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The paper contains integral representations for certain classes of exponentially
growing solutions of second order periodic elliptic equations. These representations
are the analogs of those previously obtained by S. Agmon, S. Helgason, and other
authors for solutions of the Helmholtz equation. When one restricts the class of
solutions further, requiring their growth to be polynomial, one arrives to Liouville
type theorems, which describe the structure and dimension of the spaces of such
solutions. The Liouville type theorems previously proved by M. Avellaneda and
F.-H. Lin and J. Moser and M. Struwe for periodic second order elliptic equations
in divergence form are significantly extended. Relations of these theorems with the
analytic structure of the Fermi and Bloch surfaces are explained. � 2001 Academic Press
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1. INTRODUCTION

The topic of this paper stems from two sources. The first of them are
representation theorems for certain classes of eigenfunctions of the Laplace
operator in Rn or, equivalently, of solutions of the Helmholtz equation

&2u&k2u=0 in Rn, (1.1)

where k # C* :=C"[0]. Such theorems for arbitrary solutions of (1.1) were
obtained in R2 and in the hyperbolic plane by S. Helgason [22, 23] and in
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Rn by M. Hashizume et al. [21], M. Morimoto [37], L. A. Caffarelli and
W. Littman [44], and recently by S. Agmon [4]. We remark that it should
also be possible to deduce similar results from L. Ehrenpreis' fundamental
principle. The zero set of the symbol of the operator in the left hand side
of (1.1) is

7=[! # Cn | !2=k2],

where !2=�n
j=1 !2

j . L. Ehrenpreis' fundamental principle in the particular
case of equation (1.1) claims that any solution of (1.1) can be represented
as a combination (i.e., an integral with respect to the parameter !) of the
exponential solutions

e!(x) :=exp(i! } x), ! # 7,

where ! } x=�n
j=1 !jx j (see the details and more precise formulation in

[16] or [39]). The set 7 is an irreducible analytic subset of Cn, which is
uniquely determined when k{0 by its spherical subset

S=[! # Cn | !=k|, | # Sn&1/Rn].

Here Sn&1 denotes the unit sphere in Rn. It is clear then that due to the
uniqueness of analytic continuation, the exponential representation of solu-
tions u(x) of (1.1) should be reducible to one that involves the solutions e!

with ! # S only. Namely, consider the restriction mapping from functions
analytic on the whole characteristic variety 7 to the sphere S. Due to the
irreducibility and the uniqueness of analytic continuation, this mapping is
one-to-one. Hence, there is a function space on the sphere S which is the
isomorphic image of the space of all analytic functions on 7. It follows that
any hyperfunction (analytic functional) on 7 can be rewritten as a func-
tional on S. Since the fundamental principle essentially expresses all solutions
of (1.1) as applications of such analytic functionals to the analytic family
of exponential solutions, we get our conclusion.

Now, depending on how fast the solution u(x) grows at infinity, the
corresponding representing functional on S is actually a measure, a distri-
bution, a hyperfunction, or a functional of a more general kind. For
instance (see [4, 21, 37]), an arbitrary solution in Rn can be represented
as

u(x)=(,(!), e!(x)) , (1.2)
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where ,(!) is a functional on S which belongs to the dual space to the
space E :=limR � � ER(S n&1). Here for every R>0 the Hilbert space
ER(S n&1) is defined as follows,

ER(Sn&1) :={� | �(|)= :
l, m

al, m
(R�2) l

1(l+(n+1)�2)
Y m

l (|), s.t.

&�&ER :=\:
l, m

|al, m |2+
1�2

<�= ,

where Y m
l (|) denote spherical harmonics, and E(Sn&1) is equipped with

the inductive limit topology of limR � � ER(S n&1).
The representation (1.2) can be formally rewritten as

u(x)=|
S

e!(x) d,(!),

where ,(!) is a suitable functional.
The functional , is a hyperfunction (analytic functional) on S if and only

if for arbitrary =>0 the solution u(x) grows not faster than

O(exp(( |Im k|+=) |x| ))

(see [4]). One can also describe other classes of solutions, for instance,
solutions which are represented by a distribution or a measure (see [2, 3,
4, 36] and the references therein).

As we have already mentioned, these results could be probably extracted
from the fundamental principle [16, 39]. The crucial factors are that S
is sufficiently massive and 7 is irreducible, so S determines 7 uniquely.
Besides, S is a rather simple analytic manifold. These features allow more
or less explicit descriptions of the needed spaces of test functions and func-
tionals. It is easy to understand that if 7 were reducible, it would not be
possible to obtain the representation of all solutions using only ! # S. The
reason is that the solution e! with ! that belongs to a component not
touching S would not be representable this way. On the other hand, if one wants
to deal only with solutions growing not faster than O(exp( |Im k|+=) |x| )
for all =>0, then the irreducibility of 7 is not needed. In this case, it is only
required that 7 is irreducible in a vicinity of S, so other components of 7
do not meet S.

The fundamental principle was extended in [30] to solutions of certain
growth (for instance, of exponential growth) of elliptic and hypoelliptic
periodic equations (see also the extensions of the results of [30] provided
in [40]). The role of the exponential solutions is played here by the so
called Floquet�Bloch solutions (see Definition 1), and an analog of the
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characteristic manifold 7 is the variety F sometimes called the Fermi surface
(see Definition 2). This raises the hope of finding representations similar to the
ones discussed above for the more general case of a second order elliptic
operator with periodic coefficients. This is not straightforward, however,
due to several reasons. First of all, it is not that clear what should be a
natural analog of S. An appropriate variety, as we explain later, is provided
for second order equations by the analysis of the cone of positive solutions
done by S. Agmon and by V. Lin and Y. Pinchover (see [2, 36, 30], and
the references therein). The disadvantage is that the whole consideration
must be done below the spectrum of the operator (more precisely, below
the generalized principal eigenvalue 40 , see (2.8)). Secondly, proving the
irreducibility of F happens to be a very hard nut to crack (this problem
arises also in direct and inverse spectral problems, see for instance [9, 18,
28, 31, 32]). Fortunately enough, by appropriately restricting the growth
of the solutions, one can sometimes work near a single irreducible compo-
nent, and hence avoid proving the irreducibility of F. Consequently, we
prove a representation theorem (Theorem 18) that characterizes all the
solutions which have integral expansion into positive Bloch solutions with
a hyperfunction as a ``measure.''

The fundamental principle also suggests a point of view that is crucial for
establishing representation theorems for solutions of equations with constant
or periodic coefficients. Namely, it is to one's advantage to treat solutions of
the original equation in the dual sense, i.e., as functionals on appropriate
spaces that are orthogonal to the range of the dual operator. We adopt this
approach throughout the paper.

If one attempts now to further restrict the growth of solutions and
considers the problem of the structure of all polynomially growing (or
bounded) solutions, one arrives at the second topic of our study, Liouville
type theorems. The classical Liouville theorem characterizes the space of all
harmonic functions in Rn of polynomial growth of order N. The validity of
an analog of this classical theorem has been studied in many situations (see
for instance [14, 33, 34] for recent results, surveys, and further references).
An interesting case was considered by M. Avellaneda and F.-H. Lin [8],
and also by J. Moser and M. Struwe [38]. In these papers the authors
dealt with polynomially growing solutions of a second order elliptic equa-
tion Lu=0 in divergence form with periodic coefficients and obtained a
comprehensive answer (for related results see also [14, 33] and the references
therein). More precisely, using the formalism of homogenization theory
[10, 25], it was proved that any solution v of the equation Lu=0 in Rn

of polynomial growth is representable as a finite sum of the form

v(x)= :
j=( j1 , ..., jn) # Z

n
+

x jpj (x), (1.3)
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where the functions pj (x) are periodic with respect to the group of periods
of the equation. Moreover, the space of all solutions of the equation Lu=0
of polynomial growth of order at most N is of dimension hn, N , where

hn, N :=\n+N
N +&\n+N&2

N&2 + (1.4)

is the dimension of the space of all harmonic polynomials of degree �N
in n variables. We will also use the notation

qn, N :=\n+N
N + (1.5)

for the dimension of the space of all polynomials of degree at most N in
n variables. Notice that qn&1, N also coincides with the dimension of the
space of all homogeneous polynomials of degree N in n variables, so in
particular, hn, N=qn&1, N&1+qn&1, N .

We remark that the method of [8, 38] can be slightly modified to
provide an extension of this Liouville theorem for general second order
elliptic equations with periodic coefficients under the assumption that the
generalized principal eigenvalue is zero (see Appendix A and also the recent
paper [35], where a partial result of this type was independently obtained).

One can make an observation that these Liouville theorems are actually
of the same nature as the representation theorems discussed above. In this
case the analog of the set S is the single point !=0 and the representing
functional , is a distribution supported at this point.

Let us recall the following standard notion of Floquet theory (see [15,
30, 42]):

Definition 1. A solution u(x) representable as a finite sum of the form

u(x)=eik } x \ :
j=( j1 , ..., jn) # Z

n
+

x jp j (x)+ (1.6)

with functions pj (x) periodic with respect to the group of periods of the
equation is called a Floquet solution with a quasimomentum k # Cn. Here
k } x=� kl xl . The maximum value of | j |=�n

l=1 jl in the representation
(1.6) is said to be the order of the Floquet solution. Floquet solutions of
zero order are called Bloch solutions.

One sees that the representation (1.3) corresponds to a Floquet solution
with a zero quasimomentum. A Liouville theorem of the type mentioned
above implies in particular that the only real quasimomentum that can
occur for the equation under consideration is k=0 (modulo the action of
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the lattice reciprocal to the group of periods). We show in the present
paper that the finiteness of the set of real quasimomenta for a periodic
elliptic equation is equivalent to the finite dimensionality of the spaces of
solutions having a given polynomial growth and to their representation
similar to, albeit more general than (1.3). This statement is very general
and holds for any periodic elliptic equation (it is also true for hypoelliptic
equations and systems, although we do not address them here). If some
additional information is available on the analytic behaviour of the disper-
sion relations, one can find the exact dimensions of these spaces (see
Theorem 23). We present in Theorem 28 some classes of second order
equations (including Schro� dinger, magnetic Schro� dinger, and general
second order elliptic equations with real periodic coefficients) for which one
can achieve all these sharp results. We show that the problem of calculating
the dimensions of the spaces of Floquet solutions of a given polynomial
growth reduces to a purely function theoretic question and can be resolved
in a very general setting (Theorem 10).

The proofs of the results of this paper are largely dependent upon the
techniques of the Floquet theory developed in [30].

