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Controlling both growth and differentiation of stem cells and their differentiated somatic progeny is a challenge in

numerous fields, from preclinical drug development to clinical therapy. Recently, new insights into the underlying molec-

ular mechanisms have unveiled key regulatory roles of epigenetic marks driving cellular pluripotency, differentiation and

self-renewal/proliferation. Indeed, the transcription of genes, governing cell-fate decisions during development and main-

tenance of a cell’s differentiated status in adult life, critically depends on the chromatin accessibility of transcription factors

to genomic regulatory and coding regions. In this review, we discuss the epigenetic control of (liver-specific) gene-transcrip-

tion and the intricate interplay between chromatin modulation, including histone (de)acetylation and DNA (de)methyla-

tion, and liver-enriched transcription factors. Special attention is paid to their role in directing hepatic differentiation of
primary hepatocytes and stem cells in vitro.

� 2009 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Hepatocytes contain a rich source of xenobiotic bio-
transformation enzymes and consequently, the liver rep-
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resents a primary target for xenobiotic-induced acute
and systemic toxicity. Hence, hepatocytes are the ulti-
mate source for toxicological screening/profiling of
potential drug candidates. The drawback, however, is
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that upon isolation and subsequent culture of hepato-
cytes, a rapid and substantial decline of hepatic func-
tionality occurs. In particular, the xenobiotic
biotransformation capacity undergoes phenotypic
changes [1]. This progressive loss of a differentiated
hepatic phenotype in vitro plausibly results from a pro-
liferative response, elicited during hepatocyte isolation
from the liver. In fact, the cell cycle entrance triggers
the activation of several signal transduction pathways,
ultimately leading to profound alterations in gene
expression [2]. The acquisition and stabilisation of a dif-
ferentiated hepatic geno- and consequently phenotype,
i.e. liver-specific gene/protein expression, very often rely
on the concerted binding of liver-enriched transcription
factors (LETFs) and other trans-acting DNA-binding
proteins to well-defined regulatory and coding regions
of target genes [3–5]. As DNA is tightly condensed into
chromatin fibers by histones and other proteins, modu-
lation of chromatin compaction is a prerequisite to facil-
itate binding of transcription factors and consequential
transcriptional activation [6,7]. Epigenetic events,
including covalent histone modifications and DNA
methylation, are therefore broadly acknowledged to
play a fundamental role in the organisation of chroma-
tin architecture and hence in the strict control of gene
transcription [8,9]. For example, in proliferating hepato-
cellular carcinoma (HCC) and HCC-derived hepatoma
cell lines, inhibition of histone deacetylation and DNA
methylation is found to drastically down- and up-regu-
late genes involved in cellular proliferation and xenobi-
otic metabolism, respectively [10,11]. Consequently, it
was thought that epigenetic events may display a pre-
dominant role in the acquisition and maintenance of
the hepatocyte’s differentiated phenotype of dedifferenti-
ating primary hepatocytes in vitro. Alternatively, stem
cells have been proposed to produce functional hepato-
cytes as well. New insights into the molecular mecha-
nisms governing the balance between self-renewal/
proliferation and lineage-directed differentiation of
embryonic stem cells have unveiled the presence of epi-
genetic marks as being key regulatory players [9,12]. In
fact, progression from unsoiled stem cells towards their
differentiated progeny is characterized by alterations in
the epigenetic landscapes of gene regulatory and coding
regions. [9,12–15]. More specifically, locus-specific mod-
ifications on histones and DNA, progressively silence
the transcription of pluripotent genes (euchro-
matic ? heterochromatic state), whilst typical differenti-
ated, lineage-specific genes become activated
(heterochromatic ? euchromatic state) [9,12–15]. Antic-
ipation with nuclear chromatin might thus involve a key
strategy for cell fate re-programmation.

In this review, we will discuss the key regulatory role
of epigenetic modification in gene transcription, with
particular focus on the maintenance and the acquisition
of a differentiated geno/phenotype of primary hepato-
cytes and stem cells, i.e. pluripotent embryonic stem cells
(ESCs) and multipotent mesenchymal stem/progenitor
cells (MSC), respectively.
2. Epigenetic control of gene transcription

2.1. Structural chromatin modifications by histone

acetylation/deacetylation

The chromatin higher order structure can be sub-
jected to a number of reversible posttranslational modi-
fications [16]. Although the functional relevance of the
individual reactions is often unclear, it is generally
believed that the global repertoire of histone tail modifi-
cations constitutes a (epigenetic) code, which affects
chromatin structure and/or gene expression [17]. To
date, histone acetylation, methylation, phosphoryla-
tion/ubiquination/sumoylation, ADP-ribosylation and
glycosylation of histones were reported [6,16]. Histone
acetylation, the best-understood posttranslational his-
tone modification, is discussed in the following
paragraphs.

2.1.1. Role of histone deacetylases in the regulation of

gene expression

Two opposing enzyme activities, i.e. histone acetyl
transferases (HATs) (recently also referred to as lysine
(K)-acetyltransfereases or briefly KATs [18]) and his-
tone deacetylases (HDACs), determine the acetylation
status of the lysine residues at the N-terminal histone
tails extending out of the nucleosome [6]. Upon acetyla-
tion (Fig. 1), the positive charges on the side chains of
these lysine residues are partially neutralised, thereby
weakening the interaction with the negatively charged
phosphate groups in the DNA backbone and affecting
the nucleosome stability. The degree of acetylation of
core histones can thus modulate DNA accessibility
and chromatin activity in transcription, replication,
recombination and repair [19]. Whereas actively tran-
scribed genes are characterized by highly acetylated core
histones, hypoacetylated histones are preferentially
found in transcriptionally silenced chromatin regions
[20]. Consequently, the long-standing paradigm existed
that HDAC inhibition, leading to histone hyperacetyla-
tion, was exclusively associated with transcriptional acti-
vation. Yet, evidence is accumulating of HDACs
functioning as both transcriptional activators or repres-
sors. Indeed, by removal of acetyl groups from histone
tails, HDACs do not only modulate the physical interac-
tion between histones and DNA in the nucleosomal
units, but also the message encrypted in the histones’
posttranscriptional modifications, and thus the epige-
netic/histone code [21]. Consequently, specific effector
proteins, e.g. transcription factors, are recruited result-
ing in further transcriptional stimulation or silencing,



Fig. 1. HAT/HDAC-mediated transcriptional control. (A), Histone-related pathway: HATs/HDACs acetylate/deacetylate histones resulting in reduced/

augmented chromatin compaction and alternations of the histone code, respectively. (B) Non-histone related pathway: HDACs directly interfere with non-

histone protein targets, including transcription factors, nuclear hormone receptors, nuclear import factors, structural proteins and adhesion proteins.

Deacetylation of latter non-histone proteins might affect diverse aspects of their protein physiology, resulting in either decreased or increased activity of

the target protein. Both pathways interconnect with each other. The transcriptional outcome thus relies on the sum of all – transcription-stimulating/

inhibiting – actions.
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depending on the message comprised. Additionally,
HDACs have targets other than histones, including the
transcription factors p53, c-myc, NF-jB, YY-1, E2F
and GATA family [22]. HDAC-mediated deacetylation
of these non-histone proteins may affect their stability,
localization, DNA-binding activity or ability to interact
with other proteins [23]. As a result, the activity of the
target protein might be augmented/reduced (Fig. 1).

In light of these data, it is clear that HDACs operate
at more than one level in the transcriptional regulation
scheme. We refer to Smith for a scrupulous review
regarding the transcriptional machinery underlying
HDACs-mediated transcriptional (in)activation [24].

2.1.2. Classification of histone deacetylases and their role
in differentiation programs

Today, 18 HDACs have been characterized. Based on
sequence similarity, they can be classified into four dis-
tinct classes. Class I (HDAC-1,-2,-3,-8) and class II
HDACs (HDAC-4,-5,-6,-7,-9,-10) closely resemble the
yeast RPD3 and HDA1 proteins, respectively. Class
III HDACs or ‘sirtuins’ are structurally unrelated to
the other HDACs and apparently insensitive to
hydroxamate-based HDAC inhibitors (HDACi) such
as Trichostatin A (TSA) [22]. HDAC-11 is the single
representative of mammalian class IV HDACs. It dis-
plays conserved residues in the catalytic core that share
some, yet insufficient, homology to both class I and II
enzymes [25–27]. Most HDACs lack intrinsic DNA-
binding activities and are therefore capable of homo-
and hetero-dimerisation. The HDAC catalytic domain
is formed by a stretch of ca. 390 amino acids consisting
of a set of conserved amino acids, which differ between
class I and class II HDACs [6,28]. The active site con-
sists of a gently curved tubular pocket, a zinc-binding
site and two Asp-His charge relay systems [29].
Class I HDACs (HDACs-1,-2,-3,-8) are generally
small nuclear enzymes [27] that participate in cell cycle
progression [25] and the regulation of housekeeping
genes [28]. Class II HDACs (HDACs-4,-5,-6,-7,-9,-10)
share some domain similarity with yeast HDA1
[25,27]. They can be subdivided into class IIa HDACs
(HDACs-4,-5,-7,-9) and class IIb HDACs (HDAC-6
and -10) [30]. With the exception of HDAC-10, class
II HDACs show a restricted tissue-specific expression
pattern with the highest expression found in heart,
brain and skeletal muscle [28]. They are larger than
class I HDACs and shuttle between cytoplasm and
nucleus. In the nucleus, they mediate cellular prolifera-
tion and transcriptional repression of differentiation-
related genes, leading to loss of the differentiated phe-
notype [25]. This was particularly shown for class IIa
HDACs-4,-5,-7,-9 isoforms in muscle cell differentia-
tion [31]. Class IIa HDACs, and principally HDAC-
4, are also implemented in stress signaling processes,
such as cardiac/chondrocyte hypertrophy and neuronal
cell death. [32–34]. Most of these functions are medi-
ated by interactions with the MEF2 transcription fac-
tor family [32]. In contrast to other HDACs, Class
IIb HDAC-6 can accomplish cytoplasm-located func-
tions as well. More specifically, HDAC-6 functions at
the crossroads between two cellular signaling systems,
i.e. protein lysine acetylation and ubiquitination [35].
This unique feature expounds its protective role against
the accumulation of cytotoxic misfolded protein aggre-
gates within cells [35]. In addition, HDAC-6 and class I
HDAC-3 regulate osteoblast differentiation and bone
formation via interaction with transcriptional regula-
tors such as Runx2 [35,36]. Likewise, class I HDAC-
1, in complex with myoD, mediates repression of
muscle-specific gene expression in undifferentiated myo-
blasts [37]. In general, class I HDACs overexpression
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coincides with increased cell proliferation and a con-
comitant shift towards dedifferentiation, while levels
drop during differentiation processes. For example, in
normal small intestine, the HDAC-3 expression is max-
imal in proliferating cells at the crypt base and is mark-
edly decreased at the villus tip, harbouring more
differentiated cells [38]. In comparison, 90% of cells
residing in adenomas of small intestine are HDAC-
3+. Basically, overexpression of distinct HDACs
appears in various tumor specimens, e.g. HDAC-1 in
prostate, gastric and colon tumors, HDAC-2 in colo-
rectal, cervical and gastric cancer [26], and HDAC-3
in colon cancer [38]. Specific inhibition of HDAC-3
by RNA interference could inhibit proliferation of
colon cancer cell lines and increase both expression
and activity of the differentiation marker alkaline phos-
phatase [38]. As for liver-specific functions of HDACs,
recently a crucial role was credited to HDAC-3 in liver
homeostasis and development. In this respect, HDAC-
3 absence in zebrafish leads to abnormalities in liver
development, [39] whilst conditioned deletion of
HDAC-3 in mice induces severe disruption of carbohy-
drate and lipid metabolism, resulting in organ hyper-
trophy and hepatocellular damage [40]. HDAC-1
overexpression in transgenic mice, on the other hand,
results in a high incidence of hepatic steatosis and
nuclear pleomorphism concomitant with altered
expression of genes involved in cell cycle, apoptosis,
and lipid metabolism such as p53, PPARc, Bak and
p21 [41,42]. Also, a number of studies provide evidence
for the involvement of HDACs and HATs in the tran-
scriptional regulation of liver-specific genes by LETFs.
This issue will be thoroughly discussed in a later
section.

