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A systematic theoretical approach is presented, in an effort to provide a complete and illuminating study
on kinematics and dynamics of rigid bodies rotating about a fixed point. Specifically, this approach is
based on some fundamental concepts of differential geometry, with particular reference to Lie group the-
ory. This treatment is motivated by the form of the configuration space corresponding to large rigid body
rotation, which is a differentiable manifold possessing group properties. First, the basic steps of the clas-
sical approach on the subject are briefly summarized. Then, some geometrical tools are presented, which
are essential for supporting and illustrating the steps and findings of the new approach. Finally, the
emphasis is placed on a thorough investigation of the problem of finite rotations. A key idea is the intro-
duction of a canonical connection, matching the manifold and group properties of the configuration
space. This proves to be sufficient and effective for performing the kinematics. Next, following the selec-
tion of an appropriate metric, the dynamics is also carried over. The present approach is theoretically
more demanding than the traditional treatments in engineering but brings substantial benefits. In partic-
ular, an elegant interpretation is provided for all the quantities with fundamental importance in both
rigid body kinematics and dynamics. Most importantly, this also leads to a correction of some misconcep-
tions and geometrical inconsistencies in the field. Among other things, the deeper understanding of the
theoretical concepts provides powerful insight and a strong basis for the development of efficient numer-
ical techniques in problems of solid and structural mechanics involving large rotations.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The study of rigid body kinematics and dynamics has been in
the epicenter of many previous investigations due to both the great
theoretical importance and the large practical significance of the
subject. Based on the authors’ background, the previous work in
this research area can be split in two major categories. The first in-
cludes work performed by mathematicians or physicists, where the
emphasis was placed on the theoretical aspects mainly, while the
problem of large rotation was treated mostly as an example fitting
the theory (e.g., Sattinger and Weaver, 1986; Arnold, 1989;
Marsden and Ratiu, 1999). On the other hand, the same subject
has also been extensively treated by engineers, with the attention
shifted on applications and on development of effective problem
solving methods (e.g., Greenwood, 1988; Nikravesh, 1988; Geradin
and Cardona, 2001; Shabana, 2005).

The authors of the present work take an intermediate position,
trying to bridge the gap between these two schools of thought with
seemingly different objectives. A similar point of view has also
been adopted by previous researchers in the field and proved
ll rights reserved.

x: +30 2310 99 6029.
beneficial in bringing new and useful theoretical concepts and
ideas in order to help and support the efforts of attacking and solv-
ing challenging engineering problems involving large rotation (e.g.,
Argyris, 1982; Simo and Vu-Quoc, 1991; Argyris and Poterasu,
1993; Papastavridis, 1999). Also, a similar approach was adopted
and proved fruitful in other related fields of mechanics and mate-
rials, in systems involving components undergoing large rotations.
For instance, this is the case encountered in finite element models
of rods, plates and shells exhibiting small strains but large defor-
mations induced by large rotations. In addition, similar approaches
have also found successful application in other more complex
deformable structures like ground and space vehicles, mechatron-
ics and biosystems (e.g., Wempner, 1969; Lu and Papadopoulos,
1998; Parry, 2001; Vassilev and Djondjorov, 2003). In particular,
there exists an extensive body of literature in robotics, using tools
of geometrical mechanics and Lie group theory (Murray et al.,
1994; Choset et al., 2005; Selig, 2005).

The main objective of this work is to present a new look into the
old but practically significant and still challenging mechanics prob-
lem of finite rotations, based on sound geometrical concepts. These
concepts are known and have been employed in the mathematics
and physics literature for a long time. However, with a few excep-
tions (e.g., Park et al., 1995; Ostrowski and Burdick, 1998; Haller
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Fig. 1. A rigid body undergoing large rotation about a fixed point O.
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and Mezic, 1998; Iserles et al., 2000; Liu, 2004), they are still not
widely known to or fully explored by the engineering community,
despite their large value and usefulness. Here, an effort is made to
use these concepts in order to create a clear and complete geomet-
rical picture of the kinematics and dynamics of large rigid body
rotation. In this way, more light is thrown into the meaning of
some of the most commonly employed quantities in describing ri-
gid body motion. This, in turn, provides an alternative view, clari-
fication and better interpretation of the related formulas employed
frequently in the classical engineering literature. At the same time,
this helps to identify and correct some common misconceptions in
the field and achieve another objective of the present work. The
latter refers to providing the means for building a reliable theoret-
ical basis for developing better and more effective numerical inte-
gration methodologies for studying and investigating dynamics of
single or multiple rigid bodies. In particular, this is expected to
support ongoing efforts in the field of nonlinear solid and
structural mechanics, focusing on the development of geometri-
cally exact temporal discretization numerical schemes (Simo and
Vu-Quoc, 1991; Crouch and Grossman, 1993; Munthe-Kaas,
1998; Brüls et al., 2012).

The utilization of ideas from Lie group theory is of great impor-
tance in nonlinear structural dynamics problems. This is due to the
fact that Lie groups possess a simpler structure (fewer require-
ments) than classical vector spaces. Consequently, they are appro-
priate for studying nonlinear problems, while the latter are mostly
employed in studying linear problems. In fact, application of suit-
able procedures leads to the creation of a vector space at each point
of a manifold, allowing the study of infinitesimal motions around
the state of the system represented by the specific point, which
are governed by linearized equations (Arnold, 1989).