The outline of the paper is as follows. The next section introduces
necessary notations and preliminary results from the Floquet theory and
the theory of positive solutions of periodic elliptic equations. In particular,
we obtain a new general result (Theorem 10) on the dimensions of the
spaces of Floquet solutions, which plays crucial role in our approach to
Liouville theorems. Section 3 contains the proof of the integral representa-
tion (Theorem 18) analogous to Theorem 5.1 in [4]. In Section 4, we discuss
Liouville type theorems. In particular, Theorems 23 and 28 are established.
In order to make the reading of the paper easier, we postpone the proofs
of all the technical lemmas to Section 5. Some conclusions and remarks are
provided in Section 6. The Appendix contains an alternative proof of a part
of Theorem 28 using the homogenization technique similar to the one used
in [8, 38].

Results of this paper related to Liouville theorems were presented in
March 2000 at the University of Toronto and at the Weizmann Institute.

When the paper was being prepared for submission, P. Li informed the
authors that the statement of the third part of Theorem 28 for the special
case of an operator of the form L=&� aij (x) �i �j was simultaneously and
independently obtained in [35] using homogenization formalism.

2. NOTATIONS AND PRELIMINARY RESULTS

Consider a linear (scalar) elliptic partial differential operator P(x, D) of
order m in Rn, n�2 (in some parts of the paper we will restrict the class
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of operators further). Here we employ the standard notation D= 1
i

�
�x . The

ellipticity is understood in the sense of the nonvanishing of the principal
symbol Pm(x, !) of the operator P for all ! # Rn"[0]. The dual operator
(the formal adjoint) P* has similar properties. Here we use the duality
provided by the bilinear (rather than the sesquilinear) form

(g, f ) =|
R n

f (x) g(x) dx.

We assume that the coefficients of P are smooth and periodic with
respect to a lattice 1 in Rn. The smoothness condition can be significantly
reduced (see Section 6). In fact, so far we only need that both operators P
and P* define Fredholm mappings between the Sobolev space Hm and L2

on the torus Tn=Rn�1.
An additional condition is required that would guarantee the discrete-

ness of the spectrum of the ``shifted'' operators P(x, D+k) on the torus Tn

for all k # Cn. We need to exclude the possible pathological situation when
the spectrum of P on the torus coincides with the whole complex plane
(like in the case of the operator exp(i,) d�d, on the circle). For instance,
self-adjointness of P could be such a condition. Another example is second
order uniformly elliptic operators of the form (2.5). For more sufficient
conditions see for example [1].

In what follows, the particular choice of the lattice is irrelevant and can
always be reduced to the case 1=Zn, which we will assume from now on.
We will always use the word ``periodic'' in the meaning of ``1-periodic.''

We denote by K=[0, 1]n the standard fundamental domain (the
Wigner�Seitz cell ) of the lattice 1=Zn, and by B=[&?, ?]n the first
Brillouin zone, which is a fundamental domain of the reciprocal (dual)
lattice 1*=(2?Z)n. We identify 1-periodic functions, in the natural way,
with functions on Tn.

We introduce now the set that plays the role of the characteristic variety
7 discussed in the introduction.

Definition 2. The (complex) Fermi surface FP of the operator P (at
the zero energy level) consists of all vectors k # Cn (called quasimomenta)
such that the equation Pu=0 has a nonzero Bloch solution u(x)=eik } xp(x),
where p(x) is a 1-periodic function.

It would be useful later on to realize that in this definition the positivity
of the solution is not required, and in fact the solution is usually complex.

In many cases, it is convenient to introduce a spectral parameter *. This
leads to the notion of the Bloch variety:
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Definition 3. The (complex) Bloch variety BP of the operator P consists
of all pairs (k, *) # Cn+1 such that the equation Pu=*u has a nonzero Bloch
solution u(x)=eik } xp(x) with the quasimomentum k.

It is clear that the Fermi surface is just the projection onto the k-space
of the intersection of the Bloch variety with the hyperplane *=0.

One can consider the Bloch variety BP as the graph of a (multivalued)
function *(k), which is usually called the dispersion relation. Then the
Fermi surfaces become the level surfaces of the dispersion relation. Since
the spectra of all operators P(x, D+k) on the torus Tn are discrete, we can
single out continuous branches *j of this multivalued dispersion relation.
These branches are usually called the band functions (see [42, 30]).

The following analyticity property of the Fermi and Bloch varieties is
important:

Lemma 4 [30, Theorems 3.1.7 and 4.4.2]. The Fermi and Bloch varieties
are the sets of all zeros of entire functions of a finite order in Cn and Cn+1,
respectively.

Another property of the Bloch and Floquet varieties that we will need
later is the relation between the corresponding varieties of the operators P
and P*.

Lemma 5 [30, Theorem 3.1.5]. A quasimomentum k belongs to FP* if
and only if &k # FP . Analogously, (k, *) # BP* if and only if (&k, *) # BP . In
other words, the dispersion relations *(k) and **(k) for the operators P and
P* are related as follows:

**(k)=*(&k). (2.1)

We note that the Fermi surface FP is periodic with respect to the reciprocal
lattice 1*=(2?Z)n. Therefore, it is sometimes useful to factor out the
periodicity by considering the (analytic) exponential mapping \: Cn �
(C*)n, where

z=\(k)=\(k1 , ..., kn)=(exp ik1 , ..., exp ikn).

This mapping can be identified in a natural sense with the quotient map
Cn � Cn�1*. We also introduce the complex torus

T=\(Rn)=[z # Cn | |zj |=1, j=1, 2, ..., n]. (2.2)
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Definition 6. The image 8P=\(FP) of the Fermi surface FP under the
mapping \ is called the Floquet surface of the operator P.

The reader familiar with the Floquet theory immediately recognizes the
Floquet surface as the set of all Floquet multipliers of the equation Pu=0.

The main tool in the Floquet theory is an analog of the Fourier trans-
form (see [30, Section 2.2], [42]), which we will call the Floquet transform
U (it is sometimes also called the Gelfand transform),

f (x) � Uf (z, x)= :
# # 1

f (x&#) z#, z # (C*)n, (2.3)

where we denote z#=z#1
1

z#2
2

} } } z#n
n .

It is often convenient to use for the Floquet transform U the quasi-
momentum coordinate k instead of the multiplier z, where

z=\(k)=(exp ik1 , ..., exp ikn).

We need to recall now some definitions from [30]. For a point z # (C*)n,
we denote by Em, z the closed subspace of the Sobolev space H m(K) formed
by the restrictions of functions v # H m

loc(Rn) that satisfy the Floquet condi-
tion v(x+#)=z#v(x) for any # # 1. One can show (see Theorem 2.2.1 in
[30]) that

Em := .
z # (C*)n

Em, z (2.4)

forms a holomorphic sub-bundle of the trivial bundle (C*)n_H m(K). As
any infinite dimensional analytic Hilbert bundle over a Stein domain, it is
trivializable (see Theorems 1.3.2, 1.3.3, and 1.5.23 in [30]). One can also
notice that for m=0 the bundle E0 coincides with the whole (C*)n_L2(K).

The following standard auxiliary result for the transform U collects
several statements from Theorem XIII.97 in [42] and Theorem 2.2.2 in [30]:

Lemma 7. 1. For any nonnegative integer m the operator

U: Hm(Rn) � L2(T, Em)

is an isometric isomorphism, where L2(T, Em) denotes the space of square
integrable sections over the complex torus T of the bundle Em , equipped with
the natural topology of a Hilbert space.

2. Let the space

3m=[ f # H m
loc(R

n) | sup
# # 1

& f &H m(K+#) exp(b |#| )<�, \b>0]
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be equipped with the natural Fre� chet topology. Then

U: 3m � 1((C*)n, Em)

is an isomorphism, where 1((C*)n, Em) is the space of all analytic sections
over (C*)n of the bundle Em , equipped with the topology of uniform convergence
on compacta.

3. Let the elliptic operator P be of order m. Then under the transform
U the operator

P: Hm(Rn) � L2(Rn)

becomes the operator of multiplication by a holomorphic Fredholm morphism
P(z) between the fiber bundles Em and E0 . Here P(z) acts on the fiber of Em

over the point z # T as the restriction to this fiber of the operator P acting
between Hm(K) and L2(K).

Here is another standard way of looking at the morphism P(z). Let
z=exp ik, then commuting with the exponent exp ik } x one can (locally)
trivialize the bundle Em reducing it to the trivial bundle with the fiber
Hm(Tn), where as before Tn=Rn�1. At the same time the operator P(z)
takes the form P(x, D+k) between Sobolev spaces on the torus Tn.

Let us discuss the structure of the Floquet solutions (see Definition 1)
and of functions of Floquet type (1.6) in general. For illustration, consider
the constant coefficient case, where the role of the Floquet solutions is
played by the exponential polynomials

eik } x :
| j | �N

pjx j.

It is well known that, considered as distributions, all such functions are
Fourier transformed into distributions supported at the point (&k). More-
over, the converse statement is also true. A simple but extremely important
and relatively unnoticed observation is that under the Floquet transform,
each Floquet type function of the form (1.6) corresponds, in a similar way,
to a (vector valued) distribution supported at the quasimomentum (&k).
We collect below this fact and some other previously known properties of
Floquet solutions, as well as a new result on the dimensions of the spaces
of such solutions, which will play the crucial role in establishing the
Liouville type theorems.

First of all, every Floquet type function u (see (1.6)), being of exponen-
tial growth, determines a (continuous linear) functional on the space 30. If,
additionally, it satisfies the equation Pu=0 for a periodic elliptic operator
of order m, then as such a functional it is clearly orthogonal to the range
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of the dual operator P*: 3m � 30. According to Lemma 7, after the
Floquet transform any such functional becomes a functional on 1((C*)n, E0),
which is orthogonal to the range of the Fredholm morphism P*(z): Em � E0

generated by the dual operator P*: 3m � 30. We are now ready to formulate
the following auxiliary result.

Lemma 8. 1. A continuous linear functional u on 30 is generated by a
function of the Floquet form (1.6) with a quasimomentum k if and only if
after the Floquet transform it corresponds to a functional on 1((C*)n, E0)
which is a distribution , that is supported at the point &=exp(&ik), i.e., has
the form

(,, f ) = :
| j |�N �qj ,

� | j |f
�z j } &�, f # 1((C*)n, E0),

where qj # L2(K). The orders N of the Floquet function (1.6) and of the
corresponding distribution , are the same.

2. Let ak be the dimension of the kernel of the operator

P(x, D+k): Hm(Tn) � L2(Tn).

