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1. Introduction and statement of results

The traditional form of expressing the Heisenberg principle, stating that one cannot simultan
concentrate in physical and frequency space, is by means of the so called Heisenberg inequality∫

x2
∣∣f (x)

∣∣2 dx

∫
k2
∣∣f̂ (k)

∣∣2 dk � 1

4
‖f ‖4.

This is a very basic property of the Fourier transform on the real line proved by H. Weyl and W. Pa
using the two most basic tools of analysis: integration by parts and Schwarz’s inequality. A nice a
is given in [3]. The account in [2] stops short of using Fourier language and this step is taken
Sometimes a more complicated looking expression is given but it is easy to reduce the more gene
to the one above.

Interest in these topics runs in areas ranging from quantum mechanics, where Heisenberg for
it first, to signal processing where D. Gabor, see [9], may have been the first one to state it. On th
hand, these considerations underlie a lot of the work of C. Shannon and the remarkable series of p
different combinations of D. Slepian, H. Landau, and H. Pollak. For a nice survey of this work see

There are even applications of this same idea in tomography, [1], where one sees that the
betweenspatial and contrast resolution is governed by the same mathematical limitations. The issu
picking good sampling schemes is discussed in [17].

Of a more recent vintage is a beautiful paper by D. Donoho and P. Stark [8]. Here one intro
two subsetsP andQ in physical and frequency space, respectively, and then the main characters
operator of “time limiting”, i.e., restricting a function in physical space to the setP and the operator o
“band limiting” which cuts off all the frequencies outside the setQ. The crucial ingredient in [8] is th
observation that the norm of the operatorPQ is properly bounded.
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In this version of the Heisenberg principle one obtains a lower bound on the product of the meas
the setsP andQ. The beauty of the proof is that it relies on very simple facts, just as the proof of the
sical Heisenberg inequality. This line of work was extended to groups in [10] and to Gelfand pairs

The operatorsP andQ mentioned above play a crucial role—whenP andQ are intervals—in the
work of Slepian, Landau, and Pollak mentioned earlier. They were considered for arbitrary sets i
work of Fuchs mentioned in [8]. In the first instance they give rise to a rich collection of alge
miracles whose analysis has led in turn to more miracles. For an introduction to this line of work s
instance, [12,13].

Motivated by the study of the “scattering transform” I once wrote, see [14], a paper showing th
injunction aboutdouble concentration does not hold for thisnonlinear transform in spite of the fact tha
its linearization at zero potential is given by the Fourier transform. Since I was dealing in [14] wi
integers as physical space I needed to quote a version of the Heisenberg inequality in the conte
circle (as opposed to that of the real line mentioned above). I could not find one in the literature s
it myself by adapting Weyl’s proof and observing that one little extra condition had to be added to
the contribution form boundary terms in the process of integrating by parts. This proof has now ap
in the textbook literature, see [16].

We finally come to the point of this paper: what about the case of theN roots of unity?, i.e., the cas
of the discrete Fourier transform.

One can expect that some little natural extra condition like the one needed for the circle m
needed, but a bit of experimentation reveals a more complex situation. For example, a constant
violates a naive adaptation of the inequality that holds in the real line. This was the problem that s
in the case of the circle too and that lead us to consider only functions that vanish atthe appropriate
replacement of infinity. However, for the case of the roots of unity, we have troubles also with func
supported at the origin.

We present below a form of the Heisenberg inequality inspired in the initial formulation in qua
mechanics and its generalization due to E. Schroedinger and independently to H. Robertson back
see [4, p. 135]. This generalized form is also given in [3] as exercise 1 on p. 119.

The difficulty in patching up easily the original form of the inequality on the real line can be trac
the trivial fact that you cannot have in finite dimensions two operators whose commutator is a n
multiple of the identity. For a reader that may, at this point, feel a bit queasy about this reconnec
Fourier stuff with quantum mechanics let me argue that this kind of interconnection is a very fruitfu
I just recall that the work of G. Wilson, see [5], in connection with earlier work of Kazhdan, Kostan
Sternberg, see [6], classifies completely all theapproximate realizations of the canonical commutation
relations in a finite-dimensional situation. This plays a crucial role in the study of Calogero–M
systems as well as in the study of the KdV and KP equations. Pursuing this matter here would, h
take us rather far from the task at hand. It is a pleasure to thank Barry McCoy for timely remarks.