The geometrical route chosen in the present study deviates sig-
nificantly from that taken in previous studies of mechanics prob-
lems. Specifically, the underlying manifold structure in static
problems is Riemannian, possessing a symmetric and positive def-
inite metric. A typical path is to introduce a set of coordinates and
employ a natural coordinate basis in order to define a metric and
then produce a metric compatible connection, having as compo-
nents the classical Christoffel symbols (e.g., Flugge, 1972; Fung
and Tong, 2001; Wempner and Talaslidis, 2003). Usually, the same
route is also chosen even for dynamics problems (e.g., Sattinger
and Weaver, 1986; Zefran et al., 1999). However, a more primitive
and natural path is more beneficial and followed in this work.
Namely, after creating the manifold corresponding to the configu-
ration space of the motion, a connection operator is first estab-
lished in an appropriate manner. This proves to be sufficient for
performing a complete study of the kinematics. In the present
study, a canonical connection is selected (Bertram, 2008), so that
one can fully exploit the benefits associated to matching the spe-
cial curves related to the manifold and the group properties of
the configuration space. Then, a study of the dynamics requires
the introduction of a metric. In this work, a suitable metric is cho-
sen, which is not compatible with the connection, but allows for a
complete, simple and concise treatment of the dynamics.

The organization of this paper is as follows. First, the classical
approach, referring to the study of spherical motion in the three
dimensional Euclidean space, is briefly summarized in the follow-
ing section. Then, some fundamental concepts of differential geom-
etry are presented in Section 3, which are essential in providing the
necessary theoretical background to an engineering audience.
Some supplementary material on the same subject is also pre-
sented in Appendices A and B. In Section 4, a complete picture of
rigid body kinematics is presented, based on the geometry of an
appropriate three dimensional manifold. The basic properties of
this manifold are extracted by defining an isomorphism with the
well known special orthogonal group SO(3). The latter group is
shown to present certain serious defects in describing both the
kinematics and the dynamics of a rigid body. For this reason, the
new manifold proposed in this study is generated through applica-
tion of a group representation (Hall, 2003). First, the emphasis is
placed in introducing a suitable connection, which leads to an
illuminating and thorough study of the kinematics. Moreover, in
conjunction with the introduction of an appropriate metric, it also
provides a useful tool for examining the dynamics of a rigid body,
in a simple and effective manner, as illustrated by the material in-
cluded in Section 5. Finally, the most important conclusions are
summarized in the last section.

2. Classical approach

The main concepts referring to kinematics and dynamics of a ri-
gid body undergoing large rotation about a fixed point (also known
as spherical motion) are briefly presented in this section. This will
provide the necessary reference for the material presented in the
following sections.

Study of the spherical motion is typically performed in the or-
dinary Euclidean space R3 (Geradin and Cardona, 2001). The basic
geometrical tools for this are shown in Fig. 1. In particular, a basis
B is introduced, consisting of three fixed orthonormal vectors ~Ei

(with i = 1,2,3), having point O as origin. These vectors form a
right-handed Cartesian inertial (or absolute or spatial) frame of ref-
erence. This basis will also be denoted by f~Eig. On the other hand,
another basis, B

0 or f~eiðtÞg, is formed by considering a new set of
three orthonormal vectors ~eiðtÞ, having O as origin, but rigidly at-
tached to and following the motion of the rigid body. These vectors
form the so-called body (or convective or corotational) frame of
reference (Marsden and Ratiu, 1999).

The two bases B and B
0 coincide originally. In addition, during

the subsequent motion, the basis vectors are related through a lin-
ear mapping, as follows

~eiðtÞ ¼ RðtÞ~Ei; i ¼ 1;2;3: ð1Þ

Then, the position vector of an arbitrary point of the body is ex-
pressed in the form

~xðtÞ ¼
X3

i¼1

xiðtÞ~Ei ¼
X3

i¼1

Xi~eiðtÞ;

where xi and Xi represent the components of the position vector in
the spatial and the body frame, respectively. Adopting the nota-
tional convention of dropping the sum operator for products involv-
ing repeated indices (Papastavridis, 1999), the last relations can be
rewritten in the simpler form

~xðtÞ ¼ xiðtÞ~Ei ¼ Xi~eiðtÞ: ð2Þ
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Next, if the components of the transformation R in the basis B are
expressed by matrix R, that is

MB
BðRÞ ¼ R ¼ ½rij�;

then, by definition (Bowen and Wang, 2008), Eq. (1) can be rewrit-
ten in the form

~eiðtÞ ¼ rjiðtÞ~Ej:

Therefore, from Eqs. (1) and (2) one gets

xiðtÞ ¼ rijðtÞXj or xðtÞ ¼ RðtÞX; ð3Þ

with

x ¼ ðx1 x2 x3ÞT and X ¼ ðX1 X2 X3ÞT :

Then, by employing the rigidity assumption of the body, expressed
in the form x � x = X � X, where � represents the ordinary scalar (dot)
product of R3, in conjunction with Eq. (3), leads to

RT R ¼ I; ð4Þ

where I is the 3 � 3 identity matrix. This implies that R(t) is orthog-
onal for all times t. Moreover, by differentiating both sides of the
last relation with respect to time, it turns out that the matrixeXðtÞ � RTðtÞ _RðtÞ ð5Þ

is skew-symmetric, with general form

eX ¼ spinðXÞ �
0 �X3 X2

X3 0 �X1

�X2 X1 0

264
375; ð6Þ

where the vector

X ¼ vectðeXÞ � ðX1 X2 X3ÞT

is known as the axial vector associated with the skew-symmetric
matrix eX. From hereon, the symbol � over a quantity will be re-
served for denoting a 3 � 3 skew-symmetric matrix. By definition,eXx � X� x, where � stands for the classical vector (cross) product
in R3. This provides an explanation for the action of the spin oper-
ation defined by (6).