Then the dimension of the space of Floquet solutions of the equation Pu=0
of order at most N with a quasimomentum k is finite and does not exceed akqn, N .

The estimate on the dimension given in the second part of Lemma 8 is
very crude and in many cases can be significantly improved. In fact, as the
following theorem shows, we obtain an explicit formula for the dimension
of the space of Floquet solutions with a given quasimomentum in the case
of a simple eigenvalue. This theorem seems to be new and constitutes the
crucial part of the Liouville theorem proved in Section 4 (Theorem 23).

In order to formulate this result, we need to prepare some notions and
notations.

Definition 9. Let Q be a homogeneous polynomial in n complex
variables. A polynomial p(x) in Rn is called Q-harmonic, if it satisfies the
differential equation Q(D) p=0.

Let P denote the vector space of all polynomials in n variables, and let
Pl be the subspace of all homogeneous polynomials of degree l. Denote by
PN=�N

l=0 Pl the subspace of all polynomials of degree at most N. So,
P=��

l=0 Pl . If Q(k) is a nonzero homogeneous polynomial of degree s,
then the differential operator Q(D): Pl+s � Pl is surjective for any l (this
simple statement will also follow from the proof of the theorem below).
Hence, the mapping Q(D): P � P has a (nonuniquely defined) linear right
inverse R that preserves the homogeneity of polynomials.
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Theorem 10. Assume that zero is an eigenvalue of algebraic multiplicity
1 of the operator P(x, D+k0): Hm(Tn) � L2(Tn) on the torus Tn. Let *(k)
be an analytic function in a neighborhood of k0 such that *(k) is a simple
eigenvalue of the operator P(x, D+k) : Hm(Tn) � L2(Tn) and *(k0)=0.
Let

*(k)= :
�

l=l0

*l (k&k0)

be the Taylor expansion of *(k) around the point k0 into homogeneous poly-
nomials such that *l0

is the first nonzero term of this expansion. Then for any
N # N the dimension of the space of Floquet solutions of the equation Pu=0
in Rn of order at most N and with the quasimomentum k0 is equal to the
dimension of the space of all *l0

-harmonic polynomials of degree at most N.
Moreover, given a linear right inverse R of the mapping *l0

(D): P � P

that preserves homogeneity, one can construct an explicit isomorphism between
these spaces.

Proof. It is sufficient to consider the case k0=0, since the general case
reduces to this by a change of variables. Consider the operator family

A(k)=P*(x, D&k)&*(&k): Hm(Tn) � L2(Tn)

which is analytic in a neighborhood of 0. At each point k of this neighbor-
hood A(k) has by the construction a one-dimensional kernel. Then, according
to Theorem 1.6.13 in [30], there exists an analytic non-vanishing vector
�(k) # Ker A(k). In other words, P*(x, D&k) �(x, k)=*(&k) �(x, k). Let
us choose a closed complementary subspace M to Ker A(0) in Hm(Tn).
Then it is complementary to Ker A(k) in a neighborhood of 0. Since P*(x, D)
has zero kernel on M and is Fredholm, we conclude that P*(x, D&k) has
zero kernel on M for all k in a neighborhood of 0. We denote by 6(k) the
closed subspace in L2(Tn) defined as 6(k)=P*(x, D&k)(M). Applying
Theorem 1.6.13 of [30] again, we conclude that 6(k) depends holomorphi-
cally on k in a neighborhood of 0 (i.e., forms a Banach bundle) and hence it
is complementary to Ker A(k). Representing now the operator P*(x, D&k)
in the block form according to the decompositions

Hm(Tn)=M�Ker A(k)

and

L2(Tn)=6(k)�Ker A(k),
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we get

P*(x, D&k)=\B(k)
0

0
*(&k)+ ,

where B(k) is an analytic invertible operator-function between M and 6(k).
If we now have a functional , on 1((C*)n, E0) supported at v=exp(0), such
that it is orthogonal to the range of the operator of multiplication by P*(k),
then it must be equal to zero on all sections of the bundle 6(k). This means
that the restriction of such functionals to the sections of the one-dimensional
bundle Ker A(k) is an one-to-one mapping. This reduces the problem to
the following scalar one: find the dimension of the space of all distributions
of order N supported at the origin such that they are orthogonal to the
ideal generated by *(&k) in the ring of germs of analytic functions. One
can change variables to eliminate the minus sign in front of k. Due to the
finiteness of the order of the distribution, the problem further reduces to
the following: find the dimension of the cokernel of the mapping

4N : PN � PN ,

where 4N( p) for p # PN is the Taylor polynomial of order N at 0 of the
product *(k) p(k). Let us write the block matrix 4ij of the operator 4N that
corresponds to the decomposition PN=�N

l=0 Pl . It is obvious that 4ij=0
for i& j<l0 . For i& j�l0 the entry 4ij is the operator of multiplication by
*i& j acting from Pj into Pi . Since *l0 {0, for i& j=l0 the operator 4ij of
multiplication by *l0 has zero kernel. Being interested in the cokernel of
4N , we need to find the kernel of the adjoint matrix 4*N . The adjoint
matrix acts in the space �N

l=0 Pl*, where Pl* can be naturally identified
with the space of linear combinations of the derivatives of order l of the
Dirac's delta-function at the origin. Here we have 4*ij=0 for j&i<l0 , and
for j&i�l0 the entry 4*ij is the dual to the operator of multiplication by
*j&i acting from P i into Pj . In particular, since for j&i=l0 the latter
operator is injective, we conclude that the operators 4*ij are surjective. This
enables one to find the dimension of the kernel of the matrix 4*N and even
to describe its structure. Namely, let

�=(�0 , ..., �N) # �
N

l=0

Pl*

be such that 4*�=0. Due to the triangular structure of 4*N , it is easy to
solve this system. Indeed, it can be written as follows:

:
j�i+l0

4*ij �j=0, i=0, ..., N&l0 .
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Taking the Fourier transform, we can rewrite this system in the form

:
j�i+l0

*j&i (D) �j@=0, i=0, ..., N&l0 ,

where �� denotes the Fourier transform of �. Therefore, �j@ is a homo-
geneous polynomial of degree j in Rn. For i=N&l0 we have

*l0
(D) �N@=0.

This equality means that �N@ can be chosen as an arbitrary *l0
-harmonic

homogeneous polynomial of order N. Moving to the previous equation, we
analogously obtain

*l0
(D) �N&1@ +*l0+1(D) �N@=0,

or

*l0
(D) �N&1@ =&*l0+1(D) �N@ .

The right hand side is already determined, and the nonhomogeneous
equation, as we concluded before, always has a solution, for instance

&R(*l0+1(D) �N@).

This means that

�N&1@ +R(*l0+1(D) �N@)

is a *l0
-harmonic homogeneous polynomial of order N&1. We see that the

solution �N&1@ exists and is determined up to an addition of any homo-
geneous *l0

-harmonic polynomial of degree N&1. Continuing this process
until we reach �0@ , we conclude that the mapping

�=(�0 , ..., �N) � ,=(,0 , ..., ,N),

where

,j=�j@+R :
i> j

*i& j+l0
(D) �� i

establishes an isomorphism between the cokernel of the mapping 4N and
the space of *l0

-harmonic polynomials of degree at most N. This proves the
theorem. K

In the cases of the simplest structures of the Taylor series, the theorem
implies the following:
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Corollary 11. Under the hypotheses of Theorem 10 the following hold:

1. If k0 is a noncritical point of the band function *(k), then the dimen-
sion of the space of Floquet solutions of the equation Pu=0 in Rn of order
at most N with a quasimomentum k0 is equal to the dimension qn&1, N of the
space of all polynomials of degree at most N in Rn&1.

2. If the Taylor expansion of the band function *(k) at a point k0

starts with a nondegenerate quadratic form, then the dimension of the space
of Floquet solutions of the equation Pu=0 in Rn of order at most N with a
quasimomentum k0 is equal to the dimension hn, N of the space of harmonic
(in the standard sense) polynomials of degree at most N in Rn. In particular,
this condition is satisfied at nondegenerate extrema.

In both cases an isomorphism can be provided explicitly as in the previous
theorem.

Proof. 1. By our assumptions, the Taylor expansion of *(k) starts
with a nonzero linear term *1(k)=�n

j=1 a j kj , aj # C. The corresponding
differential operator is

*1(D)=&i :
n

j=1

a j
�

�xj
= :

n

j=1

:j
�

�xj
+i :

n

j=1

;j
�

�xj
,

where :j and ;j are real. Consider first the case when the vectors :=(:j)
and ;=(;j) are collinear. Then *1(D) becomes #0 � #j

�
�xj

, where #0 {0 is
a complex number and #=(#j) is a nonzero real vector. A linear change of
coordinate system brings *1(D) to the operator �

�x1
(up to an irrelevant

constant factor). Thus, the *1 -harmonic polynomials are exactly those
independent on x1 . Invoking Theorem 10, we get our conclusion in this
case. Consider now the situation when : and ; are linearly independent.
Then a linear change of variables brings *1 to the form ���z� , where z=
x1+ix2 . Since any polynomial in variables (x1 , ..., xn) is a polynomial of
the same degree in (z, z� , x3 , ..., xn), the *1 -harmonic polynomials are the
ones depending on (z, x3 , ..., xn) only (i.e., the ones analytic in z). This
again reduces the number of variables to n&1.

2. By our assumptions, the first nonzero homogeneous term is a non-
degenerate quadratic form *2(k&k0), which is reducible to the sum of
squares of coordinates by a linear change of variables. Therefore, in the
new coordinates *2(D)=&2. Using Theorem 10, we obtain the desired
result. K
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In the remaining part of this section we restrict further the form of the
operator. Namely, we consider now second order operators with real
periodic coefficients of the form

L=& :
n

i, j=1

aij (x) �i � j+ :
n

i=1

bi (x) � i+c(x). (2.5)

It is assumed that the uniform ellipticity condition

:
n

i, j=1

aij (x) `i` j�a :
n

i=1

`2
i

is satisfied for all x, ` # Rn, where a is a positive constant.
For such operators, we introduce the function that will play the crucial

role in our considerations. Its properties were studied in detail in [2, 36],
and [41]. Consider the function 4(!): Rn � R defined by the condition
that the equation

Lu=4(!) u

has a positive Bloch solution of the form

u!(x)=e! } xp!(x), (2.6)

where p!(x) is 1-periodic.

Lemma 12. 1. The value 4(!) is uniquely determined for any ! # Rn.

2. The function 4(!) is bounded from above, strictly concave, analytic,
and has a nonzero gradient at all points except at its maximum point.