Briefly, these data indicate that modulating the
expression of specific HDACs might involve a strategy
to (re)activate differentiation programs.

2.1.3. HDAC inhibitors: types and effects

Currently, several structurally diverse compounds
both natural and synthetic, are known as HDACi. These
include short-chain fatty acids, (non)-cyclic hydroxa-
mates, (non)-epoxyketone-containing cyclic tetrapep-
tides, benzamides and miscellaneous structures [43].
Hydroxamate-based inhibitors of classes I and II are
promising since they were repeatedly shown to selec-
tively inhibit tumor growth in animals at low (micromo-
lar) and apparently non-toxic doses [32]. Basically, in
recent years, HDACi have emerged as promising thera-
peutics for the treatment of several malignancies, includ-
ing leukaemia, solid tumors and non-solid cancers such
as multiple myeloma [27]. In that respect, Vorinostat�

has recently been approved by the FDA for the treat-
ment of advanced primary cutaneous T-cell lymphoma,
whilst several other hydroxamate-containing HDACi
are being tested in phases I and II clinical trials for their
therapeutic potential [44,45]. Having seen the growth-
inhibiting and differentiation-promoting features of
hydroxamate-based HDACi in tumor cells, including
hepatoma cells [10,11,46–48], our group successfully
applied these compounds to stabilize the differentiated
phenotype of normal primary hepatocytes in vitro
[1,2,49–52]. This will be discussed later in this review.

2.2. DNA methylation

2.2.1. Role of DNA methyltransferases in the regulation

of gene expression

Reversible DNA methylation occurs at the cytosine–
guanine dinucleotides (CpGs) in the DNA and includes
addition of a methyl group to the carbon-5 position of
cytosine [53]. DNA methylation patterns are estab-
lished by DNA methyltransferases (DNMTs), catalyz-
ing the addition of a methyl group derived from the
methyl donor S-adenosyl methionine [17,54]. The cata-
lytic activity of these enzymes is accomplished by a
highly conserved C-terminal domain, present in all
DNMTs.

In the mammalian genome, CpGs are not uniformly
distributed. CpG islands, comprising >1 CpG per 80
base pairs [55], are particulary present in/near gene pro-
motor regions. They are usually unmethylated, thereby
allowing gene expression [53–55]. The distribution of
(un)methylated CpGs differs, however, within distinct
cell types due to the interplay between DNA methyla-
tion/demethylation, giving a cell-type specific DNA
methylation pattern [17]. Passive DNA demethylation
occurs during DNA replication by chemically blocking
DNMTs [17]. The exact mechanism of active DNA rep-
lication-independent demethylation still remains elusive.
Recent data suggest the involvement of identical
enzymes in both the establishment of DNA methylation
and demethylation patterns [56]. For example, the meth-
ylated DNA-binding protein MBD2 also displays
demethylase activity [57]. Additional information is
needed to unravel this tangled web.

2.2.2. Classification of DNA methyltransferases and their

role in differentiation programs

Based on structural differences in their regulatory N-
terminal domain, three distinct families of DNMTs, i.e.
DNMT1, DNMT2 and DNMT3, have currently been
identified. All are expressed in human liver tissue [58].

DNMT1 is the most abundant DNMT in mammals
and mainly methylates hemimethylated GpGs. This
‘maintenance’ DNMT is particulary involved in main-
taining DNA methylation patterns during DNA replica-
tion [54,58,59]. It also shows activity towards
unmethylated DNA and plays a role in de novo DNA
methylation [60]. DNMT2 is the least distinguished
DNMT and lacks the regulatory N-terminal domain
present in other DNMT enzyme families [59]. Its associ-
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ated intrinsic DNMT activity and potential RNA meth-
yltransferase activity suggest a possible role in epigenetic
regulation [61,62]. The DNMT3 family contains three
different DNMTs, i.e. DNMT3a, DNMT3b and
DNMT3L. DNMT3a and DNMT3b, characterized as
de novo DNMTs, mainly methylate unmethylated CpGs
and establish new DNA methylation patterns during
early embryonal development [54]. They plausibly coop-
erate with DNMT1 to maintain the DNA methylation
pattern [63]. DNMT3L is a methyltransferase-like pro-
tein without intrinsic DNMT activity [59,64]. It interacts
with DNMT3a/DNMT3b and directly modulates their
catalytic activity [65].

DNMTs play a crucial role in the onset of chromatin
remodelling and gene expression regulation. They are
responsible for maintaining telomere integrity [66] and
methylation pattern acquisition during gametogenesis,
embryogenesis and somatic tissue development [67].
Several studies performed in tumor cell lines, including
HepG2 cells [68,69], also indicate the occurrence of cell
cycle arrest, apoptosis and cellular differentiation upon
DNMT inhibition. Accordingly, it has been suggested
that modulation of the expression of specific DNMTs
might involve a strategy to target the differentiation sta-
tus in developing and proliferating and consequently
dedifferentiating cells.

2.2.3. DNMT inhibitors: types and effects

Today, a number of synthetic and natural DNMT
inhibitors (DNMTi) exist. (i) The group of nucleoside
analogue DNMTi contains several structural analogues
of deoxycytidine, including 5-azacytidine (azacytidine,
5-AzaC), 5-Aza-20-deoxycytidine (decitabine, 5-Aza-
dC), arabinosyl-5-azacytidine (fazarabine), 5-6-dihy-
dro-5-azacytidine (DHAC) and 2-pyrimidone-1-b-D-
riboside (zebularine) [70] (Fig. 2). These analogues,
with the exception of zebularine, are modified at the
carbon-5 position of the pyrimidine base cytosine
[71]. After phosphorylation and incorporation in
DNA/RNA, they form covalent bounds with DNA
methyltransferases, resulting in passive demethylation
upon replication [72]. The use of nucleoside analogue
DNMTi in tumor cells results, like HDACi, in cell
Fig. 2. Nucleoside ana
cycle arrest, induction of apoptosis and differentiation
[10,69]. In addition, latter DNMTi were applied by
our group to maintain differentiation in normal pri-
mary hepatocytes [73]. This issue will be discussed in
the next section.

(ii) The non-nucleoside analogue DNMTi represent a
heterogeneous group of DNMTi enclosing molecules
such as derivatives of 4-aminobenzoic acid (procaine
and procainamide), the main compound in green tea,
(-)-epigallocatechin-3-gallate (EGCG) [74,75] and psam-
maplins from the sponge Pseudoceratina purpurea [76].
Procain and procainamide directly bind to CpG-rich
DNA, interrupting the interaction between DNMTs
and their target DNA sequences. EGCG and psammap-
lins are both involved in several cellular processes and
also affect enzymes other than DNMT [75]. Until now,
the DNMTs inhibition mechanisms of EGCG and
psammaplins remain unclear.

2.3. Interplay between DNA methylation and histone

acetylation

A tight correlation exists between [gene expression
and DNA methylation] and [chromatin structure and
DNA methylation]. Suppression of gene expression is
frequently associated with methylated DNA and a dense
chromatin structure, whereas active transcription is
associated with unmethylated DNA and hyperacetylat-
ed open chromatin [17] (Fig. 3). Initially, DNA methyl-
ation was thought to unidirectionally affect chromatin
structure. However, recent data in cancer cells now sug-
gest a mutual interplay between both epigenetic modifi-
cations [17]. For example, in several cancer cell lines,
combinations of DNMTi and HDACi have synergistic
effects on the cellular homeostasis [69,77,78]. Accord-
ingly, so far, several ‘cocktails’ are in clinical trials as
chemotherapeutics [79]. Also, in vitro, our group discov-
ered a synergistic effect of DNMTi and HDACi with
respect to the differentiated phenotype of normal pri-
mary cells [73]. This will be further explained in the next
section.