In a similar manner one can show that RRT = I and by differenti-
ation obtain the new matrix

~xðtÞ � _RðtÞRTðtÞ; ð7Þ

which is also skew-symmetric. Therefore, combination of Eqs. (4),
(5) and (7) yields eventually

_R ¼ ~xR ¼ ReX: ð8Þ

Next, direct differentiation of Eq. (3) with a simultaneous applica-
tion of Eqs. (7) and (8) yields

v ¼ _x ¼ _RX ¼ _RRT x ¼ ~xx: ð9Þ

Finally, Eqs. (7), (8) and (4) lead to

~x ¼ ReXRT ) x ¼ RX: ð10Þ

Having established the necessary kinematics, one can evaluate the
angular momentum of the rigid body relative to the origin O. Spe-
cifically, this quantity is defined by

hO �
Z

m
x� v dm;

where m is the mass of the body. Then, by performing standard
operations, it easily turns out that

hOðtÞ ¼ IOðtÞxðtÞ; ð11Þ

with
IOðtÞ ¼ RðtÞJORTðtÞ and JO ¼
Z

m

eXT eX dm

¼
Z

m
½ðX � XÞI � XXT �dm; ð12Þ

where JO is the mass moment of inertia matrix of the rigid body
with respect to the origin O and the basis B

0. Alternatively, intro-
ducing the body (or convective) angular momentum by

HOðtÞ ¼ JOXðtÞ; ð13Þ

it turns out by combining the last three equations that

hO ¼ RJORTx ) hO ¼ RHO: ð14Þ

Then, the dynamics of the rigid body is expressed by Euler’s law in
the spatial form

_hO ¼ mO:

After employing Eqs. (11)–(14), the last equation can be put in the
convective form

JO
_XþX� HO ¼ MO; ð15Þ

where mO and MO are the spatial and body components of the resul-
tant external moment about O.

Finally, the mass moment of inertia is also useful in evaluating
the kinetic energy, defined by

T ¼ 1
2

Z
m

_x � _xdm:

By employing relations established by the kinematic analysis and
performing successive and straightforward operations the kinetic
energy of the motion can be expressed in the convective form

T ¼ 1
2

XT JOX ¼ 1
2

HO �X: ð16Þ
3. Some useful elements of differential geometry and Lie group
theory

In this section, some fundamental concepts of differential
geometry are briefly introduced. These concepts are necessary for
comprehending the material presented in Sections 4 and 5.

3.1. Lie groups and subgroups

A group is a pair (G,⁄), where G is a set of elements related by a
binary operation ⁄, known as the product of the group (Bowen and
Wang, 2008). The most important property of a group is that if p
and q are elements of G, then p ⁄ q belongs to G, too. Moreover,
there exists a special element e of G, known as the identity ele-
ment, such that e ⁄ p = p ⁄ e = e for any element p of G. Frequently,
a group is denoted simply by G. In addition, the product ⁄ is omit-
ted usually.

The elements of a set can be considered as points in a geomet-
rical space, with position determined by a system of coordinates. In
particular, a differentiable manifold with a smooth group product
and inverse operation is known as a Lie group (Marsden and Ratiu,
1999). This differentiability property permits a natural extension of
differential and integral calculus techniques used in a Euclidean
space and facilitates their application on a general manifold. A use-
ful tool for accomplishing this task is the concept of the tangent
space. This is a geometrical object, defined at each point of a
smooth manifold and includes all the vectors which are tangent
to all the curves of the manifold passing through the point. It is a
vector space with dimension equal to the number of coordinates
of the manifold (Papastavridis, 1999). To compare vectors belong-
ing to different tangent spaces on a manifold, the so called
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connection operator is needed (see Appendix B). Finally, more
structure can be added to a manifold by defining a metric tensor
on each tangent space (Dodson and Poston, 1991).

Lie groups present some extra mathematical structure. For in-
stance, if g and h are elements of a Lie group G, then one can define
the left translation by g through the Lg : G ? G mapping

LgðhÞ ¼ gh: ð17Þ

Likewise, the right translation by g is defined as a mapping Rg:
G ? G, with

RgðhÞ ¼ hg: ð18Þ

These operations are smooth mappings and give rise to useful gra-
dients, which are linear transformations between tangent spaces at
points of G (Bowen and Wang, 2008).

Specifically, let h(t) be a curve on G, with h(0) = h and tangent
vector _hð0Þ at t = 0. This vector is denoted by Xh and belongs to
the tangent space to G at h, denoted by ThG. Then, according to
Eq. (17), the set of points p(t) = Lg(h(t)) represents the image curve
of h(t) on G, obtained with a left translation by g. Then, the velocity
vector of p(t) at point Lg(h) is given by

_p ¼ d
dt
fLgðhðtÞÞgjt¼0 ¼ Lg�

_hð0Þ; ð19Þ

where the quantity Lg⁄ defines a linear transformation from ThG to
TpG, known as the differential of Lg at h (Frankel, 1997). Conse-
quently, Eq. (19) can be set in the form

Xp ¼ Xgh ¼ Lg�Xh: ð20Þ

A vector field X on G satisfying the last equation is called left invari-
ant. The mappings expressed by Eqs. (17) and (20) are independent
on the path joining points h and p. Also, if Xe is a tangent vector of
TeG, then operation (20) can be employed to left translate Xe to all
points of G by

Xg ¼ Lg�Xe: ð21Þ

In this way, one can take a basis {ei(e)} of Te G and left translate it to
a basis {ei(p)} of TpG, with

eiðpÞ ¼ Lp�eiðeÞ; ð22Þ

on all of G. Then, any vector of the vector space TpG, of dimension n,
can be expressed in the form

vðpÞ ¼
Xn

i¼1

v iðpÞeiðpÞ ¼ v iðpÞeiðpÞ; ð23Þ

where upper indices are chosen for the components of v. The neces-
sity for this will become clearer in Section 5. Moreover, if v is a left
invariant vector field on G, then Eqs. (21) and (22) yield

vðpÞ ¼ Lp�vðeÞ ¼ Lp�½v iðeÞeiðeÞ� ¼ v iðeÞLp�eiðeÞ ¼ v iðeÞeiðpÞ:

Eventually, direct comparison of the last result with Eq. (23) yields

v iðpÞ ¼ v iðeÞ; ð24Þ

showing that the components of a left invariant vector field in a left
invariant basis remain constant.

