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The rates of convergence of two Bernstein�Be� zier type operators B (:)
n and L (:)

n for
functions of bounded variation have been studied for the case :�1 by the author
and A. Piriou (1998, J. Approx. Theory 95, 369�387). In this paper the other case
0<:<1 is treated and asymptotically optimal estimations of B (:)

n and L (:)
n for func-

tions of bounded variation are obtained. Besides, some interesting behaviors of
the operators B (:)

n and L(:)
n (:>0) for monotone functions and functions of bounded

variation are also given. � 2000 Academic Press

1. INTRODUCTION

Let Pnk(x)=( n
k) xk(1&x)n&k be the Bernstein basis functions. Let Jnk(x)

=�n
j=k Pnj (x) be the Be� zier basis functions. For a function f defined on

[0, 1], the Bernstein�Be� zier operator B (:)
n applied to f is

B(:)
n ( f, x)= :

n

k=0

f (k�n) Q (:)
nk (x), (1)

and for a function f # L1[0, 1], the Bernstein�Kantorovich�Be� zier operator
L(:)

n applied to f is

L(:)
n ( f, x)=(n+1) :

n

k=0

Q (:)
nk (x) |

Ik

f (t) dt, (2)

where :�1, or 0<:<1, Q (:)
nk (x)=J :

nk(x)&J :
n, k+1(x) (Jn, n+1(x)#0), and

Ik=[k�(n+1), (k+1)�(n+1)] (0�k�n).
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The approximation behaviors of the operators B (:)
n , L (:)

n have many
differences between the case :�1 and the case 0<:<1. For example, on
the rate of convergence of the operators B (:)

n ( f, x) to f (x) # C[0, 1], Li and
Gong (cf. [10, p. 106]) obtained

&B (:)
n ( f, x)& f (x)&C[0, 1]�{(1+:�4) |(n&1�2, f ),

M|(n&:�2, f ),
:�1,
0<:<1,

where |($, f ) is the modulus of continuity of f (x). Obviously, the rate
of convergence |(n&1�2, f ) in the case :�1 is better than the rate of
convergence |(n&:�2, f ) in the case 0<:<1. Again, for the case :�1, Liu
[10, p. 107] proved an inverse theorem that

|B(:)
n ( f, x)& f (x)|�M(max[(x(1&x)�n)1�2, n&1]); (0<;<1)

on (0, 1) implies that f (x) # Lip ;, while the inverse theorem for the case
0<:<1 is left unsolved up to now. Approximation of functions of
bounded variation with the operators B (:)

n and L (:)
n for the case :�1 is

studied in [1]. In this paper the other case 0<:<1 is treated. This paper
proves that the rates of convergence of the operators B (:)

n and L (:)
n for func-

tions of bounded variation in the case 0<:<1 are as good as in the case
:�1 (except the differences in estimate coefficients), which shows that the
asymptotical behavior of the operators B(:)

n in space BV[0, 1] is somewhat
different from that in space C[0, 1]. In addition, in the last part of the
paper, some interesting behaviors of the operators B(:)

n and L (:)
n (:>0) for

monotone functions and functions of bounded variation are studied. The
main results of this paper are as follows:

Theorem 1. Let 0<:�1 and f be a function of bounded variation on
[0, 1]( f # BV[0, 1]). Then for every x # (0, 1) and n> 256

25 (x(1&x))&1 we
have

}B (:)
n ( f, x)&

1
2: f (x+)&\1&

1
2:+ f (x&) }

�
A:

n(x(1&x))2&: :
n

k=1

�
x+(1&x)�- k

x&x�- k

(gx)

+
1

- nx(1&x)
( | f (x+)& f (x&)|+=n(x) | f (x)& f (x&)|), (3)
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where A: is a positive constant depending only on :,

=n(x)={1, if x=k$�n, for some k$ # N
0, if x{k�n, for all k # N,

�b
a (gx) is the total variation of gx on [a, b], and

f (t)& f (x+), x<t<1;

gx(t)={0, t=x;

f (t)& f (x&), 0�t<x.