In summary, our findings show that transcription of
genes, governing maintenance of a cell’s differentiated
logue DNMTi.



Fig. 3. Epigenetic control of gene transcription. Inhibition of gene transcription typically corresponds to hypermethylated CpG islands in gene promoter

regions and deacetylated histone tails at local chromatin domains. The indirect mechanism of gene silencing may involve binding of methyl-binding

proteins (MeCp) to methylated cytosine and subsequent recruitment of HDAC-corepressor (CoR) complexes, resulting in a non-permissive

heterochromatin status that blocks binding of transcription factors (TF) and polymerase II RNA complexes (PolII) to target promoter sequences. The

direct mechanism may involve the direct interference of TF with HDAC or methylated CpG sites within the promoter. HDAC inhibitors (HDACi) and

DNMT inhibitors (DNMTi) modulate the chromatin structure. They create an open, transcriptionally active euchromatin configuration at gene coding

and regulatory regions, accessible for TF, thereby facilitating gene transcription. Abbreviations: 5-AzaC, decitabine; M, 5-methyl cytosine at CpGs; SB,

sodium butyrate; TSA, trichostatin A; VPA, valproic acid.
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status in adult life and development, can be accom-
plished via targeting the expression of DNMTs and/or
HDACs with increased chromatin accessibility of tran-
scription factors to their target DNA as a result.
3. Epigenetic modifiers as potent differentiation-

promoting compounds in vitro

3.1. Acquisition and stabilisation of a differentiated

hepatic phenotype in vitro: an interplay between

chromatin remodelling and liver-enriched transcription

factors

Of major interest, at least from a pharmaco-toxico-
logical point of view, is the ability of hepatocytes to pro-
tect the organism from toxic chemical insults.
Hepatocytes dispose of an ingenious multi-step enzy-
matic clearance system, i.e. xenobiotic biotransforma-
tion, and therefore constitute the main cell type of
interest for in vitro hepatotoxicity and drug metabolism
studies to date [80].

Ex vivo, though, cell–cell and cell–extracellular
matrix disruptions, resulting from collagenase perfusion
and subsequent oxidative stress response, trigger the
activation of several ‘proliferative’ signaling cascades
[81]. Unlike hepatocytes in vivo, primary hepatocytes
in culture are unable to completely redifferentiate upon
proliferation, resulting in a loss of the differentiated phe-
notype and concomitant deterioration of cytochrome
P450 (CYP)-mediated xenobiotic biotransformation
capacity [2,81]. Another essential factor is the substan-
tial decline in LETFs, controlling the transcription of
numerous liver-specific genes [3–5,53,81–84]. Indeed,
hepatocyte proliferation and differentiation are predom-
inantly regulated at the transcriptional level [85]. Basi-
cally, eukaryotic gene transcription relies on the
combinatorial binding of multiple specific trans-acting
DNA-binding proteins, i.e. transcription factors, to par-
ticular DNA-sequence motifs in regulatory elements of a
specific gene. Efficient gene expression is further often
determined by interplays between different transcription
factors, either adjacently or distantly located on the pro-
moter, and by protein–protein interactions between
transcription factors and coactivators/corepressors
[7,13,82]. Additionally, efficient binding of transcription
factors and associated proteins to their cognate DNA-
sequences requires a permissive chromatin configuration
in order to drive gene expression The dynamic modula-
tion of the chromatin architecture by e.g. DNA methyl-
ation and/or covalent histone modifications represents
thus a basic machinery for transcriptional activation,
repression and derepression [7–9,13–15] (Fig. 3).

In hepatocytes, the liver-enriched transcription fac-
tors play an elemental role in hepatocyte-specific gene
expression [3–5,82,85], and are as such key regulators
of liver development, architecture and physiology. These
trans-acting DNA-binding proteins are predominantly,
but not exclusively, expressed in liver. It is hypothesized
that the coordinated and timely expression of LETFs, in
concert with ubiquitously expressed transcription fac-
tors such as NF1, Oct-1, Hex and other LETFs, is pre-
requisite for hepatocyte differentiation and constitutive
liver-specific gene expression, including CYP-mediated
xenobiotic biotransformation [4,82,84,85]. Evidence is
accumulating that recruitment of coactivators/corepres-
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sors, able to modulate the local chromatin configuration
through post-translational histone modifications,
mainly determine their transactivation potential. In this
context, the transcriptional activation of LETFs criti-
cally depends on the recruitment of co-activator proteins
with intrinsic HAT activity, such as CREB-binding pro-
tein (CBP), p300/CBP-associated factor (P/CAF) and
SRC1, whereas co-repressor complexes containing
HDAC negatively regulate liver-specific gene expression
[86–107]. In detail, HNF-4a, directly interacts with
SRC1, CBP and p300, resulting in its increased tran-
scriptional activity [86–92]. The level of upregulation is
isoform-dependent [92,93]. In human hepatoma cells,
transactivation of CYP1A1, CYP1A2 and CYP2C9 by
HNF-4a relies on the presence of the PPAR-gamma
coactivator 1alpha (PGC-1a) [94]. PGC-1a, a key regu-
lator of hepatic gluconeogenesis, lacks HAT-activity,
but enables transcription through the assembly of a
complex, containing SRC1 and CBP/p300 [95]. Like-
wise, in differentiating Caco2-cells, Rb strengthens
HNF-4-dependent activation of the a-antitrypsin gene
through reinforcement of the SRC-coactivator function
[96]. Conversely, interaction with SMRT or p53, recruit-
ing HDACs to transcription factors, represses HNF-4a
activity [92,97,98]. HNF-1a, on the other hand, physi-
cally interacts with the HATs CBP/p300, P/CAF,
SRC-1, and RAC3 [99,100]. CBP and PCAF, on one
hand, and CBP and p300, on the other hand, synergisti-
cally upregulate HNF-1-mediated transactivation
[100,101], whilst association of HNF-1a with HDAC1 –
through NCoR– impairs its transcriptional activity.
Treatment with the HDACi TSA disrupts latter core-
pressor complex, enhancing in turn HNF-1a-mediated
transcription [102]. A good example of LETFs acting
in a cooperative, synergistic regulatory network is the
interaction between HNF-6 and HNF-3. In this respect,
HNF-6 potentiates HNF-3b transcriptional activity by
recruiting p300/CBP HAT proteins, [103] whilst HNF-
6-dependent transcription is stimulated by complex for-
mation between HNF-6 and C/EBPa, also recruiting
coactivator CBP [104]. The transactivation potential of
C/EBPa, in turn, is promoted by direct interaction with
either CBP/p300 or Rb [105–107]. Apparently, this
binding to C/EBPa robustly stimulates nucleosomal
HAT activity of CBP [108]. C/EBPb-dependent transac-
tivation is further mediated by direct acetylation
through association with the HATs p300 and PCAF
[109–112]. Conversely, interaction between SMRT or
subcomponents of the Sin3 complex, e.g. Sin3a, and
HDAC1 represses its transcriptional activity [112]. Of
particular interest is HNF3 as, in contrast to other LET-
Fs, it directly affects chromatin conformations of
numerous hepatic genes such as albumin (ALB) and a-
foetoprotein (AFP), likely without interference with
intermediary coactivators bearing HAT-activity or
ATP-dependent enzymes. More specifically, the C-ter-
minal domain of the protein binds to histones H3/H4
within highly compacted chromatin, creating a local,
open nucleosomal domain, which facilitates further
interactions between transcription factors, such as
GATA4 and other LETFs, and DNA [113–115]. This
HNF3-mediated transcriptional competence is desig-
nated as a prerequisite for the onset of liver ontogeny,
and more specifically for the developmental activation
of genes required for hepatocyte differentiation and
function.

3.2. Effect of HDAC and DNMT inhibition on liver-

specific gene expression

An overview of the most important hepatic genes
affected by HDACi and DNMTi in various in vitro mod-
els is presented in Table 1. Out of these data, it appears
that both the cellular origin and the type, concentration
and exposure time of epigenetic modifier used, critically
determine the final outcome. In transformed cells,
including colon cells [116–118], glioma cells [119,120],
pancreatic cells [121], breast cells [122] and hepatoma
cells [11], HDACi-mediated growth arrest is frequently,
at least in vitro, associated with induction of differentia-
tion. As such, HDAC inhibition upregulates C/EBPa,
HNF-1a, HNF-3a, HNF-3b and HNF-4a levels in vari-
ous hepatoma cells, resulting in increased CYP expres-
sion [11]. Yet, in spite of this beneficial outcome, the
contribution of HDACi in long-term in vitro models is
hampered by co-occurrence of cell death. Indeed,
HDACi, including TSA, butyrate, valproic acid, SAHA,
OSU-HDAC42 and ITF2357, induce both in vitro and
in vivo apoptosis in hepatoma cells [11,46–48]. For exam-
ple, SAHA reduces, dose- and time-dependently, the via-
bility of HepG2 and Huh6 hepatoma cells as a result of
concomitant activation of both extrinsic and intrinsic
apoptosis signaling cascades [123]. In contrast, primary
hepatocytes are relatively well-resistant against HDAC-
i-induced apoptosis [2,49,50,124,125]. In this context,
exposure of normal primary rat hepatocytes to TSA
and 5-(4-dimethylaminobenzoyl)-aminovaleric acid
hydroxamide (4-Me2N-BAVAH) upregulates C/EBPa
and HNF-4a expression [49], which in turn increases
CYP protein and activity levels (Figs. 4 and 5), gap junc-
tional communication and ALB secretion, without any
evidence of cell death [2,49,51,52,126,127]. Moreover,
in epidermal growth factor (EGF)-stimulated primary
rat hepatocytes, we could demonstrate that TSA and 4-
Me2N-BAVAH even delay the onset of spontaneous
apoptosis as evidenced by reduced pro-caspase-3 pro-
cessing, decreased pro-apoptotic Bid and Bax levels
and increased anti-apoptotic BclxL expression [2,50].

