectively. Schleiffer et al.
and counterstained with DAPI, as indicated. Representative cells of further noticed that some eukaryotic genomes, including
interphase (a and b), prometaphase (c), metaphase (d), and ana-

the human one, contain another gene distantly relatedphase (e) are shown. Similar results were obtained with anti-hHCP-6
antibodies (#156). Scale bars represent 10 �m.
(B) Colocalization of hHCP-6 and SMC2 on chromosomes. Cells
were coimmunostained with anti-hHCP-6 (His1a) and SMC2 (poly-

NP-40, 5 mM MgCl2, 10 mM NaCl, and 20 mM Tris (pH 8.0) andclonal antibody raised against peptide CAKSKAKPPKGAHVEV) and
probed with FITC and Texas Red, respectively. DNA was counter- supplemented with inhibitors (as described in Figure 2C), and the

lysates were separated by centrifugation (14.000 rpm, 10 min) intostained with DAPI, as indicated. Scale bars represent 10 �m.
(C) Chromosome-associated hHCP-6 is phosphorylated. Logarith- a pellet and a supernatant fraction. Whole-cell lysates (lanes 1–2)

and the supernatant and pellet fractions (lanes 3–6) were analyzedmically proliferating (DMSO) or nocodazole-arrested HeLa cells were
lysed under denaturing conditions in SDS sample buffer (lanes 1–2) by 7.5% SDS-PAGE and immunoblotting with anti-hHCP-6 (His1a)

and SMC2 antibodies.or under native conditions (lanes 3–6) in a buffer consisting of 1%
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Figure 4. SMC2/hCAP-E and SMC4/hCAP-C
Interact with Two Different Sets of Non-SMC
Subunits

(A) Several proteins specifically coimmuno-
precipitate with hHCP-6. Anti-hHCP-6 immu-
noprecipitates from lysates of 35S-methio-
nine-labeled HeLa cells were analyzed by
SDS-PAGE and autoradiography. Lane 1:
preimmune control; Lane 2: hHCP-6 (His1a).
(B) hHCP-6 is a subunit of a novel Kleisin-�/
SMC complex. Preimmune serum, anti-
hHCP-6 (His1a), and anti-SMC2 antibodies
were used to obtain immunoprecipitates from
HeLa cell extracts. Immunoprecipitates were
analyzed by SDS-PAGE and silver staining.
Excised bands (brackets) were analyzed by
mass spectrometry as described [29, 30].
(C) SMC2 and SMC4 bind either to hHCP-6/
Kleisin-� or to hCAP-D2 and hCAP-H. Preim-
mune serum, anti-hHCP-6 (His1a), anti-
hCAP-D2, and anti-SMC2 antibodies were
used to obtain immunoprecipitates from log-
arithmically proliferating HeLa cell lysates.
Immunoprecipitates were analyzed by SDS-
PAGE and immunoblotting. The immunoblot
was sequentially incubated with SMC2,
SMC4 (rabbit polyclonal antibody raised
against synthetic peptide KSVAVNPKEI-
ASKGLC), hCAP-D2, hHCP-6 (His1a), hCAP-
H/kleisin-� (rabbit polyclonal antibody raised
against synthetic peptide CTEHYEEIEDYD
YNNPNDTSN) and kleisin-� (rabbit polyclonal
antibody raised against synthetic peptide
CETPDPWQSLDPFDSLESK) antibodies.

to Scc1 and hCAP-H; they called this gene kleisin-�. To 4C). Antibodies to FLJ20311 are not available yet, and
this protein could therefore not be analyzed in the sametest if hHCP-6 is part of a complex that contains klei-

sin-�, we also raised antibodies against the hypothetical experiment.
The identification of SMC2 and SMC4 in hHCP-6 im-human kleisin-� protein.

First, we immunoprecipitated hHCP-6 from lysates of munoprecipitates was unexpected because these two
proteins were previously shown to be part of the con-35S-methionine-labeled logarithmically proliferating HeLa

cells and analyzed the immunoprecipitates by SDS-PAGE densin complex [23]. However, neither silver staining
nor immunoblot analyses revealed the presence of theand autoradiography. The anti-hHCP-6 (His1a) antibodies

specifically immunoprecipitated a set of high-molecular- known non-SMC condensin subunits hCAP-D2, hCAP-H/
kleisin-�, and hCAP-G in hHCP-6 immunoprecipitatesweight proteins with apparent molecular masses of 175,

145, 135, and 85–90 kDa (Figure 4A). To determine the (Figures 4B and C). These observations raised the possi-
bility that SMC2 and SMC4 are part of two differentidentity of these proteins, we analyzed hHCP-6 immuno-

precipitates by SDS-PAGE, silver staining, and mass protein complexes, one containing the three known non-
SMC subunits and the other one containing hHCP-6,spectrometry (Figure 4B). The 175 kDa band contained

both hHCP-6 and SMC4, the 145 kDa band contained FLJ20311, and kleisin-�. Double immunofluorescence
microscopy with hHCP-6 and SMC2 antibodies wereSMC2, and the 135 kDa band contained a previously

uncharacterized hypothetical protein called FLJ20311 consistent with this possibility because SMC2 coloca-
lized partly but not completely with hHCP-6 (Figure 3B).(Figure 4B and data not shown). The silver stain analysis

also revealed additional bands of weak intensity with To test the possibility that SMC2 and SMC4 are part of
two distinct complexes; we analyzed immunoprecipi-apparent molecular masses around 90 kDa. Mass spec-

trometry identified these bands as kleisin-� (Figure 4B tates obtained with either hCAP-D2 antibodies or SMC2
antibodies by immunoblotting. SMC2, SMC4, hCAP-D2,and data not shown). Immunoblotting with antibodies

to SMC2, SMC4, hHCP-6, and kleisin-� confirmed the and hCAP-H/kleisin-� but not hHCP-6 and kleisin-�
could be detected in the hCAP-D2 immunoprecipitates,presence of these proteins in immunoprecipitates ob-

tained with hHCP-6 antibodies, whereas none of them whereas all proteins were found in the SMC2 precipitate
(Figure 4C). We did not have hCAP-G antibodies, butcould be detected in control immunoprecipitates (Figure
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