Theorem 2. Let 0<:�1 and f be a function of bounded variation on
[0, 1]. Then for every x # (0, 1) and n> 256

25 (x(1&x))&1 we have

}L (:)
n ( f, x)&

1
2: f (x+)&\1&

1
2:+ f (x&)}

�
B:

n(x(1&x))2&: :
n

k=1

�
x+(1&x)�- k

x&x�- k

(gx)+
2 | f (x+)& f (x&)|

- nx(1&x)
, (4)

where B: is a positive constant depending only on :.

In Section 3 we will show that the estimations (3) and (4) are asymptoti-
cally optimal. From Theorem 1, Theorem 2, and the Korovkin Theorem
(cf. [12, p. 27]), Corollary 1 of [1] now follows for all :>0. By this we
get

If f (t) is bounded on [0, 1], and if x # (0, 1) is a discontinuity point of the
first kind of f (t), then for any number C lying strictly between f (x+) and
f (x&), we are able to choose a suitable : such that

lim
n � �

B (:)
n ( f, x)=C and lim

n � �
L (:)

n ( f, x)=C.

2. PRELIMINARIES

We need some preliminary results for proving Theorems 1 and 2. We
first recall the Lebesgue�Stieltjes integral representations (cf. [1, (21), (22)]),

B (:)
n =|

1

0
f (t) dt K (1)

n, :(x, t),

(5)

K (1)
n, :(x, t)={�k�nt Q (:)

nk (x),
0,

0<t�1,
t=0,
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and

L (:)
n ( f, x)=|

1

0
f (t) K (2)

n, :(x, t) dt,

(6)

K (2)
n, :(x, t)= :

n

k=0

(n+1) Q (:)
nk (x) /k(t),

where /k is the characteristic function of the interval Ik with respect
to I=[0, 1].

Again, similar to [2, p. 272], we define Hn, :(x, t) and Rn, :(x, t) on
[0, 1] as

Hn, :(x, t)=1&K (1)
n, :(x, t&), 0�t<1,

(7)
Hn, :(x, 1)=0,

and

Rn, :(x, t)=1&|
t

0
K (2)

n, :(x, u) du, 0�t<1,
(8)

Rn, :(x, 1)=0.

For proving Theorems 1 and 2 we need to estimate the quantities

}\ :
nx<k�n

Pnk(x)+
:

&
1
2: }, Q (:)

nk (x), K (1)
n, :(x, t),

|
t

0
K (2)

n, :(x, u) du, Hn, :(x, t), and Rn, :(x, t).

Below we give these estimations.

Lemma 1. For 0<:�1 and x # (0, 1), as n> 256
25 (x(1&x))&1 we have

}\ :
nx<k�n

Pnk(x)+
:

&
1
2: }< 1

- nx(1&x)
. (9)

Proof. By the mean value theorem it follows that

}\ :
nx<k�n

Pnk(x)+
:

&
1
2: }=:(#nk(x)):&1 } :

nx<k�n

Pnk(x)&
1
2 } , (10)
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where #nk(x) lies between 1�2 and �nx<k�n Pnk(x). From the proof of
Lemma 2 of [1] we know that

} :
nx<k�n

Pnk(x)&
1
2 }<

0.8(2x2&2x+1)

- nx(1&x)
�

0.8

- nx(1&x)
. (11)

It follows for n> 256
25 (x(1&x))&1 that

:
nx<k�n

Pnk(x)> 1
4 , (12)

which implies

#nk(x)> 1
4 .

Hence from (10), (11), and the fact that 3.2:<4: (0<:�1), we get

}\ :
nx<k�n

Pnk(x)+
:

&
1
2: }<:41&: 0.8

- nx(1&x)
<

1

- nx(1&x)
.

The proof is complete.

Lemma 2. Let 0<:�1 and x # (0, 1). Then for k=0, 1, 2, ..., n, there holds

:Pnk(x)�Q(:)
nk (x)�P:

nk(x). (13)

Proof. Since Q(:)
nk (x)=J :

nk(x)&J :
n, k+1(x), Pnk(x)=Jnk(x)&Jn, k+1(x), by

the mean value theorem we get the left hand inequality of (13). Again, note
that for 0<:�1, there holds

(Pnk(x)�Jnk(x)):�Pnk(x)�Jnk(x)

and

(Jn, k+1(x)�Jnk(x)):�Jn, k+1(x)�Jnk(x).