Further indication for the involvement of histone
acetylation in the transcriptional activation of hepatic
genes is supported by enhanced activity of several LET-
Fs, including HNF-3c, HNF-4a and C/EBPa, on the



Table 1

Effects of epigenetic modifiers on the expression of important liver genes in various in vitro models.

Epigenetic modifier Species Model Regulationa Reference

HDAC inhibition

Phase I biotransformation

CYP1A1 TSA Rat Primary hepatocytes " [49]
Human Mammary carcinoma MCF-7 cells " [186]
Human HeLa cells " [186]

SAHA Human Mammary carcinoma MCF-7 cells " [187]
CYP1A2 TSA Human Mammary carcinoma MCF-7 cells " [186]

Human HeLa cells " [186]
Mouse Primary hepatocytes " [188]

Butyrate Mouse Primary hepatocytes " [188]
CYP1B1 TSA Human Mammary carcinoma MCF-7 cells " [186]

Human HeLa cells " [186]
Human HepG2 hepatoma cells � [191]

CYP2B1/2 TSA Rat Primary hepatocytes " [49]
Valproate Rat Primary hepatocytes " [190]

CYP3A4 TSA Human HepG2 hepatoma cells � [129]
Human HepG2 hepatoma cells " [131]

CYP3A2 TSA Rat Primary hepatocytes " [49]
ADH1A TSA Human HepG2 hepatoma cells � [191]

HeLa cells �
ADH1B TSA Human HepG2 hepatoma cells � [191]

HeLa cells �
ADH1C TSA Human HepG2 hepatoma cells " [191]

HeLa cells �
FMO3 TSA Human HepG2 hepatoma cells � [192]

Phase II biotransformation

GSTP1 TSA Human Hep3B hepatoma cells � [193]
Butyrate Human Colon carcinoma HT29 cells " [194]
Butyrate Human Primary colon cells � [195]

GSTA1/2 Butyrate Human Colon carcinoma HT29 cells " [194]
Human Primary colon cells " [195]

GSTA4 TSA, MS-275, VPA Mouse MC3T3-E1 preosteoblasts " [196]
GSTM2 Butyrate Human Colon carcinoma HT29 cells " [194]
GSTT1/2 Butyrate Human Colon carcinoma HT29 cells � [194]

Human Primary colon cells " [195]
UGT2B7 VPA Human Prostate carcinoma LNCaP cells " [197]
UGT2B11 VPA Human Prostate carcinoma LNCaP cells " [197]
SULT2B1 TSA Human HaCaT keratinocytes " [198]

Ammonia removal TSA Human HepG2 and Huh-7 hepatoma cells " [11]

Albumin synthesis/secretion TSA Human HepG2 and Huh-7 hepatoma cells " [11]
Rat Primary hepatocytes " [2,49]

Gap junctional intercellular communication

Cx32 TSA Human Huh-7 hepatoma cells � [199]
Human Neural progenitor cells " [200]
Human kB nasopharyngeal tumor cells � [201]
Human Prostate carcinoma cells " [202]
Human Normal prostate epithelial cells " [202]
Rat Primary hepatocytes " [52]

4-Me2N-BAVAH Rat Primary hepatocytes " [51]
Cx26 TSA Human Huh-7 hepatoma cells � [199]

Rat Primary hepatocytes ; [52]
4-Me2N-BAVAH Rat Primary hepatocytes ; [51]

Cx43 TSA Human Huh-7 hepatoma cells ; [199]
Rat Primary hepatocytes " [52]

SAHA Rat Ras transformed WB-F344 liver epithelial cells " [203]
Human Peritoneal mesothelial cells " [203]
Rat C6 glioma cells " [204]

Phenylbutyrate Human Glioblastoma cells " [120]
Human Glioblastoma cells " [205]
Human Neural progenitor cells " [200]
Human kB nasopharyngeal tumor cells " [201]
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Table 1 (continued)

Epigenetic modifier Species Model Regulationa Reference

Rat Glioma cells � [205]
Sodium butyrate Human kB nasopharyngeal tumor cells " [201]

Human Glioblastoma cells � [205]
4-Me2N-BAVAH Rat Primary hepatocytes ; [51]

Liver-enriched transcription factors

C/EBPa TSA Human HepG2 hepatoma cells " [10]
Rat Primary hepatocytes " [49]

SAHA Human Pancreatic carcinoma PANC-1 cells " [121]
C/EBPb Butyrate, TSA Rat Intestinal epithelial cell line IEC-6 � [206]
C/EBPd Butyrate, TSA Rat Intestinal epithelial cell line IEC-6 � [206]
HNF1a TSA Rat Primary hepatocytes � [49]
HNF1b Depsipeptide Human Papillary thyroid cancer cells ; [207]
HNF4a TSA Rat Primary hepatocytes " [49]

Other

Apolipoprotein CIII TSA Human HepG2 and Huh-7 hepatoma cells " [11]
HCFX TSA Human HepG2 and Huh-7 hepatoma cells " [11]
Glutamine synthetase TSA Human HepG2 and Huh-7 hepatoma cells " [11]

DNMT inhibition

Phase I biotransformation

CYP1A1 5-Aza-dC Human Mammary carcinoma MCF-7 cells " [186]
Human HeLa cells " [186]

CYP1A2 5-Aza-dC Human Mammary carcinoma MCF-7 cells " [186]
Human HeLa cells " [186]
Mouse Primary hepatocytes � [208]
Mouse Hepa1c1c7 hepatoma cells � [208]

CYP1B1 5-Aza-dC Human Mammary carcinoma MCF-7 cells " [186]
Human HeLa cells " [186]

5-AzaC Human HepG2 hepatoma cells � [189]
CYP3A4 5-Aza-dC Human HepG2 hepatoma cells " [10]
CYP3A5 5-Aza-dC Human HepG2 hepatoma cells " [10]
CYP3A7 5-Aza-dC Human HepG2 hepatoma cells " [10]
FMO3 5-Aza-dC Human HepG2 hepatoma cells " [192]

Phase II biotransformation

GSTP1 5-Aza-dC Human Hep3B hepatoma cells " [193]
Procainamide Human LNCaP prostate cancer cells " [74]

UGT1A6 5-Aza-dC Human HepG2 hepatoma cells " [10]
UGT2B15 5-Aza-dC Human HepG2 hepatoma cells " [10]
UGT2B28 5-Aza-dC Human HepG2 hepatoma cells ; [10]

Gap junctional intercellular communication

Cx32 5-Aza-dC Human Caki-2 renal cell carcinoma cells " [209]
Human Caki-2 renal cell carcinoma cells " [210]
Human HK-2 renal tubular cells � [209]

Cx26 5-Aza-dC Human Mammary carcinoma cells " [211]
Human Mammary carcinoma cells � [212]
Human Lung cancer cells " [213]
Human Esophageal cells � [214]

Cx43 5-Aza-dC Human Esophageal cancer cells � [214]
Human Cervical adenocarcinoma cells " [215]
Human CNE-1 nasopharyngeal cancer cells " [216]

Liver-enriched transcription factors

C/EBPa 5-Aza-dC Human HepG2 hepatoma cells � [10]
C/EBPb 5-Aza-dC Human HepG2 hepatoma cells ; [10]
C/EBPc 5-Aza-dC Human HepG2 hepatoma cells ; [10]

Other

GLUT2 5-Aza-dC Mouse Primary hepatocytes " [217]
Mouse Hepa1c1c7 hepatoma cells " [217]

ADH1A 5-Aza-dC Human HepG2 hepatoma cells � [191]
HeLa cells �

(continued on next page)
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Table 1 (continued)

Epigenetic modifier Species Model Regulationa Reference

ADH1B 5-Aza-dC Human HepG2 hepatoma cells " [191]
HeLa cells �

ADH1C 5-Aza-dC Human HepG2 hepatoma cells " [191]
HeLa cells �

HDAC + DNMT inhibition

Liver-enriched transcription factors

C/EBPa TSA + 5-Aza-dC Human HepG2 hepatoma cells " [10]

Phase I biotransformation

ADH1A TSA + 5-Aza-dC Human HepG2 hepatoma cells � [191]
HeLa cells �

ADH1B TSA + 5-Aza-dC Human HepG2 hepatoma cells " [191]
HeLa cells �

ADH1C TSA + 5-Aza-dC Human HepG2 hepatoma cells " [191]
HeLa cells �

a�, unchanged; ", upregulation; ;, downregulation.
Abbreviations: ADH, alcohol dehydrogenase; 5-AzaC, 5-Azacytidine; 5-Aza-dC, 5-Aza-20deoxycytidine, decitabine; C/EBP, CCAAT/enhancer
binding protein; Cx, connexin; CYP, cytochrome P450; FMO, flavine monooxygenase; GLUT, glucose transporter; GST, glutathione S-transferase;
HNF, hepatocyte nuclear factor; 4-Me2N-BAVAH, 5-(4-dimethylamniobenzoyl)-aminovaleric acid hydroxamate; SAHA, suberoylanilide
hydroxamic acid; SULT, sulfotransferase; TSA, Trichostatin A; UGT, uridine guanyl transferase.
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promoter of CYP2C8, CYP2C19, CYP3A4, CYP3A5,
CYP3A7, CYP7A1 and glucose-6-phosphatase upon
exposure to TSA or short chain fatty acids, such as
butyrate [57,128,129]. In addition, HDAC inhibition is
implemented in the aryl hydrocarbon receptor (AhR)-
mediated induction of CYP1A1 and CYP1A2 [130],
and CYP3A4 induction by rifampicin [131]. Next to
genes coding for xenobiotic biotransformation enzymes,
HDACi also stimulate the transcription of other liver-
specific genes, including phosphoenol-pyruvate carboxy-
kinase [57], HCFX [11], apolipoprotein CIII [11],
glucose-6-phosphatase [57] and glutamine synthetase
[11]. They also promote ALB synthesis and secretion
Fig. 4. Effects of TSA on phase I CYP-dependent biotransformation activity.

exposed to 0.083% (v/v) ethanol as solvent control [SC] or 25 lM TSA [T] for 7

CYP3A2 protein expression were analysed by means of immunoblotting. In ord

were determined, as latter LETF, in contrast to C/EBPa and HNF-4, is not affe

independent experiments are shown. (B) After 2, 4 and 7 days of culture PRO

percentage of the values found for freshly isolated primary rat hepatocytes, i.e.
rate, ammonia removal and gap junctional intercellular
communication [2,11,50–52] (Table 1).

