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ABSTRACT 

The derived graph of a graph G has the edges of G as its vertices, with adjacency 
determined by the adjacency of the edges in G. A new characterization of derived 
graphs is given in terms of nine excluded subgraphs. A proof of the equivalence of all 
known characterizations is also given. 

The derived graph ~G of a graph G is defined as that graph having the 
edges of G as its vertices, with two vertices being adjacent if and only if 
the corresponding edges are adjacent in G. This concept has been redis- 
covered in various contexts and thus has many other names: interchange 
graph [8], line graph [7], adjoint [5], and edge-to-vertex dual [10] are a few. 
The purpose of this note is to present criteria for a graph to be a derived 
graph. One of the three characterizations given is new, and a unified 
complete proof of all is presented. 

Each of the graphs in Figure 1 has the first as its derived graph, and by 
a theorem of Whitney [12] these are the only two connected graphs having 
the same derived graph. They are examples of the following classes of 
graphs: the complete graph K~ has p vertices with every pair of vertices 
adjacent, the bicomplete (or complete bipartite) graph Kmm has m-+-n 
vertices with each of m of the vertices adjacent to precisely the other n. 
Thus, the first graph in Figure 1 is denoted/(3,  the second is K1,3 ; the 
latter has an especially important role in the study of derived graphs. 

FIGURE 1 
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We mention in passing that the derived graphs of these two classes of 
graphs have been characterized by Conner [1], Hoffman [2, 3], Moon [6], 
and Shrikhande [11]. 

Other examples of derived graphs are given in Figure 2, where Ft is 
derived from the unique graph obtained by adding a new edge to KI.8, 
Fz is ~Ft, and Fz is ~K 4 . All of these also have a part in the proof  of the 
theorem characterizing derived graphs. 

FIGURE 2 

Some definitions needed for the theorem are the following. A clique 
of  a graph is a maximal complete subgraph. A triangle in a graph G is 
called odd if some vertex of G is adjacent to an odd number of the vertices 
of  the triangle, and even otherwise. A subgraph H of graph G is called 
induced (by its vertices) if it is the maximal subgraph on its vertices, 
that is, if two vertices of H are adjacent in G they are also adjacent in H. 
We often write u ~ v if vertices u and v are adjacent, and u v~ v if they 
are not. 

In the following theorem characterizing derived graphs, statement (2) is 
due to Krausz [4] and (3) to van Rooij and Wilf [9]. The last criterion, 
although new, has been independently discovered by N. Robertson 
(unpublished). 

THEOREM. The following statements are equivalent for a graph G. 
(1) G is the derived graph of  some graph. 
(2) The edges of  G can be partitioned into complete subgraphs in such a 

way that no vertex belongs to more than two o f  the subgraphs. 
(3) The graph KI.z is not an induced subgraph of  G; and i f  abc and bcd are 

distinct odd triangles, then a and d are adjacent. 
(4) None of  the nine graphs in Figure 3 is an induced subgraph of  G. 

PROOF: It is assumed throughout that G is connected. 

(1) implies (2). Assume that G is the derived graph of H. The edges at 
each vertex of H determine a complete subgraph of G, and every edge 
of  G lies in exactly one of  these. Since each edge of H has two vertices, 
the corresponding vertex of G is in at most two of these complete 
subgraphs. 
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FIGURE 3 
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(2) implies (4). I t  is easily seen that, when any of the nine graphs of 
Figure 3 has its edges partitioned into complete subgraphs, some vertex 
is in at least three of  the subgraphs. Therefore none of these can be a 
derived graph. Because every induced subgraph of a derived graph must 
itself be derived, the result follows. 

(4) implies (3). Suppose that G does not satisfy (3) and yet does not have 
G1 = K1,3 as an induced subgraph. We will show that G must have one 
of  the other eight graphs of Figure 3 as an induced subgraph. I t  follows 
f rom (3) that G has two odd triangles abc and bcd with a % d. There are 
two cases to consider, depending on whether or not some vertex is adjacent 
to an odd number of  vertices of  both triangles. 

I f  there is such a vertex v, there are two possibilities: v is adjacent 
either to exactly one vertex of each triangle or to more than one vertex 
of  one of the triangles. In the latter case, it must be adjacent to all four 
of  the vertices, giving G3 as an induced subgraph. In the former, v is either 
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ad jacen t  only  to b or  to c, so that  G1 wou ld  be induced,  o r  it  is ad jacent  
to bo th  a and  d, which means  tha t  G~ is induced.  