Hence

(Pnk(x)�Jnk(x)):+(Jn, k+1(x)�Jnk(x)):�1,

which derives the right hand inequality of (13).
From Theorem 1 of [3, p. 365] we can observe that the right hand

inequality of (13) will derive an estimate order n&:�2 (n � �) for Q (:)
nk (x).

A better estimate order n&1�2 (n � �) for some specific Q (:)
nk$(x) is as follows:
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Lemma 3. Let 0<:�1 and x # (0, 1). Then for n> 256
25x(1&x) and k$=nx,

there holds

Q (:)
nk$(x)<

4:
4: Pnk$(x)<

1

- nx(1&x)
. (14)

Proof. Using the mean value theorem we have

Q (:)
nk$(x)=:#:&1

nk$ (x)[Jnk$(x)&Jn, k$+1(x)]

=:(1�#nk$(x))1&: Pnk$(x), (15)

where Jn, k$+1(x)<#nk$<Jn, k$(x). Noticing that k$=nx, from (12) we have
for n> 256

25x(1&x)

#nk$(x)>Jn, k$+1(x)� :
nx<k�n

Pnk(x)>1�4.

By Theorem 1 of [3, p. 365] and from (15) we deduce that

Q(:)
nk$(x)<:41&:Pnk$(x)<:41&: 1

- 2e - nx(1&x)
<

1

- nx(1&x)
.

Lemma 4. For 0<:�1 and 0�t<x<1 there holds

K (1)
n, :(x, t)�K (1)

n, 1(x, t)�
x(1&x)
n(x&t)2 . (16)

Proof. The right hand inequality of (16) is well known (see, e.g., [4, p. 6]).
Hence we only need to prove the left hand inequality of (16). Noting the
expression (5) we have

:
k�nt

Q (:)
nk (x)=J :

n0(x)&J :
n1(x)+J :

n1(x)&J :
n2(x)+ } } }

+J :
n, [nt]&1(x)&J :

n, [nt](x)+J :
n, [nt](x)&J :

n, [nt]+1(x)

=J :
n0(x)&J :

n, [nt]+1(x)=1&\ :
n

k=[nt]+1

Pnk(x)+
:

.

Note that 0<:�1 and (�n
k=[nt]+1 Pnk(x))�1. Hence

1&\ :
n

k=[nt]+1

Pnk(x)+
:

�1&\ :
n

k=[nt]+1

Pnk(x)+
= :

k�nt

Pnk(x)= :
k�nt

Q (1)
nk (x).

Lemma 4 is proved.
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Lemma 5. For 0<:�1 and 0�t<x<1, as n>(3x(1&x))&1 we have

|
t

0
K (2)

n, :(x, u) du�|
t

0
K (2)

n, 1(x, u) du�
2x(1&x)
n(x&t)2 . (17)

Proof. Let t # [k*�(n+1), (k*+1)�(n+1)). Then we can write t=
(k*+=)�(n+1) (0�=<1). So

|
t

0
K (2)

n, :(x, u) du=|
t

0
:
n

k=0

(n+1) Q (:)
nk (x) /k(u) du

= :
n

k=0

(n+1) Q (:)
nk (x) |

t

0
/k(u) du

= :
k*&1

k=0

Q (:)
nk (x)+(n+1) Q (:)

nk*(x) |
(k*+=)�(n+1)

k*�(n+1)
1 du

= :
k*&1

k=0

Q (:)
nk (x)+=Q (:)

nk*(x)

=J :
n0(x)&J :

n1(x)+J :
n1(x)&J :

n2(x)+ } } }

+J :
n, k*&1(x)&J :

n, k*(x)+=J :
n, k*(x)&=J :

n, k*+1(x)

=1&(1&=) J :
nk*(x)&=J :

n, k*+1(x)

�1&(1&=) Jnk*(x)&=Jn, k*+1(x).