Left or right translation on a Lie group is important in the study
of the one parameter subgroups of a group G. These are specific
curves, say gðtÞ : R! G, satisfying the group homomorphism

gðt þ sÞ ¼ gðtÞgðsÞ ¼ gðsÞgðtÞ: ð25Þ

The second equality means that these subgroups are commutative
(or Abelian). It can easily be shown (Frankel, 1997) that the most
general monoparametric subgroup of G must pass from the identity
e and is determined by the exponential map, acting from TeG to G,
with
gðtÞ ¼ exp½tg0ð0Þ�: ð26Þ

This implies that its points are uniquely located by its tangent vec-
tor g0(0) at the identity. Also, it can be shown by using Eq. (25) that

g0ðtÞ ¼ LgðtÞ�g0ð0Þ ¼ RgðtÞ�g0ð0Þ; ð27Þ

which demonstrates that the tangent vector g0(t) to a monopara-
metric Lie subgroup undergoes a left or right translation along the
subgroup. Put it in another way, Eq. (27) shows that the one param-
eter subgroup of G, with tangent vector g0(0) at the identity, coin-
cides with the integral curve through the identity of the vector
field, which results by a left translation of g0(0) over all of G.

3.2. Lie algebra and canonical connections

Given a Lie group G, one can construct its Lie algebra. This con-
sists of the vector space TeG, equipped with a special operator,
known as Lie bracket. This operator is bilinear, skew-symmetric
and satisfies Jacobi’s identity (Warner, 1983). For a general mani-
fold, it represents a map [�, �], taking two vector fields X and Y to
a new vector field (see Appendix A). For Lie groups, in particular,
the Lie bracket can be defined in several ways. One of them em-
ploys the idea of left (or right) invariant vector fields. For instance,
consider two vectors Xe and Ye of TeG and extend them by left
translation to the vector fields XL and YL on all of G. Then, their
Lie bracket is defined by

½Xe; Ye� � ½XL; YL�e: ð28Þ

For a Lie group, the Lie bracket is useful in defining an appropriate
connection operator. In fact, it has been proved that there exist
three such canonical connections (Bertram, 2008). The first two of
them, known as left and right invariant canonical connection, are
defined by

rR
XY ¼ ½XL;Y � ð29Þ

and

rL
XY ¼ ½XR;Y �; ð30Þ

where XL and XR is a left and a right invariant vector field, respec-
tively, extending an element X of the tangent space at a point of a
Lie group G to all of G, while Y is a general vector field on G. Like-
wise, the symmetric canonical connection is defined by

rS
XY ¼ 1

2
½XL þ XR;Y�: ð31Þ

Clearly, all these connections are described completely by the Lie
bracket and left/right translation. In Appendix A it is shown that
the Lie bracket of the vector fields X and Y is given by Eq. (A6)

½X;Y � ¼ Xj@jY
i � Yj@jX

i þ ci
jkXjYk

� �
ei: ð32Þ

These three connections possess some important properties, which
are summarized in the sequel.

First, let eL
i ðpÞ

� �
(or simply {ei(p)}) be a basis created at point p

by left translating a basis {ei(e)} at the identity, using Eq. (22).
Then, ei(p) is Lg-related to ei(e) (Warner, 1983). Therefore

Lg�½eiðeÞ; ejðeÞ� ¼ ½Lg�eiðeÞ; Lg�ejðeÞ� ¼ ½eiðpÞ; eiðpÞ�;

which by Eq. (A8) implies that

Lg� ck
ijðeÞekðeÞ

n o
¼ ck

ijðeÞfLg�ekðeÞg ¼ ck
ijðeÞekðpÞ ¼ ck

ijðpÞekðpÞ

) ck
ijðpÞ ¼ ck

ijðeÞ: ð33Þ

This justifies the terminology ‘structure constants’ of the left invari-
ant basis {ei(p)}. In addition, if both X and Y are left invariant vector
fields on G, that is @jX

i = 0 = @jY
i, Eq. (32) implies that
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½X; Y� ¼ ci
jkXjYk

� �
ei � Ziei:

Therefore, since the quantity Zi ¼ ci
jkXjYk remains constant every-

where on the manifold, this shows that the Lie bracket of two left
invariant vector fields is a new left invariant vector field. That is

½XL;YL� ¼ ZL: ð34Þ

In a similar manner, if X is a left invariant vector field while Y is a
right invariant vector field on G, it can be shown that their Lie
bracket vanishes identically (Frankel, 1997), that is

½XL;YR� ¼ 0: ð35Þ

Then, it becomes apparent from Eq. (29) that

rR
XYR ¼ 0; ð36Þ

for any right invariant vector field Y on G. This means that the par-
allel translation of a vector on a manifold equipped with a left
invariant canonical connection is equivalent to a right translation
of it.

Next, by employing the definition of the left invariant canonical
connection one arrives at

rR
XY ¼ ½XL; Y� ¼ Xj@jY

i þ ci
jkXjYk

� �
ei ) rR

XY

¼ @jY
i þ ci

jkYk
� �

Xjei; ð37Þ

Geometrical interpretation since then X = XL and consequently @j-

Xi = 0. On the other hand, by employing Eq. (B2), the covariant dif-
ferential of Y along X is evaluated in the form

rXY ¼ @jY
i þKi

jkYk
� �

Xjei:

Therefore, direct comparison of the last relation with Eq. (37) re-
veals that the structure constants of the left invariant basis must
be equal to the affinities of the left invariant canonical connection,
that is

ci
jk ¼ Ki

jk: ð38Þ

Consequently, by substitution in Eq. (B10) it follows immediately
that the components of the torsion tensor associated to this connec-
tion must be given by si

jk ¼ �Ki
kj. This indicates that the left invari-

ant canonical connection possesses torsion when Ki
jk – 0. On the

other hand, direct substitution of the last relation in Eq. (B14)
shows that in such a case, all the components of the curvature ten-
sor vanish ðRi

jkl ¼ 0Þ, which means that the curvature tensor of this
connection is zero (Bertram, 2008).