3. Consider the operator

L(!)=e&! } xL b e! } x=L(x, D&i!)

on the torus Tn. Then 4(!) is the principal eigenvalue of L(!) with a positive
eigenfunction p! . Moreover, 4(!) is algebraically simple.

4. The Hessian of 4(!) is nondegenerate at all points.

One should note that since the function 4(!) is analytic, it is actually
defined in a neighborhood of Rn in Cn. This remark will be used in what
follows.

Let us denote

40=max
! # R n

4(!). (2.7)
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It follows from [2, 36] that an alternative definition of 40 is

40=sup[* # R | _u>0 such that (L&*) u=0 in Rn], (2.8)

and that in the self-adjoint case 40 coincides with the bottom of the spectrum
of the operator L. The common name for 40 is the generalized principal eigen-
value of the operator L in Rn.

We will often need to assume that 40 is either nonnegative or strictly
positive. In the self-adjoint case such an assumption has a clear spectral
interpretation. In the next lemma, we provide some known sufficient condi-
tions for the nonnegativity or positivity of 40 for operators of the form (2.5).

Lemma 13. Consider an operator L of the form (2.5)

1. 40�0 if and only if the operator L admits a positive (super)solution.
This condition is satisfied in particular when c(x)�0.

2. 40�0 if and only if the operator L admits a positive solution of the
form (2.6).

3. 40=0 if and only if the equation Lu=0 admits exactly one normalized
positive solution in Rn.

4. If c(x)=0, then 40=0 if and only if �Tn b(x) �(x) dx=0, where �
is the principal eigenfunction of L* on Tn. In particular, divergence form
operators satisfy this condition. Here b(x)=(bi (x), ..., bn(x)).

5. Let ! # Rn, and assume that u!(x)=e! } xp!(x) and u*&! are positive
Bloch solutions of the equations Lu=0 and L*u=0, respectively. Denote by
� the periodic function u!u*&! . Consider the function

b� i (x)=bi (x)&2 :
n

j=1

a ij(x)[! j+( p!(x))&1 �jp!(x)],

and denote

#=(#1 , ..., #n) :=\|Tn
b� 1(x) �(x) dx, ..., |

Tn
b� n(x) �(x) dx+ .

Then 40=0 if and only if #=0.

Let us discuss also some additional properties that will play an important
role in the sequel. Assume that 40�0. Then Lemma 12 implies that the zero
level set

5=[! # Rn | 4(!)=0] (2.9)
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is either a strictly convex compact analytic surface in Rn of dimension n&1
(this is the case if and only if 40>0), or a singleton (this is the case if and
only if 40=0). The manifold 5 consists of all ! # Rn such that the equation
Lu=0 admits a positive Bloch solution u!(x)=e! } xp!(x), p!(0)=1.
Moreover, the set of all such positive Bloch solutions is the set of all mini-
mal positive solutions of the equation Lu=0 in Rn [2, 36]. It is also estab-
lished that a function u is a positive solution of the equation Lu=0 in Rn

if and only if there exists a positive finite measure + on 5 such that

u(x)=|
5

u!(x) d+(!).

We denote by G the convex hull of 5, and by G1 its interior. Note that
if 40�0 then 40=0 if and only if 5=G and hence G1 =<.

Lemma 14. Suppose that 40>0. There exists a neighborhood W of G in
Cn and an analytic function

W % ! [ p!( } ) # H2(Tn)

such that for any ! # W the function of x

u!(x)=exp(! } x) p!(x)

is a nonzero Bloch solution of the equation Lu=4(!) u with a quasimomen-
tum &i!. Moreover, one can choose the function p in such a way that it is
positive for all ! # 5.

Comparing the definitions of 5 and of the Fermi surface FL , it follows
that

&i5/FL .

The next lemma specifies further the relation between these two varieties:

Lemma 15. Let 40�0. Then

1. The intersection of the complex Fermi surface FL with the tube

T=[k # Cn | Im k=(Im k1 , ..., Im kn) # &G] (2.10)

coincides with the union of the surface &i5 with its translations by the
vectors of the reciprocal lattice 1*, i.e., consists of vectors k=&i!+# where
! # 5 and # # 1*. Moreover, up to a multiplicative constant, any nonzero
Bloch solution with a quasimomentum in the above intersection is a positive
Bloch solution.
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2. If 40>0, then the intersection of FL with a sufficiently small neigh-
borhood of &i5 is a (smooth) analytic manifold that coincides with the set
of zeros of the function 4(ik).

Analogously to the definition of the Floquet surface 8=8L , we define
the surface

9=\(&i5)=[z | z=(exp !1 , ..., exp !n), ! # 5], (2.11)

and the tubular domain

V=\(T), (2.12)

where T was defined in (2.10). The results of Lemmas 14 and 15 can be
rephrased in terms of these objects:

Lemma 16. Let 40�0. Then

1. 8 & V=9.
If 40>0, then

2. The intersection of 8 with a sufficiently small neighborhood of 9 is
a (smooth) connected analytic manifold.

3. The intersections of 8 with neighborhoods of the tube V form a
basis of neighborhoods of 9 in 8.

4. For a sufficiently small neighborhood 8= of 9 in 8 there exists an
analytic function p: 8= � H 2(Tn) such that for any z # 8= the function of x

uz(x)=zxp(z, x)

is a nonzero Bloch solution of the equation Lu=0.

We will also employ the following lemma:

Lemma 17. Consider an operator L of the form (2.5)

1. Assume that c(x)�0. Then the only solutions of the equation Lu=0
of the type exp(ik } x) p(x), where k # Rn and p is a 1-periodic function are
the constants. If such a nontrivial solution exists, then c(x)=0, and 4(0)=0
(i.e., 0 # 5).

2. Suppose that the operator L admits a positive periodic supersolution
� # C2, :(Rn). Assume that v(x)=exp(ik } x) p(x) is a nontrivial solution of
the equation Lu=0, where k # Rn and p is a periodic function. Then there
exists C # C such that v=C�, the function � is a positive periodic solution,
and 4(0)=0.
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3. REPRESENTATION OF SOLUTIONS BY HYPERFUNCTIONS

The main result of this section (Theorem 18) is analogous to Theorem
5.1 in [4], which characterizes the class of solutions of the Helmholtz
equation that can be represented by means of hyperfunctions on S (see also
the introduction to our paper).

In order to state it, we need to introduce a new object. Let us denote by
h(|), | # Sn&1 the indicator function of the convex set G. Namely,

h(|)=sup
! # G

(| } !), (3.1)

where | } !=�n
j=1 |j!j is the inner product in Rn. The next Theorem will

be stated in terms of this function.

Theorem 18. Suppose that 40>0. Let u be a solution of the equation
Lu=0 in Rn satisfying for any =>0 the estimate

|u(x)|�C= exp((h(x�|x| )+=) |x| ), (3.2)

where C= is a constant depending only on = and u. Then u can be represented
as

u(x)=(+(!), u!(x)) , (3.3)

where u! is the analytic positive Bloch solution corresponding to ! # 5 (see
Lemma 14), and +(!) is a hyperfunction (analytic functional ) on 5. The
converse statement is also true: for any hyperfunction + on 5, the function
u(x) in (3.3) is a solution of the equation Lu=0 in Rn which satisfies the
growth condition (3.2).

Remark 19. Using a standard elliptic argument it follows that the
pointwise growth condition (3.2) is equivalent to the growth condition

u(x) exp(&(h(x�|x| )+=)|x| ) # L2(Rn). (3.4)

Proof of Theorem 18. Assume first that a solution u has the representa-
tion (3.3). We need to prove that u satisfies the growth condition (3.2). Due
to the real analyticity of u! with respect to ! and according to Lemmas 14
and 15, u! can be extended to an analytic vector function u!(x)=exp(! } x) p!(x)
on an =-neighborhood U= of 5 in iFL . Since + is a hyperfunction (analytic
functional) on 5, we have an estimate

|u(x)|�C= max
! # U=

|u!(x)|.
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Hence we have

|u(x)|�C= max
! # U=

|e! } x|=C=e |x| (h(x�|x| )+$(=)),

where lim= � 0 $(=)=0, which gives (3.2).
Suppose now that u satisfies (3.2). We need to prove that u can be

represented as in (3.3). Let G= be the =-neighborhood of G and h==h+=
be the indicator function of G= . Consider the following Fre� chet spaces of
test functions,

Wm, ==[, # H m
loc(Rn) | (,) m, $<�, \ 0<$<=],

where

(,) m, $ :=sup
# # 1

[&,&Hm (K+#)e(h$ (#�|#| ) |#| )].

It is obvious that the operator L* maps continuously W2, = into W0, = .
Consequently, the linear functional

(u, ,) :=|
R n

u(x) ,(x) dx

is continuous on the space W0, = for any =>0. Since Lu=0, Schauder elliptic
estimates together with the periodicity of the operator show that estimates
similar to (3.2) hold also for the derivatives of u. One observes that u is a
continuous functional on W0, = which annihilates the range of the operator
L*: W2, = � W0, = . Now Floquet theory arguments analogous to the ones
used in [30, Section 3.2] can be applied to yield (3.3). Let us make this
part more precise.

Our first goal is to obtain a Paley�Wiener type theorem for the Floquet
transform in the spaces Wm, = . Let us denote by V= the domain in (C*)n

V==[z=(z1 , ..., zn) # (C*)n | zj=exp ik j such that

Im k=(Im k1 , ..., Im kn) # (&G=)]

and let

V =*=[z=(z1 , ..., zn) # (C*)n | z&1=(z&1
1 , ..., z&1

n ) # V=],

The domains V= form a basis of neighborhoods of the tube V, where V is
defined by (2.12). The following statement is a Paley�Wiener type theorem
for the transform U which is suitable for our purpose.
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Lemma 20. 1. The operator

U: Wm, = � 1(V =* , Em)

is an isomorphism, where 1(V =* , Em) is the space of holomorphic sections
over V =* of the bundle Em , equipped with the topology of uniform convergence
on compacta.

2. Under the transform U, the operator

L*: W2, = � W0, =

becomes the operator L(z) of multiplication by a holomorphic Fredholm
morphism between the fiber bundles E2 and E0 :

1(V =*, E2) ww�
L(z) 1(V =*, E0).

Here L(z) acts on each fiber of E2 as the restriction to this fiber of the
operator L* acting between H2(K) and L2(K).

Let us choose a value =0>0 such that the intersection of 8 with V= is
smooth and connected. This is possible according to Lemma 16. From now
on, we will only consider the values 0<=<=0 .