2. An appropriate form of the Heisenberg inequality

Our physical space consists of the integers modN , or equivalently the set ofN th-roots of unity.
Frequency space is a different copy of the same set. On the finite-dimensional space of comple
functionsa defined on physical space we have the DFT defined by the usual rule
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ors that
âj = 1√
N

N−1∑
k=0

akω
−kj , ω ≡ ei2π/N.

It is convenient to consider a general operatorQ meant to representposition as well as the operator o
centered differencesP meant to representmomentum. To make these operators selfadjoint we take th
as

Q =



q0 0
. . .

0 qN−1




and

P = i




0 1 0 . . . −1
−1 0 1 . . . 0

0 −1 0 . . . 0
. . .

1 0 0 . . . −1 0


 .

For the time being the (real) values ofqi are quite general. One can derive an inequality for any s
choice ofqi but we will see later that there is a natural choice.

We then get for their commutator the skew-adjoint operator[Q,P ] given by

[Q,P ] = i




0 q0 − q1 . . . . . . qN−1 − q0

q0 − q1 0 q1 − q2 . . . 0
...

...
...

...
...

qN−1 − q0 0 . . . qN−2 − qN−1 0


 .

It is convenient now to introduce some simple and very general considerations for linear operat
are at the core of the work of Schroedinger and Robertson mentioned earlier.

The expected value of any selfadjoint operatorA in statea is defined by the expression

〈A〉 = 〈Aa,a〉.
Since the operatorA is selfadjoint the expected value of its square is given by〈

A2a
〉= 〈Aa,Aa〉 = ‖Aa‖2.

If A andB are selfadjoint we have

AB = 1

2
T + i

2
S

with T = AB + BA andS = 1/i [A,B] both selfadjoint.
Then the product of the expected values of their squares satisfies the inequality

〈
A2〉〈B2〉= ‖Aa‖2‖Ba‖2 �

∣∣〈Aa,Ba〉2
∣∣= 1

4

∣∣〈a, (T + iS)a
〉∣∣2

= 1∣∣〈a,T a〉 − i〈a,Sa〉∣∣2 = 1(〈a,T a〉2 + 〈a,Sa〉2).

4 4
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If we consider the expected value of the square of the operatorP introduced above we get

〈
P 2
〉= N−1∑

0

|aj+1 − aj−1|2,

which is converted by using the properties of the DFT into the expression

N−1∑
j=0

∣∣(ωj − ω−j
)
âj

∣∣2 = 4
N−1∑
j=0

sin2 2πj

N
|âj |2.

Note. This last step is entirely similar to the step in going from the second factor in the left-hand s
Heisenberg inequality in [2] to the same factor in [3].

At this point we can choose the operatorQ denoting position in a fashion that treats physical a
frequency space on the same footing. With this in mind we set

qj = sin
2πj

N
.

This gives for the commutator[Q,P ] the matrix

[Q,P ]m,n = i

(
sin

2πm

N
− sin

2πn

N

)
(−1)n−m if |n − m| = 1

and[Q,P ]m,n = 0 otherwise, whereas for the termQP + PQ we get

[Q,P ]m,n = i

(
sin

2πm

N
+ sin

2πn

N

)
(−1)n−m if |n − m| = 1

and(QP + PQ)m,n = 0 otherwise, and our inequality finally reads

4
∑

sin2

(
2πj

N

)
|aj |2

∑
sin2

(
2πk

N

)
|âj |2

� 1

4

(
N−1∑
j=0

(
sin

(
2πj

N

)
− sin

(
2π(j + 1)

N

))
(aj āj+1 + āj aj+1)

)2

− 1

4

(
N−1∑
j=0

(
sin

(
2πj

N

)
+ sin

(
2π(j + 1)

N

))
(aj āj+1 − āj aj+1)

)2

.

Notice that if a is real (or imaginary) valued the second term vanishes. One should remark t
the classical case of the real line there is also an extra term that is usually left out. This seco
corresponds, once again, to the anticommutator of the operators in question. It just happens th
real valued function, namely an appropriate Gaussian, the first term alone gives equality. Furth
whereas the first term has a nice form, just the fourth power of the norm ofa, the second term given by

i

∫ (
2xf ′(x) + f (x)

)
f̄ (x)dx

is not so nice and compact. In the case of the DFT neither of the two terms has a nice compact f
it may be better to keep both of them.
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The issue of equality between the left-hand side and the right-hand side of the inequality above
to the question of findinga such that

Qa ∼= Pa.

It turns out that forN odd this has a one-dimensional space of solutions, whereas forN even there is
a two-dimensional space of solutions. None of these bear much of a connection with the natura
of the Gaussian in this context, though. For some work in this regard see [15].
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