Similar results are also available for the right invariant canoni-
cal connection rL

XY . However, the picture obtained for rS
XY is dif-

ferent. First, if feR
i ðpÞg is a basis created at p by a right translation of

the basis {ei(e)}, then application of the definitions expressed by
Eqs. (31) and (B1) leads to

rS
ej

ek ¼
1
2

eL
j þ eR

j ; e
L
k

h i
) Ki

jkei ¼
1
2

eL
j ; e

L
k

h i
þ 1

2
eR

j ; e
L
k

h i
:

In addition, taking into account Eq. (35), in conjunction with the
definition (A8), it turns out that

Ki
jkei ¼

1
2

eL
j ; e

L
k

h i
¼ 1

2
½ej; ek� ¼

1
2

ci
jkei;

or eventually

ci
jk ¼ 2Ki

jk: ð39Þ

Therefore, by direct substitution in Eq. (B10) it follows immediately
that

si
jk ¼ �Ki

jk �Ki
kj:
Also, based on Eqs. (A10) and (39), the affinities of the connection
are anti-symmetric in their lower indices, i.e.,

Ki
jk ¼ �Ki

kj: ð40Þ

This implies eventually that si
jk ¼ 0, meaning that the symmetric

canonical connection possesses no torsion. On the other hand, di-
rect substitution of Eq. (39) in Eq. (B14) shows that some compo-
nents of the curvature tensor are non-zero. Therefore, this
connection possesses curvature.

For a Lie group, the choice of a canonical connection is a natural
way to match the special integral curves associated with its prop-
erties as a manifold and as a group. Specifically, from Eq. (A10) it is
obvious that the structure constants are always anti-symmetric.
Consequently, Eqs. (38) and (39) reveal that the canonical connec-
tions considered lead to anti-symmetric affinities, satisfying Eq.
(40). Then, Eq. (B7) shows that the tangent vector at each point
of an autoparallel curve has constant components on a local frame
produced by a left translation. Therefore, each canonical connec-
tion relates the affinities Ki

jk (which are defined by Eq. (B1) and ex-
press a manifold property) to the structure constants ci

jk of the
basis, so that the one parameter Lie subgroups and the curves
resulting by their left translation (which are related to the group
properties only) coincide with autoparallel curves (which are re-
lated to the manifold properties only). Moreover, these Lie sub-
groups and their left translations are conveniently captured by
the exponential map, as was shown in Section 3.1. All these results
will be shown to have remarkable implications in rigid body kine-
matics and dynamics, examined in the following two sections.

4. Rigid body kinematics by using Lie group theory

In this section, rigid body rotation about a fixed point is recon-
sidered, by employing concepts of differential geometry. A new
manifold is first introduced, drawing its basic properties through
a group representation on the classical SO(3) group (Kobayashi
and Nomizu, 1963). Study of this manifold, called M(3), offers a
strong basis for a complete and clear interpretation of rigid body
kinematics.

4.1. Introduction of manifold M(3) for the description of rigid body
rotation

The set of orthogonal matrices R(t) introduced in Section 2
forms a Lie group. Specifically, each matrix R(t) represents a point
in the space of 3 � 3 matrices, coinciding with the Euclidean space
R9. Considering the orthogonality condition (4), this point lies on a
three dimensional subset of R9 (Frankel, 1997). Since these condi-
tions are nonlinear, this subset is not a vector subspace of R9 but it
forms a three dimensional manifold, instead, which can be viewed
as a surface in R9. In addition, since composite rotations are repre-
sented by products of orthogonal matrices (Shabana, 2005), which
are also orthogonal matrices, this subset is a Lie group, having as
product the matrix multiplication and as identity element the
3 � 3 identity matrix I. Moreover, since R(0) = I, its determinant
at t = 0 is equal to + 1 and because there can occur no jump to
the value �1 during the subsequent motion, this matrix belongs
to a group known as the special orthogonal group of order three,
denoted by SO(3).

As will be shown next, the geometry of SO(3) fails to predict
both the kinematics and the dynamics of a rigid body. Therefore,
a new manifold is introduced in this work for the correct descrip-
tion of rigid body rotation. This manifold belongs to the same ab-
stract group as SO(3), but possesses different geometrical
properties. More specifically, its configuration space is isomorphic
to that of SO(3), but it possesses different connection and metric.
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For this reason, this manifold is named M(3). Next, the emphasis is
placed in identifying the critical geometrical properties of M(3).

First, the orientation of a rigid body can be represented by a
point, say p, on the manifold formed by the newly introduced rota-
tion group M(3). Of large importance is also the definition of the
vector space TpM(3), the tangent space of M(3) at p. In general,
the location of points and the evaluation of the components of vec-
tors and other important geometrical objects on a manifold de-
pends on the choice of a local coordinate system and a basis of
the tangent space at each point of the manifold. For example, the
holonomic set of coordinates corresponding to the classical Euler
angles provides a full picture of rigid body kinematics, except at
certain singular points (Bauchau, 2011). However, using holonomic
coordinates for M(3) and a non-natural basis for TpM(3) leads to
certain advantages.

After choosing an appropriate local coordinate system, each
point on M(3) is described by three coordinates (or rotation param-
eters). Then, the spherical motion of a rigid body can be viewed as
a motion of a point on a single parameter curve, say
cðtÞ : R! Mð3Þ. Moreover, the angular velocity of the body is ex-
pressed by the tangent vector to c(t), defined by

wðtÞ ¼
X3

i¼1

wiðtÞeiðtÞ ¼ wiðtÞeiðtÞ; ð41Þ

where wi(t) are the components of the tangent vector w(t) in a local
basis {ei(t)} (with i = 1,2,3) of the tangent space TpM(3) at the cur-
rent position, represented by point p of the manifold.