DNA methylation marks, on the other hand, are cru-
cial for developmental and tissue-specific transcription
of numerous liver-specific genes, including ALB [132],
AFP [133], Cx43 [134], Cx32 [134], human CYP2E1
[135], human CYP1A2 [136], rat CYP2D3 and CYP2D5
[137], mouse CYP2D9 [138], mouse CYP2A4 [139], and
human SULT1A1 [140]. In addition, in HepG2 cells,
CYP3A4, CYP3A5 and CYP3A7 levels were raised
upon DNMT inhibition by 5-Aza-dC, whilst C/EBPb
and C/EBPc were decreased. Combined exposure to
TSA and 5-Aza-dC, but not to 5-Aza-dC alone upregu-
Hepatocytes were cultured and remained either unexposed [C] or were

days. (A) After 2 [D2], 4 [D4] and 7 days [D7], CYP1A1, CYP2B1 and

er to control for equal loading of proteins, expression levels of HNF-1a
cted by culture time or exposure to TSA. Representative images for three

D (CYP2B1)-dependent activities were measured. Data are expressed as

7.7 ± 3.1 pmol/min/mg microsomal protein. Values represent mean ± SD.



Fig. 5. Effects of 4-Me2 N-BAVAH on phase I CYP-dependent biotransformation activity. Cultured hepatocytes were either exposed to 0.05% (v/v)

ethanol as a solvent control [C] or to 50 lM 4-Me2N-BAVAH [B] for 7 days. (A) After 4 [D4] and 7 days [D7], CYP1A1, CYP2B1 and CYP3A2 protein

expression were analysed by means of immunoblotting. Representative images for three independent experiments are shown. (B) After 4 and 7 days of

culture PROD (CYP2B1)-dependent activities were measured. Data are expressed as percentage of the values found for freshly isolated primary rat

hepatocytes, i.e. 7.7 ± 3.1 pmol/min/mg microsomal protein. Values represent mean ± SD (n P 3). (*p < 0.05 compared to control values, paired

Student’s t-test).
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lated C/EBPa expression in HepG2 cells [10]. On the
other hand, in EGF-stimulated primary rat hepatocytes,
both combined and single exposure to 5-Aza-dC and 4-
Me2N-BAVAH resulted in dose-dependent inhibition of
the DNA replication and improvement of the hepatic
functionality/phenotype, as evidenced by enhanced
ALB secretion and elevated CYP1A1 protein expression
[73]. Yet, upon combined application, lower concentra-
tions of the respective epigenetic modifiers are needed
when compared to single treatment in order to observe
the same –or even a more pronounced– effect, pointing
to a synergetic or even synergistic behaviour of DNMTi
and HDACi with respect to important liver-specific pro-
cesses [73]. Moreover, the interplay between HDACi/
DNMTi and the expression of hepatic genes emphasizes
a plausible involvement of chromatin remodelling
agents in the acquisition/maintenance of a differentiated
hepatic phenotype in healthy hepatocytes.

3.3. Epigenetic modifiers: a key factor to (re)program

stem cells in vitro?

3.3.1. Stem cell signaling cascades

In vivo, stem cells inhabit restricted niches within an
organ or tissue, directing their self-renewal, differentia-
tion and cell fate [141–143]. In particular, adult tissue
is renewed through asymmetric division of stem/progen-
itor cells, thereby forming one cell that remains a stem
cell and another cell that differentiates into a mature cell
type with specialised functions [141–143]. Batteries of
developmental regulatory signaling molecules and tran-
scription factors, including Wnts, fibroblast growth fac-
tors, Notch, sonic hedhodge, etc. may play a role
[85,142,144]. More specifically, the coordinated signal-
ing between stem cells, non-stem niche cells, the scaffold,
and integration of stem cell-autonomous characteristics-
including a dynamic interplay between transcription,
epigenetic control and posttranscriptional regulators
represent an interactive system, organized to facilitate
cell-fate decisions in a spatio-temporal manner
[85,142,144]. Identification of these in vivo signaling pat-
terns is crucial for eliciting distinct responses from cul-
tured stem cells and directing lineage-specific cell
growth and differentiation in vitro. Lately, evidence is
growing that particularly chromatin remodelling or
alteration of epigenetic marks, including histone acetyla-
tion/methylation and DNA methylation are part of the
core machinery required for nuclear reprogramming and
cell-fate conversion [9,12–15,145,146].

3.3.2. The epigenetic control of stem cell differentiation

Pluripotent ES and more lineage-restricted adult
stem/progenitor cells differ in their global gene
expression status. Stemness genes, active in pluripotent
embryonic stem cells are gradually silenced, whilst line-
age-specific genes are switched on upon progression of
development [12,14,15,146]. This discrepancy in gene
expression profiling might be ascribed to alterations in
the nuclear and chromatin architecture, resulting in
selective accessibility of transcription factors towards
specific DNA-binding sites. Each stage of lineage-direc-
ted development is thus featured by a dynamic interplay
between unique repertoires of (lineage-specific) tran-
scription factors and epigenetic regulators. This epige-
netic code forms the base of the stem cell identity and
determines its responsiveness to extrinsic signals at suc-
cessive developmental stages [9,82,85,114]. Alterna-
tively, extracellular growth factors might directly affect
the chromatin status as well and as such facilitate or
impede the differentiation competence of stem/progenitor
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cells [147]. Hence, the hypothesis was concocted that cell
fate might be reprogrammed by altering the epigenetic
code/marks.

In this regard, a recent breakthrough was achieved by
Takahashi and Yamanaka, who successfully repro-
grammed mouse embryonic/adult fibroblasts to ES-like
stem cells, referred to as induced pluripotent cells (iPS),
via viral mediated transduction of Oct4, Sox2, c-Myc
and Klf4 [148]. These four transcription factors act as
core regulators of the transcriptional circuitry to main-
tain pluripotency in ES. The theory exists that their
ectopic expression in lineage-committed somatic cells
induces alterations in the histone code and DNA meth-
ylation status of stemness genes such as Oct4, Sox2 and
Nanog [146,148]. Although the underlying mechanism
remains elusive, latter realization emphasizes the tight
epigenetic control of transcriptional machinery regulat-
ing pluripotency and lineage-specific differentiation.
More specifically, on/off switch of cell fate reprogram-
mation and transcription of lineage-specific genes may
be poised by dynamic open/closed configuration of his-
tone and nuclear architecture at specific binding sites for
transcription factors.

Since HDACi and/or DNMTi upregulate the transac-
tivation potential of liver-enriched transcription factors
in a plethora of hepatoma cells and primary hepatocytes
[cf. Table 1], being key regulators of liver embryogenesis
and liver-specific gene expression in particular, addition
of HDACi and/or DNMTi to stem/progenitor cells,
preferentially co-conditioned with hepatogenic growth
factors and cytokines, is thought to comprise a potential
strategy for driving differentiation programs and more
specifically for directing hepatic differentiation of stem/
progenitor cells. An overview of currently applied epige-
netics-based strategies for in vitro hepatic differentiation
of ES and MSC is given in Table 2.

3.3.3. Pluripotent embryonic stem cells and multipotent
mesenchymal stem/progenitor cells as source of

hepatocytes

3.3.3.1. Pluripotent embryonic stem cells. ES harbour a
unique pluripotent versatility compared with fetal and
adult multi/bipotent stem/progenitor cell populations.
They posses the unrestricted capacity to form cell types
of the three germ layers, including neuroectodermal
cells, cardiomyocytes and hepatocytes. Yet, spontane-
ous ES differentiation is encountered by lack of organi-
zation and inherent heterogeneity [149–151].
Introduction of chromatin remodelling agents, biologi-
cally-derived signals such as purified growth factors, or
other lineage-selective agents, though, could enrich for
specific cell populations [150]. For example, exposure
to 5 mM sodium butyrate enriches ES cultures for
10–15% to pure hepatic cells [152]. Priming with alter-
nating concentrations of sodium butyrate (0.5–1 mM)
in the presence of Activin A even results in 10–70%
enrichment [153]. Basically, combined application of
epigenetic modification and stepwise exposure to cyto-
kine stimuli considerably contribute to homogeneity of
the end-population and acquisition of hepatic function-
ality [153].

3.3.3.2. Multipotent mesenchymal stem cells. In recent
years, evidence has been provided that MSC(-like) cells
from various sources (bone marrow/adipose tissue/pla-
centa/umbilical cord) could occasionally overcome line-
age borders and differentiate into endodermal
(hepatocytes) and ectodermal (neural cells) cell types
upon coordinated in vitro stimulation [154–160]. New
insights into the underlying mechanisms indicate that
next to lineage-specific cytokines/growth factors (their
concentrations, mode of presentation, and order of appli-
cation) [144], alterations of the epigenetic traits and chro-
matin code of specific gene regulatory regions are
essential for bypassing cell fate determinism and repro-
gramming cell fate [9,13,15,145,146]. In this context, we
found as first that addition of 1 lM TSA to cultured
human bone marrow MSC, pre-treated for 6 days with
hepatogenic-stimulating agents, triggers their ‘trans’dif-
ferentiation into cells with similar phenotypic and func-
tional characteristics as primary hepatocytes [154]. In
line with our results, Seo et al. showed enhanced hepatic
differentiation upon addition of 0.1% dimethylsulfoxide
to human adipose tissue-derived stem cells (ADSC), pres-
timulated for 10 days with a mixture of hepatogenic cyto-
kines [161]. Likewise, neuroectodermal and
cardiomyocyte direction could be accomplished via co-
exposure to HDACi along with neural stimulating agents
[162] and shear stress [163,164], respectively. Recently
also DNMTi, either alone or in combination with
HDACi, were introduced to alter cell fate [155,165–
167]. Basically, DNMTi function as preconditioning
agents prior to hepatic differentiation [155,167,168],
whereas HDACi act as stimulants during or post-differen-
tiation [154,156,161,169]. In general, chromatin remodel-
ling seems thus a potential innovative strategy to
overcome cell fate determinism, cross lineage borders
and favour lineage-specific differentiation. We expect that
this field will emerge in the upcoming years.