The last inequality holds due to the fact that 0�:, Jn, k*(x)�1. We
observe that 1&(1&=) Jnk*(x)&=Jn, k*+1(x) is just � t

0 K (2)
n, 1(x, u) du. Hence

the left hand inequality of (17) is obtained. As n>(3x(1&x))&1, the right
hand inequality of (17) follows from Lemma 9 of [1]. The proof is complete.

Lemma 6. Let l>2 be fixed. Then there exist three positive numbers
r>0, s>0, and p>1 such that l=r+s, rp=2, and sp

p&1 is a positive even
integer.

Proof. In fact, let [l] denote the greatest integer not exceeding l. One
can take p= 2[l]

2[l]+2&l>1, r= 2
p , and s=l&r. Then

rp=2 and
sp

p&1
=

lp&rp
p&1

=
lp&2
p&1

=2[l]+2.
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Lemma 7. For 0<:�1 and 0�x<t<1 we have

Hn, :(x, t)�A:
(x(1&x)):

n(x&t)2 , (18)

where A: is a positive constant depending only on :.

Proof. For :=1 the conclusion is known from Lemma 8 of [1]. Below
we consider the case 0<:<1. Since 0�x<t<1, so | k�n&x

t&x |�1 for k�nt.
Thus

Hn, :(x, t)=1&K (1)
n, :(x, t&)=1& :

k�nt&

Q (:)
nk (x)� :

k�nt

Q (:)
nk (x)

= :
k�nt

(J :
nk(x)&J :

n, k+1(x))=\ :
k�nt

Pnk(x)+
:

�\ :
k�nt

|k�n&x|2�:

(t&x)2�: Pnk(x)+
:

�
1

(t&x)2 \ :
n

k=0

|k�n&x|2�: Pnk(x)+
:

.

By Lemma 6 we choose r>0, s>0, and p>1 such that 2�:=r+s, rp=2,
and sp

p&1 is a positive even integer. Let q be the conjugate exponent to p,
i.e, 1�p+1�q=1. Then by the Ho� lder inequality

\ :
n

k=0

|k�n&x| 2�: Pnk(x)+
:

=\ :
n

k=0

|k�n&x| r |k�n&x| s P1�p
nk (x) P1�q

nk (x)+
:

�\ :
n

k=0

|k�n&x| rp Pnk(x)+
:�p

\ :
n

k=0

|k�n&x| sq Pnk(x)+
:�q

�(x(1&x) n&rp�2):�p (x(1&x) An&sq�2):�q

=A:(x(1&x)): n&1. (19)

The second inequality in (19) is known from [4, p. 14, Theorem 1.5.1], and
A:=A:�q is a positive constant depending only on :. The proof is complete.
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In the same manner we get

Lemma 8. For 0 < : � 1 and 0 � x + (1&x) �- n � t < 1, as n >
(3x(1&x))&1 we have

Rn, :(x, t)�B:
(x(1&x)):

n(x&t)2 , (20)

where B: is a positive constant depending only on :.

Lemma 9. For 0<:�1 and n=2m (m=1, 2, 3, ...) we have

|J :
2m, m+1(1�2)&1�2:|�:�(4 - n). (21)

Proof. From the proof of Lemma 13 of [1] we know that

|J :
2m, m+1(1�2)&1�2:|=1�2:&J :

2m, m+1(1�2)

=(:�2) #:&1
m P2m, m(1�2),

where 1�4�J2m, m(1�2)<#m<1�2 and P2m, m(1�2)>1�(2 - n).
Now #:&1

m �1, hence

|J :
2m, m+1(1�2)&1�2:|=(:�2) #:&1

m P2m, m(1�2)>:�(4 - n).

3. PROOFS OF THE THEOREMS AND THE REMARK

Proofs of Theorems 1 and 2. (We shall here refer to some computations
already detailed in the study [1] of the case :�1.)