A useful concept in detecting changes of a vector field v(t) on
M(3) is the covariant differential of this field along the direction de-
fined by vector w (see Appendix B). This quantity is determined by

rwvðtÞ ¼ _v i þKi
jkwjvk

� �
ei:

Then, a parallel translation of vector v along the curve c(t), with tan-
gent vector w, is defined by

rwv ¼ 0 ) _v i þKi
jkwjvk ¼ 0: ð42Þ

This represents a set of three coupled linear ordinary differential
equations in vi(t), possessing a unique solution for a given set of ini-
tial conditions vi(0) (Nayfeh and Balachandran, 1995). However, in
the general case, the affinities Ki

jk of the connection r depend on
position. The same is also true for the tangent vector w. This means
that the system of equations represented by Eq. (42) has variable
coefficients in those cases. Nevertheless, there exists a special occa-
sion where one can select the affinities so that the solution v(t) can
be obtained in a convenient closed form, in terms of an exponential
matrix, as explained next.

First, in the particular case with v = w � n, satisfaction of the
condition of parallel translation leads to special curves on the man-
ifold, known as autoparallel curves (Shabanov, 1998; Marsden and
Ratiu, 1999). If, in addition, the affinities of the connection are anti-
symmetric, as in Eq. (40), it is shown in Appendix B (see Eq. (B8))
that the components of the tangent vector n(t) to the autoparallel
curve in the local frame remain constant on the whole curve. That
is

niðtÞ ¼ nið0Þ � ni: ð43Þ

Therefore, if the affinities Ki
jk are also constant everywhere on the

manifold and such that

Ki
jknj

h i
¼ ~ni

k

� �
¼ ~n ¼ spinðnÞ; ð44Þ

the parallel translation of any vector u(t) of TpM(3) along the auto-
parallel curve of M(3) connecting point p(t) to any other point of
M(3) is described by the following system of linear ordinary differ-
ential equations
_u1

_u2

_u3

0B@
1CA ¼ � 0 �n3 n2

n3 0 �n1

�n2 n1 0

264
375 u1

u2

u3

0B@
1CA or _u ¼ �~nu: ð45Þ

Simple inspection verifies that Eq. (44), together with condition
(40), can be fulfilled simultaneously, indeed, provided that the
non-zero affinities take the following constant values

K1
23 ¼ �K1

32 ¼ K2
31 ¼ �K2

13 ¼ K3
12 ¼ �K3

21 ¼ 1; ð46Þ

on all of M(3). Since this set of affinities takes constant values, it can
not be obtained by any natural basis, resulting by any of the classi-
cal sets of holonomic coordinates. Therefore, there appears the need
for the selection of an appropriate non-natural (or anholonomic)
basis. Since M(3) forms a Lie group, this basis can conveniently be
obtained by extending a basis {ei(e)}, defined in m(3) � TeM(3), on
all of M(3) through a right or left translation. Taking into account
Eq. (1), the latter choice is preferred, leading to

eiðpðtÞÞ ¼ LpðtÞ�eiðeÞ; i ¼ 1;2;3; ð47Þ

so that each basis vector ei(p(t)) is part of a left invariant vector field
on M(3). In essence, this is identical to Eq. (22), since for a given
point p these vectors are fixed and their dependence on t is only im-
plicit. To stress this, the basis vector ei(p(t)) will next be denoted
simply by ei(p). An immediate consequence of this basis choice is
that if v(t) is any left invariant vector field on M(3), then its repre-
sentative vector at point p can be expressed in the form

vpðtÞ ¼ v i
pðtÞeiðpÞ:

Moreover, application of Eq. (24) yields

v i
pðtÞ ¼ v i

eðtÞ � v iðtÞ: ð48Þ

Then, Eq. (43) can be rewritten in the form

ni
pðtÞ ¼ ni

eðtÞ � niðtÞ;

illustrating that the tangent vector to an autoparallel curve of M(3)
is part of a left invariant vector field on M(3). Therefore, taking into
account Eqs. (40) and (46), it is convenient to choose the left invari-
ant canonical connection, expressed by Eq. (29), as most appropri-
ate for M(3). An immediate consequence of this, with enormous
significance, is that the autoparallels of M(3) will coincide with its
one parameter Lie subgroups and their left translations (see end
of Section 3.2). In this respect, Eq. (45) can be seen as a means of
determining the components of any vector up(t) of TpM(3), obtained
by parallel translation of a vector ue(t) of TeM(3) along the autopar-
allel curve of M(3) connecting point p(t) to the identity e. In fact,
since the coefficient matrix ~n in Eq. (45) is constant, this solution
can be expressed in the following form

upðtÞ ¼ BðtÞueðtÞ ) ueðtÞ ¼ AðtÞupðtÞ; ð49Þ

with

AðtÞ ¼ expðt~nÞ ð50Þ

and

BðtÞ ¼ A�1ðtÞ ¼ expð�t~nÞ: ð51Þ

Among the infinity of available choices, the specific selection of the
affinities expressed by Eq. (46) leads to a 3 � 3 matrix A(t), given by
Eq. (50), which resembles the map of Eq. (26). Here, however, this
matrix is not an element of M(3) and it appears in Eq. (49) as a lin-
ear transformation from TpM(3) to TeM(3), instead. In fact, it will be
shown in Section 4.2 that A(t) belongs to SO(3).