Next to successful differentiations, also failures have
been reported. For example, 1 mM valproic acid
(VPA), 100 nM TSA and 1 lM sodium butyrate failed
to promote oligodendrocyte or astrocyte differentiation
in rat neural progenitors under respective stimulating
conditions [162], whilst they could trigger differentiation
into neural cells in a neural stimulating microenviron-
ment [162]. In addition, Jori and group reported that
2 mM VPA, but not 50 nM TSA, could stimulate neural
transition of MSC [170]. On the other hand, we found
that functional hepatic differentiation of bone marrow
MSC was especially successful upon exposure of 1 lM
TSA to 6 days preconditioned cells.



Table 2

Detailed epigenetics-based strategies for in vitro differentiation of ES and MSC-like cells into hepatic cells.

Origin Hepatic differentiation conditions Hepatic features Refs.

Cell density Cell–matrix/

cell–cell

interaction

Serum Growth factors-cytokines

nonepigenetic

additives

Differentiation-

inducing agents

RNA +

protein level

Functionality

level

EMBRYONIC STEM CELLS

Hepatic progenitor cells

NS Gelatin 15% FBS (3)D11–17/23: 10 ng/ml

HGF until confluent

(1)D0–4: 0.8% DMSO AFP, a1AT, CK18/19 [182]

(2)D4–10:

2.5 mM SB

GGT, HNF3 b,

DPPIV

mES(D3) Hepatocytes

NS Collagen

type I

10% FBS 4)D17/23–23/29:

insulin, dex

nicotinamide

ALB, G6P", TAT" Glycogen storage

20 ng/ml EGF

ALB secretion

10 ng/ml HGF

(5)from D23/29:

10 ng/ml OSM, dex

hES NS PAU-coating,

nonwoven

PTFE

NS D0–3:100 ng/ml

bFGF

D3–11:

1% DMSO

ALB Lidocaine [173]

D3–11:100 ng/ml

HGF

metabolism

D11–14:dex

ALB and urea

production

hEBs Matrigel 20%FBS 5 mM SB �: AFP Glycogen storage [152]

+: ALB, a1AT,

CK8/18

Inducible

CYP450 activity

mES (D3) 1 � 104 cells/cm2 D0–10:Gelatin

collagen type I

polystyrene

D0–10: 20%

FBS

D0–4:

1% DMSO

+: ALB, K18,

DPPIV ADH,

CYP3A13,

CYP27A1

Glycolysis

D4–10:

2.5 mM SB

Glycogen storage

[183]Urea production

CYP activity

1 � 104 cells/cm2 D0–10: gelatin

from D11: 5%

polyacrylamide

D0–10:20%

FBS from

D11:/

D0–4:

1% DMSO

Glycogen storage [184]

D11: subculture

at 15 � 103 cells/cm2

D4-10:

2.5 mM SB

"urea production

From D11:/

"ALB secretion

mES (D3) Phase I

Pre-differentiation

= no confluence

Gelatin 15%FBS (3) from D10 until

confluence: 10 ng/ml HGF

(1)D0–4:

0.8% DMSO

+: CK19, ALB,

a1AT HNF3b
[182]

(2)D4–10:

2.5 mM SB

-: SSEA1, AFP

Phase II Collagen type I 10%FBS (4) Upon subculture: D0–6:

insulin, dex nicotinamide,

+: AFP, ALB,

CK18, a1AT

HNF3b, HNF4,

TAT

Glycogen storage

Differentiation

upon confluence

and subculture

20 ng/ml EGF

-: CK19

ALB secretion

10 ng/ml HGF
(5) From D6–12/18:

(5) From D6–12/18: 10 ng/

ml OSM, dex

hES Differentiation

onset

pon 50–70%

confluence

D3/5:1/2 split

Matrigel D0–3/5:/

D3/5–

D10/12:SR

from

D10/12:

8.3% FBS

D0–3/5: 100 ng/ml activin

A

From D10/12:insulin,

hydrocortisone, 10 ng/ml

HGF, 20 ng/ml OSM

D0-D1/2:1 mM SB D0–3/5: CXCR4,

HNF3b, Sox17

Glycogen storage

ALB/fibrinogen/

fibronectin/A2M

secretion inducible

CYP activity

[153]

D1/2–3/5: 0.5 mM SB

D3/5–D10/12:

HNF4a", HNF1",
TTR"

D3/5–D10/12: 1% DMSO

AFP

From D10/12:ALB,

ApoF, CAR, TO,

TAT", CYP3A4/7,

CYP2C9/19

mES Monkey ES mES:109 cells/

cm3 lumen V

monkey ES:

4�103 cells/cm3

lumen V

Organoid

culture

in hollow

fibers

20% FBS D9: 1 mM SB +: CPS" ALB secretion

ammonia removal

[174]

(continued on next page)
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Table 2 (continued)

Origin Hepatic differentiation conditions Hepatic features Refs.

Cell density Cell–matrix/

cell–cell

interaction

Serum Growth factors-cytokines

nonepigenetic

additives

Differentiation-

inducing agents

RNA +

protein level

Functionality

level

MESENCHYMAL(-LIKE) STEM/PROGENITOR CELLS

BM (tibias + femora,

C57/BL6 mice)

1 � 104MSC/cm2

+5.2 � 104

liver cells/cm2

Coculture with

nonparenchymal

liver cells

on collagen

>coculture:

20% FBS

12 h before coculture: dex 12 h before

coculture:: 5 mM

5-AzaC

ALB, CK18/8/19,

TAT

[156]

Upon coculture:

5% liver failure

patients

sera

Upon coculture:

nicotinamide, insulin, dex,

50 ng/ml HGF, 20 ng/ml

OSM

Upon coculture:

1% DMSO

ADSC (abdominoplasty,

19–55 years human

adults; P3–5)

2.5–3 �
10�4 cells/cm2

FN / 10 ng/ml HGF From D10 on:

supplement of

0.1% DMSO

AFP, ALB LDL uptake urea

production

[161]

10 ng/ml OSM, ITS

10 ng/ml EGF, dex

BM (iliac crest,

human adults)

100–200cells/

cm2

NS 2% FCS D1:40 ng/ml HGF, 20 ng/

ml EGF

D0:preincubation

with 20 km 5-AzaC

Cx32, HepPar1,

CYP3A4, CPS CK18,

ALB, PEPCK

Glycogen storage

Urea secretion

[185]

ADSC (subcutaneous/

peritoneal, female

donor)

BM (iliac crest and

femora, human)

Differentiation

onset upon

100% confluence

Cx32, CYP3A4,

CPS CK18, ALB,

PEPCK, DPPIV

Glycogen storage

Urea secretion

[168]

BM (healthy

human; P4–5)

22 � 103MSC/cm2

differentiation onset

upon 100%

confluence

Collagen

type I

Predifferentiation:

2% FBS

D0-2: 10 ng/ml FGF4 From D6 on:

supplement of

1 lM TSA

ALB", CK18",
HNF1a", MRP2"
C/EBPa"

ALB secretion",
inducible

CYP activity

Urea secretion

[154]

D3–5: 20 ng/ml HGF from

D6 on:ITS, dex 20 ng/ml

HGF

ADSC (peritonial,

Fischer 344 rats)

200–300 cells/cm2

Differention onset:

upon 95% confluence:

FN (2)D1: hepatocyte growth

medium

D0: preincubation

with 20 lM

5-AzaC

AFP, ALB, CK18/19,

CYP1A1, HepPar1,

Cx32, DPPIV, PCK1

Glycogen storage [155]

Urea production

UCB (hTERT

retroviral infected)

2.1 � 103 cells/cm2 NS D1–22:

10% FBS

D1–22: 10 ng/ml FGF2 D0: preincubation

with 1 lM5-AzaC

ALB, C/EBPa/b",
CYP1A1/2,

PEPCK", wnt;

Glycogen storage [167]

20 ng/ml HGF Urea secretion

20 ng/ml OSM

BM (tibias +

femora, SD rats)

22 � 103MSC/cm2

differentiation onset

upon 100% confluence

Collagen

type I

Predifferentiation:

2% FBS

D0–2: 10 ng/ml FGF4 From D6 on:

supplement of

1 lM TSA

AFP", ALB",
CK18", HNF1a",
HNF3b

ALB secretion" [169]
D3–5: 20 ng/ml HGF from

D6 on:ITS, dex 20 ng/ml

HGF

Abbreviations: a1AT, alpha1-antitrypsin; ADH, alcohol dehydrogenase; ADSC, adipose tissue-derived stem cells; AFP, alpha-fetoprotein; ALB, albumin; A2M, a2macroglobulin; ApoF, apoli-

poprotein factor; 5-AzaC, 5-azacitidine; bFGF, basic fibroblast growth factor; BM, bone marrow; CAR, constitutive androstane receptor; C/EBP, CCAAT enhancer binding protein; CK,

cytokeratin; CPS CPS-1, carbamyl phosphate synthetase; Cx, connexin; CYP, cytochrome P450-dependent monooxygenases; dex, dexamethasone; DMSO, dimethylsulfoxide; DPPIV, dipeptidyl-

peptidase IV; EGF, epidermal growth factor; ES, embryonic stem cells; FBS, fetal bovine serum; FCS, fetal calf serum; FGF, fibroblast growth factor; FN, fibronectin; GGT, c-glutamyltransferase;

G6P, glucose-6-phosphatase; h, human; HepPar1, hepatocyte paraffin 1; HGF, hepatocyte growth factor; HNF, hepatocyte nuclear factor; ITS, insulin-transferrin-selenious acid; LDL, low density

lipoprotein; m, mouse/murine; MRP, multidrug resistance protein; MSC, mesenchymal stem cells; NS, not specified; OSM, oncostatin M; P, passage; PAU, poly-amino-urethane; PEPCK,

phosphoenol-pyruvate carboxykinase; PTFE, polytetrafluoroethylene; SB, sodium byturate; SD, Sprague–Dawley; Sox17, Sry-related HMG box transcription factor; SR, serum replacement; SSEA,

stage-specific embryonic antigen; TAT, tyrosine amino-transferase; TERT, telomerase reverse transcriptase; TO, tryptophan-2,3-dioxygenase; TSA, trichostatin A; TTR, transthyretin; UCB,

umbilical cord blood; 1.,2.,3; indicate order of serial steps.