N o w  assume there is no  vertex ad jacen t  to an odd  n u m b e r  of  vertices o f  
bo th  triangles.  Let  u be ad jacent  to an o d d  number  in abe and  v to an odd  
number  in bed. Two facts are now no ted :  

(c~) I f  u or  v is ad jacen t  to b or  to e, then it is also ad jacen t  to a or  to d 
since otherwise G1 is an induced  subgraph.  

(/3) Nei ther  u nor  v can be adjacent  to  bo th  a and  d, since it would then 
be ad jacent  to an odd  number  of  vertices o f  bo th  triangles.  

There  are  now three possibil i t ies to consider :  

(i) Each  o f  u and  v is ad jacent  to only one vertex o f  the co r respond ing  
triangle.  

(ii) Each is ad jacent  to  all three vertices of  the cor respond ing  triangle.  

(iii) One is adjacent  to  all three vertices o f  a tr iangle,  the  other  to only 
one o f  the other  tr iangle.  

The  first o f  these is the most  compl ica ted ,  and  all  poss ible  subcases 
are considered:  

u ~ a and  v ~ d: This  gives G 4 or  G7 as an  induced subgraph  (because 
of  (/3)) depending  on whether  or  no t  u ~ v. 

u ~ e and  v ~ d: F r o m  (c 0 and (/3) it  fol lows tha t  u ~ d and v 4" a. 
I f  u % v, then the induced subgraph  (b,  d, u, v) is G~, while, 
if  u ~-~ v, g raph  G8 is obta ined.  

u ~-~ e and  v ~ b: Necessar i ly  u ~ d a n d v  --~ a, so that ,  i f u  % v, a g raph  
i somorphic  to Gs is obta ined,  while, if  u ~ v, g raph  Ga is induced.  

u ~-, c and  v ~ e: A g a i n  u ~ d and v ~ a, so that ,  i f  u ~ v, then Ga is 
obta ined,  and,  i f  u vc v, then G~ is an induced subgraph.  

Except  for  in terchanging roles of  vertices, this exhausts  the possibil i t ies 

of  (i). 
In  (ii), u v~ d and v ~ a. I f  u ~ v, then a subgraph  i somorph ic  to G3 is 

induced,  while, if  u ~ v, then G6 occurs.  
F o r  (iii), assume tha t  u is adjacent  to a, b, and  e, and  thus not  to d. 

There  are two possibil i t ies,  depending  on which vertex o f  tr iangle bed is 
ad jacent  to v. I f  v ~ d, then G2 or  G5 is ob ta ined  according  as u is or  is 
no t  ad jacent  to v. I f  v ~ c or  b, then ei ther  G3 or  G~ is induced,  depending 
on whether  or  not  v is ad jacent  to bo th  a and  u. 

(3) implies (2). Assume  tha t  G satisfies (3). W e  first show that  if, in 
addi t ion ,  G has two even tr iangles wi th  a c o m m o n  edge, then it must  be 
i somorph ic  to one o f  the three graphs  o f  F igure  2. Let  abe and bed be 
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even triangles, in which case a % d. I f  G is not  graph F1,  it must  have a 
fifth vertex u adjacent to one of  the others. Since both  triangles are even, 
we can assume that  u is adjacent either to just  b and c or to the three 
vertices a, b, and d. The former  case cannot  occur since then K1,3 would be 
induced as <b, a, d, u);  the latter gives graph  F2. I f  G has a sixth vertex v, 
then the same argument  implies that v is adjacent to a, d, and either b or  e. 
I f  v ~-~ b, then u % v implies that the induced subgraph <b, c, u, v) is K1,3, 
while u ,~  v implies that  abu and bud are odd triangles with a 4~ d; bo th  
violate the hypotheses. Therefore v ~ c. Also, v ~ u since otherwise 
abu and bud  are again odd triangles. Hence graph F~ is obtained. There 
cannot  be a seventh vertex in G since it would have to  be adjacent to 
precisely the same vertices as v and b, and then Ka.3 would again be induced. 

It is readily verified that  each of  these three graphs can have its edges 
partit ioned to satisfy (2). 