Since the image Uu of the solution u under the Floquet transform U is
a continuous linear functional on 1(V =* , E0) which is in the cokernel of the
operator

1(V =*, E2) ww�
L(z) 1(V =*, E0),

our task is to describe all such functionals. Several theorems of this kind
were proven in [30]. In our current situation such a representation can be
obtained rather easily, due to the simplicity of the structure of the Floquet
variety inside V= . Namely, let uz( } )=zxp(z, } ) be the Bloch solution of the
equation Lu=0 introduced in Lemma 16. Let also H(8=) be the space of
holomorphic functions on 8==8 & V= equipped with the topology of
uniform convergence on compacta. We introduce the mapping

t: 1(V =*, E0) � H(8=)

which for any section f (z, x) of the bundle E0 produces

tf (z)=( f (z&1, } ), uz) =|
Tn

f (z&1, x) uz(x) dx.

Here z&1=(z&1
1 , ..., z&1

n ).
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Lemma 21. Let 0<=<=0 , where =0 is the value defined above. Then the
mapping t is a topological homomorphism and the following sequence is
exact:

1(V =* , E2) ww�
L(z) 1(V =* , E0) w�

t
H(8=) � 0.

This lemma practically finishes the proof of the theorem. Namely, the
solution u after the Floquet transform leads to a continuous linear functional
on 1(V =*, E0) that annihilates the range of the operator of multiplication by
L(z). Lemma 21 implies that such a functional can be pushed down to the
space H(8=). Since this functional, due to the estimate (3.2), is continuously
extendable to H(8=) for arbitrarily small values of =, it is in fact a hyperfunc-
tion (analytic functional) + on 8=�=>0 8= . Hence, the action (u, ,) of
the functional u on a function , # W0, = can be obtained as

(u, ,)=(+(z), t(z)(U,)) .

Applying now the explicit formulas for the transforms U and t, one arrives
to the representation (3.3). Indeed,

t(U,)(z)=|
K

U,(z&1, x) uz(x) dx

= :
# # 1

|
K&#

,(x) z&#uz(x+#) dx

=|
Rn

,(x) uz(x) dx. (3.5)

In this calculation we used the property of the Bloch solutions

uz(x+#)=z#uz(x).

Therefore,

(u, ,)=((+(z), uz) , ,) ,

which concludes the proof of the theorem. K

4. LIOUVILLE-TYPE THEOREM

In this section we discuss Liouville theorems for periodic equations. We
will consider at the moment an arbitrary linear elliptic operator P(x, D)

424 KUCHMENT AND PINCHOVER



with smooth 1-periodic coefficients which satisfies the assumptions made in
Section 2 (as above, without loss of generality we can reduce the considera-
tion to the case 1=Zn).

Definition 22. We say that the Liouville theorem holds true for the
operator P, if for any N # N the space VN(P) of solutions of the equation
Pu=0 in Rn that can be estimated as

&u&L2 (K+#)�C(1+|#| )N for all # # 1

is finite dimensional.

In the case when the Liouville theorem holds, we will be also interested
in the dimensions dN of the spaces VN(P) and in representations of their
elements analogous to (1.3).

The result below explains under what conditions on the operator P a
Liouville-type theorem holds. These conditions will then be verified for
some specific classes of operators.

As was mentioned in the introduction, solutions representable as (1.3)
are just Floquet solutions with zero quasimomentum. So, the Liouville
theorem of [8, 38] cited in the introduction states that any polynomially
growing solution is a Floquet solution with a zero quasimomentum. Let us
also mention that any Bloch solution eik } xp(x) with a real quasimomentum
k is automatically bounded. This means that the validity of the Liouville
theorem for an operator P implies that the number of the real quasi-
momenta of solutions of the equation Pu=0 must be finite (modulo the
action of the reciprocal lattice). In other words, the Fermi surface for P
intersects the real space at a finite number of points (modulo the reciprocal
lattice). In terms of the Floquet variety it means that the set Z :=8P & T
is finite. We denote the cardinality of a set A by *A. As the second state-
ment of the next theorem shows, the finiteness of Z is in fact the only claim
of the Liouville theorem.

Theorem 23. 1. The equation Pu=0 has a nonzero polynomially grow-
ing solution if and only if it has a nonzero bounded Bloch solution, i.e., if and
only if the intersection FL & Rn of the Fermi surface for P with the real space
is not empty (or equivalently, Z=8P & T{<).

2. The Liouville theorem holds for the operator P if and only if the
intersection FP & Rn is a finite set modulo the reciprocal lattice (or equiv-
alently, *Z<�). Moreover, if *Z=� then the Liouville theorem does
not hold even for bounded solutions, i.e., d0=dim(V0)=�.
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3. If the Liouville theorem holds, then each solution u # VN(P) can be
represented as a finite sum of Floquet solutions:

u(x)= :
q # FP & Rn

eiq } x :
| j | �N

x jp j, q(x). (4.1)

4. If the Liouville theorem holds, then for all N�0 we have

dN�d0qn, N<�,

where qn, N is the dimension of the space of all polynomials of degree at most
N in n variables.

5. Assume that the Liouville theorem holds and that for each real
quasimomentum q (i.e., for each q # FP & Rn) the conditions of Theorem 10
are satisfied. Then for each N�0 the dimension dN of the space VN(P) is
equal to the sum over q # (FP & Rn)�1* of the dimensions of the spaces of
*q -harmonic polynomials of order at most N (see Definition 9), where *q is
the first nonzero homogeneous term in the Taylor expansion at the point q
of the dispersion relation (band function) *(k).

Proof. Statements 4 and 5 follow from 3 together with Lemma 8 and
Theorem 10. So, we first prove statements 2 and 3 and conclude with the
proof of the first statement.

In order to prove 2 let us notice that if *Z=� then each point
z=exp ik # Z provides a bounded Bloch solution with the quasimomen-
tum k, and these solutions are linearly independent. This means that the
Liouville theorem cannot hold in this case.

Assume now that *Z<�. We need to prove that the Liouville
theorem and representation (4.1) hold true. Obviously, if u has a represen-
tation of the form (4.1), then u is of a polynomial growth. The proof that
any polynomially growing solution is of the form (4.1) follows the same
simple strategy as in the proofs of Theorem 18 and of the main Floquet
representation [30, Theorem 3.2.1] (which, in turn, comes from the
approach of [16] and [39]). As in the case with the fundamental principle
(see [16] and [39]), it is more convenient to deal with a dual formulation,
as it is done in [30]. Namely, any polynomially growing solution u(x)
can be interpreted in the dual way, as a functional on an appropriate
functional space, which belongs to the cokernel of the dual operator P*.
Consequently, a representation theorem for all such functionals must be
obtained. In order to make this idea precise, we need to introduce appro-
priate test functions spaces.
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Consider the Fre� chet spaces

Cm=[, # H m
loc(R

n) | sup
# # 1

&,&Hm (K+#) (1+|#| )N<�, \N].

Let the order of the operator P be m, then it is clear that P* maps con-
tinuously Cm into C0 . Due to the polynomial growth of u(x), the linear
functional

(u, ,)=|
R n

u(x) ,(x) dx

is continuous on C0 . Since Pu=0, one easily observes that u annihilates
the range of the operator P*: Cm � C0 . We need now a Paley�Wiener type
theorem for the spaces Cm with respect to the Floquet transform.

Lemma 24. 1. The operator

U: Cm � C�(T, Em)

is an isomorphism, where C�(T, Em) is the space of C � sections of the
bundle Em over the complex torus T, equipped with the standard topology.

2. Under the transform U, the operator

P*: Cm � C0

becomes the operator P(z) of multiplication by a holomorphic Fredholm
morphism between the fiber bundles Em and E0 :

C�(T, Em) ww�
P(z) C �(T, E0).

Here P(z) acts on each fiber of Em as the restriction to this fiber of the
operator P* acting between Hm(K) and L2(K).

3. The operator P(z) is invertible for a point z # T if and only if
z&1 � 8.

The next lemma is an analog of the classical theorem on the structure of
distributions supported at a single point. Together with the previous lemma
it essentially leads to the statement of the theorem.

Lemma 25. Let T be a C�-manifold and P: T � L(B1 , B2) be a C�-func-
tion with values in the space L(B1 , B2) of bounded linear operators between
Banach spaces B1 and B2 . Assume that for each z # T the operator P(z) is
a Fredholm operator. Then

427PERIODIC ELLIPTIC EQUATIONS



1. If P(z) is surjective for all points z in T, then the multiplication
operator

C�(T, B1) ww�
P(z) C �(T, B2)

is surjective.

2. If P(z) is surjective for all points z except a finite subset Z/T,
then any continuous linear functional g on the space of smooth vector func-
tions C�(T, B2) that annihilates the range of the multiplication operator

C�(T, B1) ww�
P(z) C �(T, B2)

has the form

(g, ,)= :
z # Z

_ :
j�N

D j, z((gj, z , ,) )& z
. (4.2)

Here gj, z are continuous linear functionals on B2 , (gj, z , ,) denotes the duality
between B2* and B2 , Dj, z are linear differential operators on T, and N # N.

We are ready now to finish the proof of the nontrivial part of the third
statement of Theorem 23.

If u is a solution of polynomial growth, it belongs, as it has been
mentioned already, to the cokernel of the operator P*: Cm � C0 . After the
Floquet transform we are dealing with the cokernel of the operator

C�(T, E2) ww�
P(z) C �(T, E0).

By Lemma 24, the only points z # T where P(z) is not invertible are those
points where z&1 belongs to the Floquet variety. Since by our assumption
the set Z=T & 8 is finite, it follows that the operator function P(z)
satisfies all the assumptions of Lemma 25. The fact that we are dealing with
Banach bundles instead of fixed Banach spaces is irrelevant, since these
bundles are trivial. This means that we have the representation (4.2) with
gj # L2(Tn). According to Lemma 8, functionals of the form (4.2) correspond
under the inverse Floquet transform exactly to functions of the form (1.3).

It remains to prove the first statement of the theorem. Let u be a polyno-
mially growing solution. Assume that Z=<, i.e., the intersection of the
Floquet variety 8 with the complex torus T is empty. Therefore, the last
statement of Lemma 24 implies the invertibility of P(z) for all z # T. Now,
the first statement of Lemma 25 guarantees the surjectivity of the mapping

C�(T, Em) ww�
P(z) C �(T, E0)
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and hence the absence of any nontrivial functionals on C�(T, E0) that
annihilate the image of this mapping. Since under the Floquet transform U,
a polynomially growing solution u(x) is mapped to such a functional, we
conclude that u=0. K

Remark 26. The first statement of Theorem 23 is a part of the analog
of the Bloch theorem provided in Theorem 4.3.1 of [30]. Namely, the exist-
ence of a sub-exponentially (in particular, polynomially) growing solution
implies the existence of a Bloch solution with a real quasimomentum, and
hence the nonemptiness of the real Fermi variety. For completeness, we
gave above an independent proof of this statement.