;, downregulation; ", upregulation; �, negative; +, positive.
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Successful cell fate manipulation thus highly relies on
(i) the microenvironment (cell–cell contact, cell densi-
ties), (ii) the appropriate type of epigenetic modifier
and (iii) optimal fine-tuning of its dose and timing –
onset and duration – of exposure [154,161,169,171].
The suitability of HDACi and/or DNMTi to promote
hepatic (trans)differentiation requires a delicate balance
between (i) proliferation and differentiation, (ii) biologi-
cal activity, pharmacokinetic properties and toxicologi-
cal characteristics, and finally (iii) apoptosis and cell
survival. At least in some cases, failure of lineage-spe-
cific differentiation could be ascribed to inaccurate tim-
ing of exposure and dosage of chromatin modulating
agents. Basically, although not generally [153], pre-stim-
ulation of the cells towards the intended selected direc-
tion prior to introduction of HDACi, may comprise a
key determinant to cross lineage boundaries and achieve
promoted transdifferentiation into a specific lineage by
means of HDAC inhibition [154,161,164,169,172–174].
An up-to-date overview of both successful and failed
epigenetics-induced cellular (re)programmations of pro-
genitor cells is given in Table 3.

3.3.4. Stem-cell derived hepatocytes or hepatocyte-like

cells?
The differentiation of embryonic/fetal hepatoblasts

into adult hepatocytes in vivo basically implies consecu-
tive expression of early (HNF-3b, AFP, transthyretin),
midlate (HNF-1a, HNF-4a, ALB, cytokeratin 18) and
late (tryptophan-2,3-dioxygenase, tyrosine amino-trans-
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ferase, C/EBPa, CYPs) markers [3,5,82,85,113,114,
142,144,175,176]. Most metabolic and detoxifying
enzymes only become functional during the terminal
step of liver organogenesis, i.e. peri/postnatal. There-
fore, functional assays for enzymes, related to specific
functions of the adult liver [80,177], must be carried
out in order to state the mature status of resultant stem
cell-derived hepatocyte-like cells. At present, functional
analysis is particularly focused on ALB-secretion, urea
metabolism and glycogen uptake. Little attention has
been paid to other metabolic functions, including
CYP450-dependent enzymatic activity and responsive-
ness to prototype inducers such as phenobarbital
(human: CYP2B6, CYP3A4, rat CYP2B1/2), rifampicin
(CYP3A4) and 3-methylcholantrene (human and rat
CYP1A1/2). Bearing in mind that inducible CYP-
dependent activity is considered to be a key determinant
of the functional hepatic phenotype [80,178], character-
ization should preferably comprise the above mentioned
metabolic functionality assays. Alternatively, metabolic
profiling using well-known molecules (e.g. paracetamol)
might shed light on their potency as in vitro models for
preclinical toxicological screening of drug candidates.
Recently, Hay and colleagues, in fact succeeded to pro-
duce a nearly (�71%) pure population of functional,
metabolism competent hepatocytes out of human ES
via fine-tuned preconditioning with HDACi and growth
factor stimuli [153]. The resultant cells display active and
inducible CYP isozymes, capable of converting various
substrates, e.g. midazolam, bufuralol, phenacetin, tolbu-
tamide and rifampicine, to their respective metabolites,
thereby supporting their potential use as preclinical
in vitro systems for toxicity screening of drugs [153].

The ultimate demonstration of hepatic functionality
is no doubt in vivo transplantation of ex vivo generated
hepatic cells in (immunodeficient) animal models suffer-
ing from liver injury. Sgodda and coworkers recently
confirmed the functional integration of hepatic cells
derived from MSC, that were primed with 5-AzaC
prior to combined exposure to hepatocyte growth fac-
tor and EGF [155]. Despite seemingly irrefutable evi-
dence that stem/progenitor cells could contribute to
liver reconstitution, caution should be taken with pro-
duction of false positives due to application of inaccu-
rate labelling techniques [179]. Also, one should keep
in mind that, apart from generating fully functional
stem-cell derived hepatocytes, other mechanisms
including the bystander effect, fusion, partial transdif-
ferentiation and horizontal gene transfer [180,181]
might be responsible.
4. Conclusion

During preclinical drug development, early screen-
ing of promising drug candidates with respect to their
metabolism, pharmacokinetics and potential (toxic)
interactions is encouraged to diminish the number of
failures at later stages. In vitro techniques, including
hepatocyte-based in vitro models, are currently being
applied. Hepatocytes in culture, however, enter the cell
cycle and irreversibly dedifferentiate. Their limited via-
bility and major loss of xenobiotic biotransformation
capacity strongly limit their applicability. Understand-
ing how to control differentiation and proliferation of
these primary cells is a key-challenge. Next to target-
ing the differentiated status of adult primary hepato-
cytes, stem/progenitor cell technology has been
proposed as an alternative to produce functional
hepatocytes. Until recently the mechanisms governing
lineage-directed and terminal differentiation in these
stem/progenitor cells and adult primay cells, respec-
tively, largely have remained unknown. In this review,
we provide a better understanding of the intracellular
regulation of directed and established liver-specific
gene transcription.

In vivo, a constellation of intra- and extra-cellular sig-
naling pathways is known to govern the balance of
growth and differentiation in all cells. Stem cells, their
differentiated progeny-including adult hepatocytes, and
elements of their microenvironment make up a struc-
tural, (epi)genetic controlled machinery that coordinates
normal homeostatic functioning of these cells
[3,5,85,113,114,142–144]. By extensively reviewing the
literature, we realised that next to the reconstruction
of extracellular communication pathways in vivo (line-
age-specific factors, including growth factors, cytokines,
hormones, glucocorticoids, cell–cell and cell–matrix
interactions), interference at the intracellular level via
chromatin remodelling agents might involve a strategy
to control lineage-specific gene expression, and conse-
quently (i) the multilineage differentiation potency of
stem cells and (ii) the acquisition of a differentiated
genotype in adult cells [9,12–15,82,85,114,49,52,128,
129,135,137,145,146]. Gene expression is in fact largely
regulated by epigenetic modifications of DNA and chro-
matin on genomic regulatory and coding regions. In
general, acetylation of core histones is associated with
transcriptional activation, whereas DNA methylation
is associated with gene silencing [17,20]. However, as
reviewed in Tables 1–3, differential effects are observed
depending on the factors studied e.g. the origin of the
cells, the property evaluated, the type of epigenetic mod-
ifier used and the exposure time. Nevertheless, from the
presented data it appears that in several stem cells-
derived and primary hepatic-based models both HDACi
and DNMTi are potent modulators of liver-specific
functions and cellular contacts, and as such could signif-
icantly contribute to the acquisition and maintenance of
the hepatocyte-specific geno/phenotype in culture.

Up to now, HDACi and DNMTi are mostly applied
separately, though, their combined exposure is advanta-



Table 3

Accomplished and failed HDAC and DNMT inhibitor-induced in vitro and in vivo differentiation of stem cells into various cell types.

Epigenetic modifier Culture conditions Stem cell type Intended cell type Observed features Reference

(A) Successful (‘trans’)differentiation

HDAC inhibitor

TSA* 1 lM TSA Human bone
marrow MSC

Hepatocyte-like cells Increased Alb,
CK18, HNF1a,
MRP2, C/EBPa
expression and Alb
secretion

[154]
Exposure from day 6 of
differentiation onwards
Hepatic stimulating medium

TSA* 1 lM TSA Rat MPC Hepatocyte-like cells Increased AFP,
HNF, Alb, CK18,
C/EBPa, CYPs
expression and Alb
secretion

[169]
Exposure from day 6 of
differentiation onwards
Hepatic stimulating medium

DMSO* 0.1% DMSO Human ADSC Hepatocyte-like cells Alb and AFP
expression, urea
production

[161]
Exposure from D10 of
differentiation
Hepatic stimulating medium

DMSO* (1) 1% DMSO Human ES Hepatocyte-like cells Alb expression,
lidocaine
metabolism, Alb and
urea production

[173]
Exposure from D3–11 of
differentiation
Hepatic stimulating medium

DMSO + sodium butyrate* (1) 1% DMSO Murine ES (D3) Hepatocyte-like cells Alb, CK18, DPPIV,
ADH, CYP
expression,

[183,184]
Exposure from D0–4 of
differentiation
(2) 2.5 mM sodium butyrate
Exposure from D4–10 of
differentiation

DMSO + sodium butyrate* (1) 0.8% DMSO
Exposure from D0–4 of
differentiation
(2) 2.5 mM sodium butyrate
Exposure from D4–10 of
differentiation
From D11: hepatic stimulating
medium

Murine ES (D3) Hepatocyte-like cells AFP, ALB, a1AT,
CK18, CK19, GGT,
HNF3b, G6P, TAT
and DPPIV
expression, glycogen
storage, ALB
secretion

[182]

Sodium butyrate* 1 mM Sodium butyrate urine and monkey
ES

Hepatocyte-like cells Alb expression, urea
and Alb secretion

[174]
Exposure from D9 of culture
Unspecified differentiation medium

Sodium butyrate + DMSO* (1) 1 mM sodium butyrate Human ES Hepatocyte-like cells Expression of CYPs,
HNF3b, HNF4a,
HNF1a,b, TTR,
AFP, Alb, ApoF,
CAR, TO, TAT,
glycogen storage,
Alb/fibrinogen/
fibronectin/A2M
secretion, CYP
activity