The ideas presented above can be used to provide a complete
and clear geometric interpretation of rigid body kinematics. For in-
stance, the basis {ei(p)} obtained by left translation of a basis {ei(e)}
of the tangent space TeM(3) on all of M(3), as specified by Eq. (47),
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corresponds to a basis which remains fixed on the rigid body dur-
ing its motion. For this reason, it is known as a body (or corotation-
al) frame. This basis has as an advantage that it depends on the
current orientation of the body only and not on its previous mo-
tion. In addition, the components of the tangent vector w(t) to
the path c(t), representing the motion of the body, are components
of the angular velocity of the body in the local basis {ei(p)}. That is

wðtÞ ¼ wiðtÞeiðpÞ: ð52Þ

Obviously, this vector belongs to the tangent space TpM(3) at the
current point p. Therefore, it can be viewed as the outcome of the
left translation of a vector of TeM(3), which is expressed in the form

XðtÞ ¼ XiðtÞeiðeÞ: ð53Þ

This vector is known as the convective angular velocity in the engi-
neering literature (Simo and Wong, 1991). Specifically, based on Eq.
(48), the following choice is made for its components

wiðtÞ ¼ XiðtÞ: ð54Þ

Then, it is straightforward to prove with the help of Eqs. (53), (47)
and (54) that

LpðtÞ�XðtÞ ¼ LpðtÞ�½XiðtÞeiðeÞ� ¼ XiðtÞLpðtÞ�eiðeÞ ¼ wiðtÞeiðpÞ:

Direct comparison of the last result with Eq. (52) yields

wðtÞ ¼ LpðtÞ�XðtÞ: ð55Þ

Alternatively, vector w(t) can also be obtained by a parallel transfer
of another vector belonging to the tangent space TeM(3), through
the autoparallel curve of M(3) joining the identity to the current
point p. If this new vector appears in the form

xðtÞ ¼ xiðtÞeiðeÞ; ð56Þ

then, according to Eq. (49), its components are interrelated to those
of w(t) with

wiðtÞ ¼ Bi
jðtÞxjðtÞ and xiðtÞ ¼ Ai

jðtÞwjðtÞ:

Taking into account Eq. (54), these lead to

XiðtÞ ¼ Bi
jðtÞxjðtÞ and xiðtÞ ¼ Ai

jðtÞX
jðtÞ; ð57Þ

where Ai
jðtÞ and Bi

jðtÞ are the components of matrices A(t) and B(t),
given by Eqs. (50) and (51), respectively. In essence, the relations
in Eq. (57) are based on the condition

rnx̂ ¼ 0; ð58Þ

where x̂ is a vector field generated by a parallel translation of x(t)
along the autoparallels of M(3) starting from its identity. Since n(t)
is part of a left invariant vector field and the left invariant canonical
connection has been selected for M(3), Eq. (58) in combination with
Eq. (36) implies that x(t) generates a right invariant vector field on
M(3). Therefore, for a given w(t) in TpM(3), one can find an x(t) in
TeM(3) with

wðtÞ ¼ RpðtÞ�xðtÞ: ð59Þ

The results expressed by Eqs. (55) and (59) demonstrate that the
vector w(t), belonging to the tangent space TpM(3), has two impor-
tant images in TeM(3). Namely, w(t) can be viewed as the outcome
of a left or right translation of vector X(t) or x(t), respectively, both
belonging to TeM(3). In the special case with x(t) = X(t), these vec-
tors coincide and have a collinear direction with vector n(t), which
is tangent to the autoparallel curve joining the identity with the
current point of M(3). In such a case, the 3 � 3 exponential matrix
A(t), expressed by Eq. (50), represents pure rotation of the rigid
body about the axis defined by n(t).
Next, the most important of the results obtained in the present
section are illustrated by Fig. 2. The actual motion of the body is
described by a path c(t) on M(3), starting from the identity element
at t = 0. Then, for a fixed time t, points on the autoparallel curve of
M(3) connecting the current point p(t) to the origin e, say gp(s), are
located by another parameter, say s, related to the length of this
path. In this case, in order to distinguish the true path c(t) from
the autoparallel cp(s), it is more appropriate to replace matrix
A(t) in Eq. (50) by the more complex but more accurate form

Qðs;nðtÞÞ ¼ expðs~nðtÞÞ; ð60Þ

for 0 6 s 6 t, together with the scaling Q(t,n(t)) = A(t) = R(t). This
means that at any given time t, matrices A and Q coincide with
the rotation matrix R, describing the orientation of the body with
respect to its original position. This is a manifestation of the well
known Euler’s theorem, stating that one can move a rigid body,
rotating about a fixed point, from an initial to any final position,
through a pure rotation about a fixed axis (Greenwood, 1988). Like-
wise, matrix B coincides with its transpose RT. In addition, the tan-
gent vector w(t) to the actual path c(t), given by Eq. (52), represents
the angular velocity of the body and creates two images, X(t) and
x(t), in TeM(3), given by Eqs. (53) and (56), respectively, at any time
t. The components of these two vectors are related by Eq. (57),
which is equivalent to Eq. (10) of the classical approach. In fact,
w(t) can be reproduced by a left translation of X(t) or a right trans-
lation of x(t). The latter translation is also equivalent to a parallel
translation along the autoparallel curve connecting the identity to
the current point of M(3).

The selection of the left invariant canonical connection for M(3)
identifies special curves related to its group and manifold nature.
Then, Eq. (38) implies that the affinities Ki

jk must be equal to the
structure constants ci

jk of the left translated basis. Also, according
to material presented in Section 3.2, M(3) possesses torsion but
has zero curvature. This explains why the parallel translation of a
vector can be equivalent to its right translation, which depends only
on the initial and final point and not on the actual path on M(3).