For any f # BV[0, 1], we decompose f (t) into four parts as (see [1,
(30)])

f (t)=
1
2: f (x+)+\1&

1
2:+ f (x&)+ gx(t)+

f (x+)& f (x&)
2: sĝn(t&x)

+$x(t) _f (x)&
1
2: f (x+)&\1&

1
2:+ f (x&)& , (22)
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where sĝn(t) and $x(t) are defined by

2:&1, t>0

sĝn(t)={0, t=0; $x(t)={1, t=x
0, t{x.

&1, t<0

Hence

}B (:)
n ( f, x)&

1
2: f (x+)&\1&

1
2:+ f (x&)}

�|B (:)
n (gx , x)|+ } f (x+)& f (x&)

2: B (:)
n (sĝn(t&x), x)

+_f (x)&
1
2: f (x+)&\1&

1
2:+ f (x&)& B (:)

n ($x , x)}. (23)

Using Lemma 4, Lemma 7, and along the same lines of the proof of
[1, Lemma 10], we get

|B (:)
n (gx , x)|= } |

1

0
gx(t) dtK (1)

n, :(x, t)}
�

A:

n(x(1&x))2&: :
n

k=1

�
x+(1&x)�- k

x&x�- k

g(x), (24)

where A: is a positive constant depending only on :.
On the other hand, by direct calculation, we get (see [1, Lemma 4])

B (:)
n ($x , x)==n(x) Q (:)

nk$(x)

and

B (:)
n (sĝn(t&x), x)=2: \ :

nx<k�n

Pnk(x)+
:

&1+=n(x) Q (:)
nk$(x),

where

=n(x)={1, if x=k$�n,
0, if x{k�n,

for some k$ # N
for all k # N.
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Hence

} f (x+)& f (x&)
2: B(:)

n (sĝn(t&x), x)

+_f (x)&
1
2: f (x+)&\1&

1
2:+ f (x&)& B (:)

n ($x , x) }
= } f (x+)& f (x&)

2: _2: \ :
nx<k�n

Pnk(x)+
:

&1+=n(x) Q (:)
nk$(x)&

+_f (x)&
1
2: f (x+)&\1&

1
2:+ f (x&)& =n(x) Q (:)

nk$(x) }
= } f (x+)& f (x&)

2: _2: \ :
nx<k�n

Pnk(x)+
:

&1&
+[ f (x)& f (x&)] =n(x) Q (:)

nk$(x)}.
Now using Lemma 1 and Lemma 3, we get

} f (x+)& f (x&)
2: _2: \ :

nx<k�n

Pnk(x)+
:

&1&
+[ f (x)& f (x&)] =n(x) Q (:)

nk$(x)}
�

1

- nx(1&x)
( | f (x+)& f (x&)|+=n(x) | f (x)& f (x&)|). (25)

Theorem 1 now follows from (23)�(25).
For proving Theorem 2 we only need to note that by Lemma 5, Lemma 8,

and along the same lines of the proof of [1, Lemma 11], we can obtain

|L (:)
n (gx , x)|�

B:

n(x(1&x))2&: :
n

k=1

�
x+(1&x)�- k

x&x�- k

(gx),

where B: is a positive constant depending only on :. The remainder
estimates are similar to the proof of Theorem 1. Hence we omit the details
of the proof.
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Remark. We now prove that estimations (3) and (4) are asymptotically
optimal for continuity points and discontinuity points of the function of
bounded variation f (t). If x is a continuity point of f, (3) becomes

|B(:)
n ( f, x)& f (x)|�

A:

n(x(1&x))2&: :
n

k=1

�
x+(1&x)�- k

x&x�- k

( f ). (26)

Consider the function f (t)=|t&x| (x # (0, 1)). From (26) we have

|B (:)
n ( f, x)& f (x)|=B (:)

n ( |t&x|, x)�
A:

n(x(1&x))2&: :
n

k=1

1

- k

<
2A:

- n x2(1&x)2
. (27)

On the other hand, by Lemma 2 and a result of Cheng [2, p. 240], we have
for n>2(x(1&x))&1

|B (:)
n ( |t&x|, x)|= :

n

k=0

|k�n&x| Q (:)
nk (x)� :

n

k=0

|k�n&x| :Pnk(x)

�
:(x(1&x))1�2

16n1�2 . (28)

Therefore from (27) and (28) we deduce that (26) cannot be asymptotically
improved.