[153]
Exposure upon 50–70% confluence
for 24–48 h
(2) 0.5 mM sodium butyrate
Exposure from D1-2 of
differentiation for 48-72 h
(3) 1% DMSO
Exposure from D3 to D5 of
differentiation upon subculture for
7days
Hepatic stimulating medium

TSA* + shear stress 10 ng/ml TSA ES (129/Ola derived) Cardiomyocytes Increased acetylated
GATA-4, b-MHC,
Nkx2.5 and ANF
expression

[164]
Shear stress: concentration not
specified
24 h exposure after 7 days of
differentiation
Unspecified differentiation medium
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Table 3 (continued)

Epigenetic modifier Culture conditions Stem cell type Intended cell type Observed features Reference

TSA* + shear stress 32 nM TSA Murine ES (D3) Cardiovascular cells Increased VEGFR2,
PECAM, SMA,
SM-2 C, a-SA, etc.
expression

[163]
Exposure from onset of
differentiation
Shear stress: concentration not
specified
1–24 h exposure to TSA pre-
incubated cells
Unspecified differentiation medium

TSA* 80 nM TSA Embryos cloned
from cow donor cells

Blastocysts Change in
morphology

[172]
24 h exposure after 7 days of
differentiation
Non-stimulating medium

TSA* 100 nM TSA Rat neural
progenitors

Neural cells Increased Tuj1 or
MAP2ab expression

[162]
VPA* 0.3–1 mM VPA
Sodium butyrate* 1 lM Sodium butyrate

4 days exposure upon onset of
differentiation
Neural stimulating medium

VPA + DMSO* 2 mM VPA, 2% DMSO
Exposure from differentiation
onwards
Neural stimulating medium

Rat bone marrow
MSC

Neurons and
astrocytes

Increased expression
of NSE and NF,
AchE activity

[170]

VPA* 0.5–3 mM VPA
Exposure during first 3 days of
differentiation and first 4 days prior
to differentiation

Human bone
marrow MSC

Osteoblasts Increased osterix,
osteopontin BMP-2
and Runx2
expression

[218]

DNMT inhibitor

5-AzaC*,$ 20 lM 5-AzaC Rat ADSC Hepatocyte-like cells Expression of
DPPIV, Alb,
CYP1A1, HepPar1,
AFP, CK19, PCK1,
CK18

[155]
Exposure for 24 h upon
95%confluence prior to
onset of differentiation
Upon 24 h: Hepatic stimulating
medium

5-AzaC*,$ 20 lM 5-AzaC
Exposure for 24 h prior to hepatic
stimulation onset of differentiation
at 100% confluency
Hepatic stimulating medium

Human ADSC
Human bone
marrow MSC

Hepatocyte-like cells Expression of Alb,
CYP3A4, HepPar1,
CK18, Cx32,
PEPCK, CPS
and Cx32, urea
production,
glycogen storage

[168,185]

5-AzaC*,$ 1 lM 5-AzaC Human umbilical
cord blood MSC

Hepatocyte-like cells Expression of Alb,
C/EBPa, CYP1A1/
2, glycogen storage

[167]
Exposure for 24 h prior to hepatic
stimulation
Hepatic stimulating medium

HDAC + DNMT inhibitor

TSA + 5-Aza-dC$ 150 nM TSA + 500 nM 5-Aza-dC Murine neurosperes Haematopoietic cells Expression of CD45,
CD3, CD19, MAC1,
CD4, CD8

[166]
2days exposure prior to
transplantation
Neural stem cell stimulating
medium

TSA + 5-Aza-dC$ 5 ng/ml TSA + 500 nM 5-Aza-dC Human CD34+ HSC CD34+/CD90+

HPC
Marrow
repopulating
capability, self-
renewing potential

[165]
5-Aza-dC: exposure from 16 to 48 h
cultivation in medium promoting
exit of G0/G1 phase
TSA: exposure from 48 h
cultivation in medium promoting
terminal differentiation

(continued on next page)
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Table 3 (continued)

Epigenetic modifier Culture conditions Stem cell type Intended cell type Observed features Reference

DMSO + AzaC* 1% DMSO + 5 mM 5-AzaC Murine bone
marrow MSC

Hepatocyte-like cells Expression of Alb,
TAT, CK18/8,
CK19

[156]
AzaC: exposure for 12 h before
coculture
DMSO: exposure throughout
culture time
Hepatic stimulating medium
Coculture with nonparenchymal
liver cells

(B) Failure of (‘trans’)differentiation

HDAC inhibitor

TSA + VPA + DMSO* 50 nM TSA, 2 mM VPA, 2%
DMSO

Rat bone marrow
MSC

Neurons and
astrocytes

Decreased
expression of NSE
and NF, Decreased
AchE activity

[170]

Exposure upon D1 of
differentiation onwards
Neural stimulating medium

Butyrate* 2 mM Butyrate Mononuclear cells
from murine/human
peripheral blood/
bone marrow/spleen

Endothelial cells Failure of HoxA9,
VEGFR2 expression

[219]

TSA* 1–2.5 lM TSA
MS-275* 3–10 lM MS-275

Exposure upon onset of
differentiation
Endothelial stimulating medium

TSA* 5 or 10 nM TSA
Exposure upon onset of
differentiation
Unspecified differentiation medium

Murine ES Embryoid bodies Steady alkaline
phosphatase activity

[220]

VPA* 0.3–1 mM VPA Rat neural
progenitors

Astrocytes,
oligodendrocytes

Failure of Rip and
GFAP expression

[162]

TSA* 100 nM TSA
Sodium butyrate* 1 lM Sodium butyrate

Exposure for 4 days upon onset of
differentiation
Oligodendrocyte and astrocyte
stimulating medium

VPA* 0.5–2 mM VPA Mouse 3T3-L1
preadipocytes

Adipocytes Reduced PPARc,
SREBP1a, C/EBPa
expression

[221]

TSA* 3 nM TSA
Exposure after 2 days of confluence
Differentiation inducing medium

Primary human
preadipocytes

(C) Time-specified related failure/ accomplishment of (‘trans’)differentiation

HDAC inhibitor

VPA$ 300 mg/kg VPA
Injection: every 12 h, for 4 times
- In postnatal weeks 1–2

- From postnatal week 3 onwards

Pups neural
progenitor cells

Oligodendrocytes

- Suppression of
myelination
- No suppression
of myelination

[171]

TSA* 5–400 nM TSA Mouse myoblasts Myotubes [222]
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Table 3 (continued)

Epigenetic modifier Culture conditions Stem cell type Intended cell type Observed features Reference

Sodium butyrate* 0.1–10 mM Sodium butyrate
VPA* 0.1–10 mM VPA

Differentiation inducing medium
- Exposure from onset of
differentiation

- Prevention of
muscle
differentiation

- Exposure after onset of
differentiation

- Progression of
terminal muscle
differentiation and
prevention of
reorganisation of
constitutive
heterochromatin

TSA* 0.1, 1 and 10 ng/ml TSA Rat oligo-
dendrocyte
progenitors

oligodendrocytes [223]

Pre-treated neuroectodermal
stimulating medium
- Exposure up to to 12–24 h upon
mitogen removal

- Steady state
expression of A2B5,
no oligodendrocyte
maturation

- Exposure after 24 h upon mitogen
removal

- Failure of GAIC
and PLP expression,
oligodendrocyte
maturation (20)

Abbreviations: a1AT, alpha1-antitrypsin; AChE, acetylcholinesterase; ADH, alcohol dehydrogenase; ADSC, adipose tissue-derived stromal cells;
AFP, alpha-fetoprotein; ALB, albumin; A2M, alpha-2 macroglobulin; ANF, atrial natriuretic factor; ApoF, apolipoprotein; a-SA, alpha-sarcomeric
actin; AzaC, 5-azacytidine; 5-Aza-dC, decitabine 5-Aza-20deoxycytidine; b-MHC, beta-myosin heavy chain; BMP-2, bone morphogenic protein;
CAR, constitutive androstane receptor; CD, cluster of differentiation; C/EBP, CCAAT enhancer binding protein; CK, cytokeratin; CPS, carbamyl
phosphate synthetase; Cx, connexin; CYP, cytochrome P450; DMSO, dimethylsulfoxide; DPPIV, dipeptidyl peptidase IV; DNMT inhibitor, DNA
methyltransferase inhibitor; ES, embryonic stem cells; GAlC, galactocerebroside; GFAP, glial fibrillary acidic protein; HDAC inhibitor, histone
deacetylase inhibitor; HNF, hepatocyte-nuclear factor; HSC, haematopoietic stem cells; Hox, homeobox; LDL, low density lipoprotein; MAC1,
macrophage antigen-1; MAP, microtubule-associated protein; MPC, mesenchymal progenitor cells; MRP, multidrug resistance protein; MSC,
mesenchymal stem cells; NF, neurofilament; Nkx2.5, NK2 transcription factor related locus 5; NSE, neuron specific enolase; PCK1, phospho-
enolpyruvate carboxykinase; PeB, peripheral blood; PECAM, platelet and endothelial cell adhesion molecule; PEPCK, phosphoenol-pyruvate
carboxykinase; PLP, proteolipid protein; PPARc, peroxisome proliferator-activated receptor gamma; Rip, oligodendrocyte marker; Runx2, tran-
scription factor vertebrate homologue of the Drosophila runt gene 2; SMA, smooth muscle actin; SREBP, sterol regulatory element binding protein;
SS, shear stress; TAT, tyrosine aminotransferase; TO, tryptophan dioxygenase; TSA, trichostatin A; TTR, transthyretin; VEGFR2, vascular
endothelial growth factor receptor type 2; VPA, valproic acid.
$ in vivo.
* in vitro.
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geous [73] and is expected to gain in importance in the fol-
lowing years. Still, more in depth studies are needed to
unravel the tangled web of epigenetic marks and line-
age-specific transcription, governing the multipotent sta-
tus of stem cells and the terminal differentiated geno/
phenotype of adult cell types.
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