One realizes now that the cases when a Liouville-type theorem holds in
a nonvacuous way are extremely rare. Namely, Theorem 23 shows that this
happens only when the Fermi variety touches the real subspace at a finite
set of points (modulo the reciprocal lattice). This means in particular, that
in the selfadjoint case, one should expect this to happen only at the edges
of the spectral gaps. Although it is possible to imagine interior points of the
spectrum where such a thing could occur, it is hard to believe that these
cases could be anything more than accidents.

One can expect the following conjecture to be true:

Conjecture 27. Let P be a ``generic'' self-adjoint second order elliptic
operator with periodic coefficients and (*& , *+) be a nontrivial gap in its
spectrum. Then each of the gap's endpoints is a unique (modulo the dual
lattice) and nondegenerate extremum of a single band function *j (k).

The validity of this conjecture together with Theorem 23 would imply
that generically at the gap ends the dimension of the space VN is equal to
the dimension hn, N of the space of all harmonic polynomials of order at
most N in n variables. Unfortunately, the only known theorem of this kind
is the recent result of [27], which states that generically a gap edge is an
extremum of a single band function.

At the bottom of the spectrum, however, much more is known. The
theorem below combines some results of [17, 26, 41] with the statement of
Theorem 23 to obtain the structure and dimension of the space of polyno-
mially growing solutions in this case. Below the spectrum, the Liouville
theorem holds vacuously, according to the first statement of Theorem 23
and Theorem 4.5.1 in [30].

Theorem 28. 1. Let H=&2+V(x) be a Schro� dinger operator with a
periodic real valued potential V # Lr�2(Tn), r>n. Then the lowest band func-
tion *1(k) has a unique nondegenerate minimum 40 at k=0. All other band
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functions are strictly greater than 40 . Every solution u # VN(H&40) is
representable in the form (1.3). The dimension of the space VN(H&40) is
equal to hn, N .

2. Let V be like in the previous statement, then there exists =>0 such
that for any periodic real valued magnetic potential A such that

&A&Lr(Tn)<=

and

|
T n

A(x) dx=0 (4.3)

the following statements hold true: The lowest band function *1(k) of the
magnetic Schro� dinger operator H=(i{+A)2+V attains a unique non-
degenerate minimum 40 at a point k0 . All other band functions are strictly
greater than 40 . Every solution u # VN(H&40) is representable in the Floquet
form

v(x)=eik0 } x :
| j |�N

x jpj (x)

with periodic functions pj (x). The dimension of the space VN(H&40) is
equal to hn, N .

3. Suppose that L is a second order elliptic operator of the form (2.5)
such that 40�0.

If 4(0)=0 (i.e., 0 # 5), then the Liouville theorem holds and every solution
u # VN(L) is representable in the form (1.3). The dimension of the space
VN(L) is equal to hn, N in the case when 40=0, and to qn&1, N when 40>0.

If 4(0)>0, then the equation Lu=0 does not admit a nontrivial polyno-
mially growing solution. So, the Liouville theorem holds vacuously.

Proof. 1. The result of [26] says that the lowest band function *1(k)
has a unique nondegenerate minimum 40 at k=0 and that all other band
functions are strictly greater than 40 . Now Theorem 23 implies the rest of
the claims of this statement.

2. When both the electric and magnetic potentials are sufficiently
small, then the result of [17] states that the lowest band function *1(k)
of the magnetic Schro� dinger operator H=(i{+A)2+V attains a unique
nondegenerate minimum 40 at a point k0 , while all other band functions
are strictly greater than 40 . This statement, however, can be easily
extended to the case of arbitrary electric and small magnetic potential.
Indeed, when the magnetic potential is equal to zero, one can refer, as in
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the previous case, to [26]. At this moment one has to use analyticity of the
Bloch variety. Namely, the statement of Lemma 4 (see also [30, Theorem
4.4.2]) can be easily extended to include analyticity with respect to the
potentials (see, for instance, [17]). More precisely, there exists an entire
function f (k, *, A, V) of all its arguments such that f (k, *, A, V)=0 is
equivalent to

(k, *) # B (i{+A)2+V ,

where BH is the Bloch variety of the operator H. Now, the result of [26]
for A=0 together with the stated analyticity property imply the required
features of the lowest band function for sufficiently small magnetic poten-
tials. The last step is to use again Theorem 23. Note that the normalization
(4.3) can always be achieved by a gauge transformation which does not
affect the spectrum and the Liouville property.

3. The assumption 4(0)�0 implies that the operator L admits a
positive periodic supersolution. It follows from Lemma 17 that the Fermi
surface FL can touch the real space only at the origin (modulo the reciprocal
lattice 1*) and in this case 4(0)=0. Therefore, by the first part of Theorem
23, the Liouville Theorem holds vacuously if 4(0)>0.

Suppose now that 4(0)=0. Lemma 12 implies that if 40>0 then the
point k=0 is a noncritical point of the dispersion relation, and if 40=0
then k=0 is a nondegenerate extremum. Now Theorem 23, as before,
completes the proof. K

5. PROOFS OF THE LEMMAS

Proof of Lemma 8. The first claim of the lemma corresponds to
Theorem 3.1.3 in [30]. In order to prove the second part of the lemma, let
us fix a k0 # Cn, and choose a closed subspace M/Hm(Tn) complementary
to the kernel of the operator P*(x, D&k0). Consider the (analytically
depending on k in a neighborhood of k0) subspace

6(k) :=P*(x, D&k)(M)/L2(Tn)

and

N :=[6(k0)]=.
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Then dim(N)=ak0
, and for values of k close to k0 the space N remains

a complementary subspace to 6(k). Representing the operators P*(x, D&k)
in the matrix form according to the decompositions

Hm(Tn)=M�Ker P*(x, D&k0)

and

L2(Tn)=6(k)�N,

we get the matrix

\B(k)
0

V
C(k)+ ,

where B(k) is an invertible analytic operator function, and C(k) is an
analytic matrix function of the size ak0

_a*k0
. Here a*k0

is the dimension of
the kernel of the operator P*(x, D&k0). (Notice that ak0

=a*k0
if ind P=0,

which is true for instance, when dealing with scalar elliptic operators, due
to the Atiyah�Singer theorem.) Now, the space of all distributions orthogonal
to the range of P* and supported at exp(&ik0) reduces to the space of all
distributions supported at k0 , acting on Cak-valued vector functions, and
orthogonal to the range of the operator of multiplication by C(k). If we
drop the orthogonality condition, the dimension of the space of all such
distributions of order at most N is obviously equal to ak qn, N , which proves
the estimate. We point out that a direct proof of this estimate for scalar
operators can be also easily derived using the Leibnitz's rule. K

Proof of Lemma 12. Statements 1 through 3 of the lemma are con-
tained in [36], except the statement that the geometric rather than the
algebraic multiplicity of the eigenvalue 4(!) is equal to one. The latter
follows easily from Lemma 5.2 of [36]. Alternatively, it can be deduced
from general theorems on positive operators defined on an ordered Banach
space (see for instance, [29, Theorem 2.10]). Statement 4 is proven in
[41, Theorem 5]. K

Proof of Lemma 13. Statements 1�3 follow from the results of [2, 36],
while statements 4�5 follow from [41, Theorem 5]. K

Proof of Lemma 14. Consider the following family of operators on the
torus: L(x, D&i!)&4(!). It follows from Lemma 12 that this family is
analytic in a complex neighborhood W of the set G and its values are
Fredholm operators between the appropriate Sobolev spaces. The same
lemma implies that the dimension of the kernel of all these operators is
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equal to 1. Hence, these kernels form an analytic fiber bundle over W (see
Theorem 1.6.13 and the corresponding references in [30]). One can always
assume that the domain W is convex (in the geometric sense). Then the
kernel bundle (as all vector bundles on W) is topologically trivial. Since W,
being convex, is a domain of holomorphy (see for instance Corollary 2.5.6
in [24]), therefore, the result of [19] (an instance of the so called Oka's
principle) implies that the bundle is also analytically trivial. This means the
existence of a nowhere zero analytic section u! . Positivity of u! for ! # 5
can be achieved as follows. Let us choose any nonzero analytic solution u!

as above. Then for some small neighborhood W1 /W of G, we have
u!(0){0. So, we may normalize u! by dividing it by u!(0). The resulting
solution is clearly positive for ! # 5. K

Proof of Lemma 15. 1. Let u(x)=eik } xp(x) be a nonzero Bloch
solution, where p(x) is a 1-periodic function, and k # F & T. Assume first
that Im k # &G1 , so, 40>0. We need to prove that Re u=Im u=0. We
show for instance, that u1 :=Re u=0. Suppose that u1 {0. We may
assume that u1(x1)>0, for some x1 # Rn. Consider the positive solution

v(x)=|
5

u!(x) d_(!),

where d_ is the (n&1)-dimensional surface area element on 5. For every
M>0 there exists R>0 such that v(x)&Mu1(x)>0 for all |x|>R. By the
generalized maximum principle, v(x)>Mu1(x) in Rn. Since M is arbitrarily
large and u1(x1)>0, we arrived at a contradiction. Note that this argument
applies also to any Floquet solution with a quasimomentum k such that
Im k # &G1 .

Suppose now that Im k # &5 and 4�0. Clearly, it is enough to show
that there exists a real constant C and ! # 5 such that u1 :=Re u=Cu! . Let
!=&Im k. Then for a sufficiently small =>0 the function v= := u!

2 &=u1 is
a positive solution of the equation Lu=0, which is smaller than u! . Recall
that u! is a minimal positive solution of the equation Lu=0. Therefore,
there exists c>0 such that v==cu! , which implies that u1=Cu! for
some C # R.