For the discontinuity point of f, when gx #0, (3) becomes

}B (:)
n ( f, x)&

1
2: f (x+)&\1&

1
2:+ f (x&)}

�
1

- nx(1&x)
( | f (x+)& f (x&)|+=n(x) | f (x)& f (x&)|). (29)

We consider the function

f (t)={0, if 0�t�1�2
1, if 1�2<t�1,

341BERNSTEIN�BE� ZIER TYPE OPERATORS



and x=1�2, n=2m (m=1, 2, 3, ...). By Lemma 9 and (29), it follows that

:�(4 - n)�|J :
2m, m+1(1�2)&1�2:|

=|B(:)
n ( f, x)&(1�2:) f (x+)&(1&1�2:) f (x&)|�4�- n.

Therefore (29) cannot be asymptotically improved as n � +�.
In the same way we can show that estimation (4) is asymptotically

optimal for continuity points and discontinuity points of bounded variation
functions.

4. MONOTONE FUNCTIONS AND FUNCTIONS OF BOUNDED
VARIATION

In this section we give some interesting behaviors of the operators
B(:)

n ( f, x) and L (:)
n ( f, x) (:>0) for monotone functions and functions of

bounded variation.

Theorem 3. If f (x) is monotone non-decreasing (non-increasing), then
B(:)

n ( f, x) and L (:)
n ( f, x) are non-decreasing (non-increasing) with variable

x # [0, 1] and non-increasing (non-decreasing) with variable :>0. Moreover,
let �1

0 f (x) denote the total variation of the function f (x) in [0, 1]. We have

�
1

0

B (:)
n ( f, x)��

1

0

f (x) and �
1

0

L (:)
n ( f, x)��

1

0

f (x). (30)

In particular, if f (x) is the monotone function, then �1
0 B(:)

n ( f, x)=�1
0 f (x).

(If taking :=1, from the first inequality of (30) we get a result of Lorentz
[4, p. 23, 1.7(1)].)

Proof. From (1) we have

B(:)
n ( f, x)= :

n

k=0

f (k�n) Q (:)
nk (x)

=f (0)+ :
n

k=1

[ f (k�n)& f ((k&1)�n)] J :
nk(x). (31)

Again, for x # [0, 1] and :>0

d
dx

J :
nk(x)=:J :&1

nk (x) J$nk(x)=:J :&1
nk (x) :

n

j=k

P$nj (x)

=:J :&1
nk (x) \ :

n&1

j=k

n(Pn&1, j&1(x)&Pn&1, j (x))+nPn&1, n&1(x)+
=:nJ :&1

nk (x) Pn&1, k&1(x)�0. (32)
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Hence if f (x) is monotone non-decreasing (non-increasing), then d
dxB(:)

n ( f, x)
�0 (�0), that is, B(:)

n ( f, x) is non-decreasing (non-increasing) with
variable x.

On the other hand, let :1�:2 and note that 0�Jnk(x)�1. Thus from (31)

B (:1)
n ( f, x)&B (:2)

n ( f, x)= :
n

k=1

[ f (k�n)& f ((k&1)�n)](J :1
nk(x)&J :2

nk(x))

{�0, if f (x) is monotone non-decreasing,
�0, if f (x) is monotone non-increasing.

In addition, from (31) and (32) we have

�
1

0

B (:)
n ( f, x)

=|
1

0 }
d

dx
B (:)

n ( f, x)} dx

=|
1

0 } :
n

k=1

[ f (k�n)& f ((k&1)�n)] :nJ :&1
nk (x) Pn&1, k&1(x)} dx

� :
n

k=1

|[ f (k�n)& f ((k&1)�n)]| (J :
nk(1)&J :

nk(0))

= :
n

k=1

|[ f (k�n)& f ((k&1)�n)]|

��
1

0

f (x).

The above inequality becomes equality when f (x) is the monotone func-
tion. An analogous property for the operators L (:)

n ( f, x) can be obtained in
the same way. The proof is complete.
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