N o w  assume that G has no pair of  even triangles with a c o m m o n  edge. 
Let S be the family o f  cliques which are no t  even triangles and let T be the 
family of  edges which lie on a unique and even triangle. 

We now show that  these subgraphs in S t A T  determine a partition o f  
the edges o f  G. Clearly every edge is in at least one member.  I f  an edge abc 

is in two, then both  must  be cliques which are not  even triangles. There 
are vertices a and d each in exactly one o f  the two cliques, and hence not  
adjacent. But abc and bcd  are odd triangles, each being in a clique that  
has at  least four  vertices or  being itself a clique that  is an odd triangle. 
Hence, the edges are parti t ioned into complete subgraphs. 

By considering three cases, we next show that any vertex lies in at most  
two of  the members o f  S u T. 

First, let v be a vertex which lies on exactly one member  of  T, say 
edge vw of  the even triangle uvw. Then edge uv must  be on an odd 
triangle uva. Any point  adjacent to v must  also be adjacent to u since 
uvw is even. Furthermore,  any two such points b and c must  be adjacent 
since both triangles uvb and uvc have an edge in c o m m o n  with uvw and 
are thus odd. Hence v lies in precisely one member  o f  S. 

Next, assume v lies on two members o f  T. I f  these are edges uv and u'v of  
different even triangles uvw and u'vw' ,  then u must  be adjacent to u' or w'. 
But this means uv is on two even triangles, which cannot  occur. Hence both  
members o f  T containing v must  lie on the same even triangle uvw. In  this 
case v cannot  be on any other line since that  would mean that  uvw is odd 
or  that  uv or vw lies on two triangles. Hence v lies on only the two members 
o f  T, none of  S. 

N o w  suppose that  v lies on three members  o f  S, say cliques A, B, and C. 
Let a, b, and c be other vertices in these respective cliques. Because no edge 
is in more  than one o f  these cliques, none of  these vertices lies in any of  
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the other cliques. Also two, say a and b, are adjacent, since otherwise Ka.3 
would be induced. This implies that  triangle abv is even, since otherwise 
it would be in a member  of  S containing both a and b. Therefore c must be 
adjacent to a or to b, say the latter. But the same argument as above 
implies that cbv is an even triangle, which contradicts the assumption 
that no two even triangles have a common edge. Therefore, no vertex 
lies in more than two members of  S. 

(2) implies (1). Let U be the family of  complete subgraphs given in (2) 
together with the graphs consisting of the single vertices which appear in 
only one of the complete subgraphs. Then each vertex of  G is in exactly 
two members of U. Define the graph H to have U as its set of  vertices 
with two vertices being adjacent whenever the corresponding subgraphs 
have a common vertex. We now show that G is the derived graph of H. 
There is certainly a one-to-one correspondence f f rom the edges of H to 
the vertices of G: for each edge x in H, le t f (x)  be the vertex of G which is 
in the two subgraphs of U which x joins in H. 

What  remains to be shown is that  adjacency is preserved between OH 
and G. Let x and y be distinct edges in H. Assume x joins A and B and 
y joins B and C, that is, x ~ y  in OH. Clearly, f (x)  ~ f ( y )  in G since B is 
a complete subgraph. On the other hand, assume x joins A and B and 
y joins C and D, that is, x % y  in ell .  Then f (x)  is in only A and B and 
f(y) in only C and D, so thatf(x)  %f(y) in G. This completes the proof. 

The theorem thus gives several answers to the characterization question 
posed by Seshu and Reed [10] and Ore [8]. In closing we mention some 
results giving answers to other questions they raise. These solutions have 
been found by Menon [5, 6], van Rooij and Wilf [9], and others. Iterated 
derived graphs are defined inductively as expected: 

cqlG = OG and 0n+lG = O(0nG). 

The only connected graphs which are isomorphic to their derived graphs 
are the cycles. Thus, if G is a cycle, then G = ~'~G for all n, while, if 
G = KI.z, then ~G = ~nG for all n, but G =?5 ~G. I f  G is the graph of 
the path on n vertices, then ~'~-IG is a single vertex and ~ G  does not exist. 
For  any other connected graph G, the number of  vertices in ~"G becomes 
arbitrarily large as n becomes large. Therefore, these results classify 
graphs by their iterated derived graphs. 
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