2. Consider the zero set F1 of the analytic function 4(ik) in a small
complex neighborhood of &i5. Since 40>0, it follows that the gradient of
4(ik) is not zero on &i5. Therefore, F1 is a smooth analytic variety. We
will show that the Fermi surface F coincides with F1 in a neighborhood of
&i5, which will conclude the proof of the lemma. Indeed, obviously
F1 /F. Consider a point k0=&i!0 # &i5. By Lemma 12, zero is a simple
eigenvalue of the operator L(x, D+k0)=L(x, D&i!0). This means that
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the spectral projector that corresponds to a neighborhood of zero is one-
dimensional for all complex k close to k0 . We conclude that for all k in a
complex neighborhood of &i5 there is exactly one eigenvalue close to zero
of the operator L(x, D+k). By Lemma 14, we know this eigenvalue,
namely 4(ik). Let now k belongs to a small neighborhood of &i5 and
assume that k � F1 . Then 4(ik){0, and hence zero cannot be the eigen-
value of L(x, D+k). This means that k does not belong to the Fermi
surface F. K

Proof of Lemma 17. 1. If c}0, the assertion of the lemma follows
from [36, Theorem 4.5]. On the other hand, if c=0, then 0 # &i5, and in
particular, 0 # (&G). It follows from Lemma 15 that any Bloch solution
with a real quasimomentum is the constant solution.

2. This assertion follows directly from part 1 using the operator
�&1L b �. K

Proof of Lemma 20. The second statement of the lemma coincides with
Theorem 2.2.3 in [30]. So, we need to prove only the first statement.

Let . # Wm, = . We will show that the series (2.3) converges uniformly
on compacta in V =* as a series of functions on V =* with values in H m(K).
This would imply that U. # 1(V =*, H m(K)), and that the corresponding
(one-to-one) mapping U: Wm, = � 1(V =* , Hm(K)) is continuous. Let
0<$<$1<=. Let z=exp ik # V$* , which means that Im k # G$ . We have

&U.(z, } )&Hm(K)� :
# # 1

&.&H m(K&#) e&Im k } #= :
# # 1

&.&Hm(K+#) eIm k } #

� :
# # 1

&.&H m(K+#) e(h(#�|#| )+$) |#|�C$ (.) m, $1
<�.

We need to check now that the mapping U acts from Wm, = into 1(V =*, Em).
This amounts to showing that U. satisfies the appropriate Floquet boundary
conditions and hence is in fact a section of the sub-bundle Em /V =*_Hm(K).
This is a straightforward calculation (see also Theorem 2.2.2 in [30]).

On the other hand, let us assume that s(z) # 1(V =*, Em). If z=exp ik,
then s as a function of k is periodic with respect to the reciprocal lattice
1*. Expanding it into the Fourier series, we get

s(z)= :
# # 1

s#z#,

where s# # Hm(K). We can now define a function . on Rn such that
.(x&#)=s#(x) for x # K and # # 1.
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The function . belongs to Hm in the interior of each of the cubes K+#.
One only needs to check that it belongs to H m

loc at the boundary points of
these cubes. The requirement that s(z) is a section of the bundle Em rather
than just of the bundle V =*_H m(K) does exactly this (see the discussion at
the top of p. 96 in [30]).

It remains to show that . # Wm, = . We use the standard formulas for the
Fourier coefficients to get

.( } &#)=s#=
1

(2?)n |
B

s(e i(;+i:)) e&i(;+i:) } # d;, \: # G= ,

where B is the first Brillouin zone, and we write z=exp ik=exp(i(;+i:)).
Note that

&,&H m(K+#)� max
z # V*$1

&s(z)&H m(K) e: } (&#) \: # G= , (5.1)

and therefore

&,&H m(K+#)�max
z # V*$1

&s(z)&H m(K) e&(h(#�|#| )+$1). (5.2)

This implies immediately that

(.)m, $=sup
# # 1

[&.&H m(K+#) e(h(#�|#| )+$)|#|]

�C max
z # V*$1

&s(z)&H m(K) sup
# # 1

e&($1&$) |#| <�, (5.3)

if $1>$. K

Proof of Lemma 21. The statement of this lemma is established in a
much more general situation at the beginning of the proof of Theorem 1.7.1
in [30]. However, for the sake of completeness we provide here the proof
for our simpler particular situation. First of all, the sequence of the lemma
is a complex (i.e., the composition of any two consecutive operators in it
is equal to zero). One needs to prove this only in the second term of the
sequence, where it follows immediately from the equality (3.5). Indeed,
since uz solves the equation Lu=0, (3.5) followed by integration by parts
proves the statement.

Let us turn to the exactness. We need to prove it in the second and third
terms of the sequence. Consider the second term. Let f (z, x) # 1(V =* , E0) be
such that tf (z)=0. This means that for any z # 8= the function f (z&1, } ) is
orthogonal to the Bloch solution uz of the equation Lu=0. We need to
show that g(z)=L(z&1)&1 f (z) is analytic, which will mean that f belongs
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to the range of L. The function g(z&1) is automatically analytic outside of
8= , so we only need to make sure that it does not develop any singularities
at this subset. We will show that all the necessary and sufficient conditions
for the analyticity of g have the form of orthogonality of values of f at
certain points to certain functionals. This would resolve the issue, since all
such possible orthogonality conditions are the orthogonality of f (z&1) to
the kernel of L on Bloch functions with a quasimomentum z, and hence to
the vanishing of tf (z). As it was shown in the proof of Theorem 3.3.1 in
[30, pp. 113�114], the inverse operator to L(z&1) is the ratio of two
analytic functions,

L(z&1)&1=B(z)�2(z),

where B(z) is an analytic function with values in bounded operators from
L2(Tn) to H2(Tn), and 2(z) is a scalar analytic function, which is a
regularized determinant of L(z&1) L(z&1

0 )&1 for some point z0 where the
operator is invertible. Such regularized determinants are determined in the
standard way by the eigenvalues of the corresponding operators (see for
instance Section 2 of Chapter IV in [20] for general definitions and proper-
ties of regularized determinants, and for our particular situation the proof
of Theorem 3.1.7 and related discussion in Section 1.2 in [30]). The
simplicity of the eigenvalue 4(!) (Lemma 12) implies that if we introduce
instead of z the coordinate ! such that z=exp !, then 2(exp !)=4(!) 21(!),
where 21(!) is an analytic function with no zeros in the domain under our
consideration. We recall now that 4 has simple zeros. Hence, the necessary
and sufficient condition for f to belong to the range of the operator L on
the space of analytic sections is that the vector-function B(z) f (z) vanishes
on the set of the zeros of 4. These conditions obviously have the form of
the orthogonality of values of f to some functionals. As it was explained
above, this implies exactness at the second term of the sequence.

Let us turn now to proving the exactness at the third term. We need to
show that arbitrary analytic function on 8= can be obtained as tf (z) for
some f # 1(V*= , E

$
).

Let us denote by 8*= the manifold

8*==[z | z&1 # 8=].

Consider the restriction mapping

1(V*= , E0) � 1(8*= , E0). (5.4)

Notice that 8*= is an analytic subset in V*= and that V= and V*= are domains
of holomorphy. The latter can be easily proven using power test functions
za with integer (but not necessarily nonnegative) powers a (a similar
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derivation can be found in the proof of the implication (iii) � (i) of
Corollary 2.5.8 in [24]). Then Corollary 1 of the Bishop's theorem [43,
Theorem 3.3] (see the original theorem in [13]) claims that the restriction
mapping (5.4) is surjective (recall that the bundle E0 is trivial). Hence, it is
sufficient to prove that the mapping

t~ : 1(8= , E0) � H(8=).

defined as

t~ f (z)=( f (z, } ), uz) =|
Tn

f (z, x) uz(x) dx

is surjective. Consider the continuous operator T(z): L2(K) � C defined as
T(z) y=( y, uz) =�Tn y(x) uz(x) dx. Since uz is not zero, this operator is
surjective. It is clear that it depends analytically on z. According to Allan's
theorem (see [5] or Theorem 4.4 in [43]), since 8= is a Stein manifold,
there exists an analytic right inverse operator R(z). Now, given ,(z) #
H(8=), the function g(z)=R(z) ,(z) satisfies t~ g=,. This proves the surjec-
tivity that we need.

The last statement of the lemma about the mapping t being a topological
homomorphism is just the open mapping theorem. K

Proof of Lemma 24. 1. We first show that the operator U maps
continuously the space Cm into C�(T, H m(K)). Indeed, if . # Cm , then
&.&H m(K+#) decays faster than any power of |#|. This together with (2.3)
leads to the immediate conclusion that U. belongs to C�(T, Hm(K)) and
to the continuity of the corresponding mapping. Since U. is a section of
the sub-bundle Em (see the Section 2.2 in [30]), this gives us the needed
conclusion. Conversely, let

s(z) # C�(T, Em)/C�(T, H m(K)).

One can expand the Hm(K)-valued function s(z) into the Fourier series:

s(z)= :
# # 1

s#z#, z # T.

Here s# # Hm(K). Standard estimates of the Fourier coefficients of smooth
functions apply, which show that &s#& decays faster than any power of |#|.
Let us define now a function , on Rn such that ,(x&#)=s#(x) for x # K
and # # 1. The additional information that s is a section of the sub-bundle
Em leads (as in [30, p. 96]) to the conclusion that , # H m

loc(Rn). This
implies that , # Cm and finishes the proof of the first statement of the
lemma.
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Statements 2 and 3 are correspondingly parts of Theorem 2.2.3 and 3.1.5
of [30]. K

Proof of Lemma 25. The first statement is rather obvious. Indeed, the
statement is local, and locally one can construct a smooth one-sided
inverse. The second statement can be proven like the similar statement in
[30, Corollary 1.7.2]. For completeness, we provide the scheme of the
proof here. Under the conditions of the second statement of the lemma, it
is easy to see that any functional annihilating the range of the operator of
multiplication by P(z) must be supported at the finite set Z where P(z)
is not surjective. This also reduces the considerations to a neighborhood U
of a point z0 # Z. Using the Fredholm property, one can find a closed sub-
space M of finite codimension in B1 such that the operators P(z) have zero
kernel on M for all z # U (see the corresponding lemma in [7], or
Lemma 1.2.11 and Remark 2 below it in [30]). Now the problem reduces
to a similar one on a finite-dimensional space, where a standard representa-
tion of distributions supported at a point implies (4.2). K

6. FURTHER REMARKS

Remarks 6.1. 1. Throughout the paper, we have assumed for simplicity
that all the coefficients of the operators P and P* are C�-smooth. In fact,
we do not need such a restrictive assumption (see the discussion in [30,
Section 3.4.D]). For example, a sufficient (but not necessary) condition for
all the statements of Section 3 to hold true is that the coefficients of L and
L* are Ho� lder continuous. Actually, even less is needed. For instance, con-
ditions imposed on the Schro� dinger operators in Theorem 28 are sufficient.
It is clear that the conditions on the coefficients could be significantly
relaxed, if the operators were considered in the weak sense, or by means of
their quadratic forms. This should not change the general techniques of the
proofs. We did not intend, however, to find the optimal requirements on
the coefficients for all our results to hold.

2. It should be possible to describe the class of solutions of the
equation Lu=0 that are representable by a distribution rather than by a
hyperfunction. We plan to address this problem elsewhere.

3. The Liouville theorem can probably be extended to systems of
equations (for instance, to the Maxwell system). In this case one would
face the problems of a possibly nonzero index of the corresponding operator
and of multiple eigenvalues (the latter can also occur for scalar operators). We
believe that the technique of this paper might be adjusted to handle some of
these situations. The extensions of the result of [26] to the Pauli and Maxwell
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operators obtained in [11] and [12] would provide examples where the
needed information on the behavior of the dispersion relations at the
bottom of the spectrum is available.

A. APPENDIX

In this appendix we present an alternative proof of the third statement
of Theorem 28 in the case when either 40=0 and N�0, or 40>0 and
0�N�1. The proof relies on some basic notions of homogenization
theory [25] and imitates the proof of Theorem 2 in [38], where L is
assumed to be an operator in divergence form. Therefore, we skip some
details which are essentially the same as in [38].

We need to recall some basic definitions from homogenization theory
(see, for example, [10, 25]). Suppose that L is a second order elliptic
operator of the form

L=& :
n

i, j=1

aij (x) � i � j+ :
n

i=1

bi (x) � i , (A.1)

with periodic coefficients and denote the positive matrix [aij (x)] by A(x)
and the periodic vector (b1 , ..., bn)T by b. Let � be the positive normalized
periodic solution of the equation L*u=0. Let 9(x)=(91(x), ..., 9n(x))T

be a solution of the equation

L9=&b(x)+|
T n

b(x) �(x) dx in Tn. (A.2)

Consider the matrix

Q=[qij] :=|
Tn

(I+{9)T A(x)(I+{9) �(x) dx, (A.3)

were I is the identity matrix. The operator Q :=&�n
i, j=1 qij �i �j is called

the homogenized operator of the operator L, and the positive matrix
Q=[qij] is called the homogenized matrix (see, [25, Section 2.5]).

The following lemma, which is actually a new formulation of [41,
Theorem 5]), establishes a connection between the function 4 and homo-
genization theory.

Lemma A.1. Let L be an operator of the form (2.5) and suppose that
! # 5. Let u! and u*&! be the positive Bloch solutions of the equations Lu=0
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and L*u=0, respectively. Denote by � the periodic function u!u*&! . Consider
the operator

L� =(u!(x))&1 Lu!(x)=& :
n

i, j=1

aij (x) � i �j+ :
n

i=1

b� i (x) �i , (A.4)

let

Q=& :
n

i, j=1

qij �i �j (A.5)

be the homogenized operator of the operator L� , and Q=[qij] be the homo-
genized matrix. Then � is the principal eigenfunction of the operator L� * on
the torus Tn with an eigenvalue 0. Moreover, Hess(4(!))=&Q.

Proof. The first statement of the lemma can be checked easily while the
second statement follows directly from the formula in [41, Theorem 5],
and the definition of the homogenized operator. K

Proof of a part of the third statement of Theorem 28. We clearly may
assume that L1=0, so,

L=& :
n

i, j=1

aij (x) � i �j+ :
n

i=1

bi (x) � i .

We denote by � the normalized positive solution of the equation L*u=0
in Tn. Let 9 be a solution of the system (A.2), and Q be the homogenized
operator of the operator L.

Assume first that 40�0. The case N=0 is trivial, and follows from
Theorem 23 and Lemma 17. Let N=1. Recall that according to Theorem
23, d1�n+1. Moreover, by Theorem 23 and the Leibnitz's rule, a (real)
solution of linear growth is of the form

u(x)= :
n

j=1

ajxj+,(x),

where aj # R and , is periodic.
By Lemma 13, 40=0 if and only if for every 1�k�n

:j :=|
T n

b j (x) �(x) dx=0. (A.6)

For 1� j�n, we write an ``Ansatz'' for a solution of linear growth of the
form

Fj (x)=xj+,j (x), (A.7)
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where ,j is a periodic function. Clearly, Fj is a solution of Lu=0 in Rn if
and only if ,j (x) solves the nonhomogeneous equation Lu=&bj in Tn. By
the Fredholm alternative, this equation is solvable in Tn if and only if
:j=0 which holds true for all 1� j�n, if and only if 40=0 (and in this
case, ,j=9j , see (A.2)). Therefore, d1=n+1 if 40=0, and d1<n+1
if 40>0.

In order to finish the proof for N=1, we need to prove that if 40>0,
then d1�n. Without loss of generality, we may assume that :n {0. We
construct (n&1) linearly independent solutions of linear growth of the
form

Fj (x)=xj&:j (:n)&1 xn+,j (x),

where 1� j�n&1, and ,j solves the equation Lu=&bj+:j (:n)&1 bn .
Note that these (n&1) equations are solvable and therefore, d1�n.

For N�2, we assume that 40=0. Recall that if u # VN then by
Theorem 23 and the Leibnitz's rule

u(x)=u(N)(x)+ :
|&|<N

x&p&(x),

where

u(N)(x)= :
|&|=N

x&p& ,

and p& are periodic functions if |&|<N, and p& # R, if |&|=N.

Claim. Assume that 40=0. Then for all N�0

Qu(N)=0. (A.8)

In particular, dN�hn, N .

Proof of the claim. Assume first that N=2. Then u # V2 is of the form

u(x)= 1
2 (Cx } x)+ :

n

j=1

xjp j (x)+ p0(x),

where C is a constant symmetric matrix, and p0 , p1 , ..., pn are periodic
functions.

A direct calculation shows that the vector p=( p1 , ..., pn)T must satisfy
the equation Lp=&Cb, which is solvable since 40=0. Therefore, p=C9
(up to a constant vector). Also, p0 must satisfy

Lp0= f :=tr(A(I+2{9T) CT)&b } C9.
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The compatibility condition for this equation is �Tn f (x) �(x) dx=0, which
after some calculations implies that

tr(QCT)=0,

where Q is the homogenized matrix of the operator L (see (A.3)). Since
u(2) := 1

2 (Cx } x) is a homogeneous polynomial of degree 2, it follows that
Qu(2)=tr(QCT). Therefore, u(2) solves the equation Qu=0. Thus, the case
N=2 is settled.

For N>2, we proceed by induction as in [38]. Namely, assume that the
claim (A.8) has been proven for N&1, and let u # VN . Let 2i be the
difference operator 2i f (x) :=f (x+ei)& f (x), where ei is the i-th vector of
the standard basis of Rn, and 1�i�n. Then v i :=2iu # VN&1 and the lead-
ing part of vi is given by (2iu) (N&1)=� iu(N). By the induction hypothesis,
Q((2iu) (N&1))=0. Therefore,

�i (Qu(N))=Q(�iu (N))=Q((2iu) (N&1))=0 1�i�n.

Hence, Qu(N)=const, and since Qu(N) is homogeneous of degree N&2>0,
we obtain that Qu(N)=0, and the claim is proved.

It remains to prove that dN�hn, N . So, for any homogeneous polynomial
h of degree N that is Q-harmonic, we need to find a solution u # VN such
that u(N)=h. Let u # VN and =>0. Consider the function

=Nu \x
=+= :

|&|�N

=N&|&|x&p& \x
=+ ,

which tends to u(N) as = � 0. We consider x and y= x
= as independent

variables and write

U(x, y, =) := :
|&|�N

=N&|&|x&p&( y)=U0(x)+=U1(x, y)+ } } } +=NUN(x, y).

Then the equation L(x, �x) u=0 implies that

(L0+=L1+=2L2) U=0,

where

L0=L( y, �y);

L1=&2 :
n

i, j=1

aij ( y) �2
xi , yj

+ :
n

i=1

bi ( y) �xi
; L2=& :

n

i, j=1

aij ( y) �2
xi , xj

.
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We look for a formal differential operator

8= :
�

j=0

=k8j=:
&

= |&|,&( y) �&
x ,

where ,&( y) are periodic functions and ,0=1. This operator should satisfy

(L0+=L1+=2L2) 8=M+L0( y, �y)&2= :
n

i, j=1

aij ( y) �xi
�yj

, (A.9)

where the formal operator

M= :
�

j=2

= jMj= :
|&|�2

= |&|m& �&
x

has constant coefficients.
Comparing the coefficients of =s in (A.9) yields the following equations

(the equation for s=0 is automatically satisfied).

L081+L1=&2 :
n

i, j=1

aij ( y) �xi
�yj

, s=1, (A.10)

L08s+L18s&1+L2 8s&2=Ms , s�2. (A.11)

It is easily checked that for s=1 the functions ,j ( y) of Eq. (A.7) are the
corresponding solutions for 81 . Also, Eq. (A.11) for s=2 is solvable if
M2=Q, where Q is the homogenized operator of L. Similarly, the constant
coefficients of the operator Ms , s>2, are determined by the compatibility
condition for Eq. (A.11) with s>2.

Let R: P � P be a linear right inverse of the homogenized operator Q
that preserves the homogeneity of polynomials. Consider the formal
operator A which is defined by the equation

A&I=R :
�

j=1

= jMj+2 ,

and let A&1 be its unique formal inverse. Note that =2M2A=M.
Let U0(x) be a given homogeneous polynomial of degree N which solves

the equation Qu=0, and let V(x) :=A&1U0(x). We have

MV==2M2 AV==2M2U0=0.
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Define U(x, y, =) :=8A&1U0=8V, and denote u(x) :=U(x, x, 1). By
inspection, u has a polynomial growth of order N, and u(N)(x)=U0(x).
Moreover,

(L0+=L1+=2L2) U=(L0+=L1+=2L2) 8V

=MV+L0( y, �y) V(x)&2= :
n

i, j=1

aij ( y) �xi
�yj

V(x)=0,

and 8A&1 is the desired mapping. K

Remark A.2. 1. Let Fj be the solutions of linear growth defined by
Eq. (A.7). A. Ancona [6] proved that the map F(x)=(F1(x), ..., Fn(x)) is a
diffeomorphism on Rn if n�2, while for n>2 this map is not necessarily
a diffeomorphism.

2. Assume that L1=0 and 40=0. Let 4(!)=� |&|�2 a&!& be the
Taylor expansion of the function 4. We conjecture that a&=m& , where m&

are the coefficients of the operator M.
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