Finally, note that there exist several closed form expressions for
matrix A(t) in terms of rotation parameters. Among them, the most
commonly known is probably the Rodrigues formula

AðtÞ ¼ exp½ eWðtÞ� ¼ I þ sin kWk
kWk

eW þ 1
2

sin2 1
2 kWk
� 	

1
2 kWk
� 	2

eW eW:

Comparison with Eq. (50) shows that the quantity W, known as the
Cartesian rotation vector (Geradin and Cardona, 2001), is defined by

WðtÞ ¼ tnðtÞ: ð61Þ
4.2. Geometrical properties of SO(3)

The vector space so(3) � TISO(3), the tangent space of the mani-
fold formed by the elements of rotation group SO(3) at its identity
element I, corresponds to infinitesimal rotations. This space is
known as the Lie algebra of SO(3) and includes as elements all the
3 � 3 skew-symmetric matrices, like ~x and eX, defined in Section 2.
Therefore, a standard basis for so(3) is usually represented by

~e1ðIÞ ¼ spin

1
0
0

0B@
1CA ¼ 0 0 0

0 0 �1
0 1 0

264
375; ~e2ðIÞ ¼

0 0 1
0 0 0
�1 0 0

264
375

and ~e3ðIÞ ¼
0 �1 0
1 0 0
0 0 0

264
375: ð62Þ

Moreover, the basis of the tangent space at any point R(t) of SO(3)
can be obtained by a left translation of this basis, according to



Fig. 2. Geometrical interpretation of spherical motion in M(3) (vectors w(t), X(t) and x(t) are defined by Eqs. (52), (53) and (56), respectively, while n(t) = ni(t)ei(e) and
np(t) = ni(t)ei(p)).
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êiðRÞ ¼ RðtÞ~eiðIÞ; i ¼ 1;2;3: ð63Þ

Then, by employing the definition (A8), the corresponding structure
constants of the basis f~eiðIÞg can be determined in a straightforward
way from the definition of the Lie bracket. Specifically, all the non-
zero structure constants in so(3) are determined in the form

~c1
23 ¼ �~c1

32 ¼ ~c2
31 ¼ �~c2

13 ¼ ~c3
12 ¼ �~c3

21 ¼ 1: ð64Þ

Also, taking into account Eq. (63), application of Eq. (33) implies
that the quantities ~ci

jk retain the constant values they possess at
the identity element on all of SO(3).

Next, these structure constants will provide the foundation
needed for evaluating the components of the connection on the
same bases. According to the classical view, SO(3) is a manifold
with non-zero curvature and zero torsion (Sattinger and Weaver,
1986; Simo and Wong, 1991). Based on the results of Section 3.2,
Fig. 3. Geometrical interpretation of a motion on SO(3) (tangent v
this can be achieved by employing the symmetric canonical con-
nection, defined by Eq. (31). Therefore, direct application of Eq.
(39) in combination with Eq. (64) yields the corresponding non-
zero affinities in the form

K1
23 ¼ �K1

32 ¼ K2
31 ¼ �K2

13 ¼ K3
12 ¼ �K3

21 ¼ 1=2: ð65Þ

Consequently, from Eq. (B10) it turns out that si
jk ¼ 0, which verifies

that this choice renders SO(3) torsionless. In addition, the compo-
nents of the curvature tensor of SO(3) in the standard basis can also
be found by direct application of Eq. (B4). In particular, since the
affinities are constant everywhere on SO(3), the components of
the curvature tensor will also be constant everywhere on SO(3)
and given by

Ri
jkl ¼ Ki

kmKm
lj �Ki

lmKm
kj � ~cm

klK
i
mj:
ectors _RðtÞ, eXðtÞ and ~xðtÞ are defined by Eqs. (66) and (67)).
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In fact, by employing Eqs. (64) and (65) and performing direct cal-
culation it turns out that

R1
212 ¼ �R1

221 ¼ R1
313 ¼ �R1

331 ¼ R2
121 ¼ �R2

112 ¼ R2
323 ¼ �R2

332 ¼ R3
131

¼ �R3
113 ¼ R3

232 ¼ �R3
223 ¼ 1=4;

while all the remaining components of the curvature tensor are
equal to zero.

In Fig. 3 are presented results referring to the geometry of a mo-
tion on SO(3), similar to those presented for M(3) in Fig. 2. In par-
ticular, this motion can be represented by a curve of SO(3), say C(t),
with a tangent vector _RðtÞ at the current position R(t). Then, in
analogy to Eqs. (55) and (59), the ‘‘tangent vector’’ _RðtÞ can be
viewed as the outcome of a left translation of a vector eXðtÞ and a
right translation of another vector ~xðtÞ, both of so(3), so that

_RðtÞ ¼ RðtÞeXðtÞ and _RðtÞ ¼ ~xðtÞRðtÞ; ð66Þ

respectively, in accordance to Eq. (21). Obviously, these results
reproduce Eq. (8). Also, based on Eqs. (53) and (56), these two spe-
cific vectors of so(3) are expressed in the formeXðtÞ ¼ XiðtÞ~eiðIÞ and ~xðtÞ ¼ xiðtÞ~eiðIÞ: ð67Þ

Then, Eq. (66a) in conjunction with Eq. (63), leads directly to

_RðtÞ ¼ RðtÞ½XiðtÞ~eiðIÞ� ¼ XiðtÞ½RðtÞ~eiðIÞ� ) _RðtÞ

¼ XiðtÞêiðRÞ; ð68Þ

while a similar treatment of Eq. (66b) leads to

_RðtÞ ¼ ½xiðtÞ~eiðIÞ�RðtÞ ¼ xiðtÞ½~eiðIÞRðtÞ� )
_RðtÞ ¼ xiðtÞ�eiðRÞ; ð69Þ

where the vectors

�eiðRÞ ¼ ~eiðIÞRðtÞ

form the elements of a new basis, generated by right translating the
standard basis f~eiðIÞg of so(3). Also, since the connection chosen is
canonical, the autoparallels of SO(3) passing from its origin coincide
with its one parameter Lie subgroups. Therefore, they are repre-
sented by the corresponding exponential map, expressed by Eq.
(26). In fact, at any given time t, the points of the autoparallel curve
starting at the identity and passing from the current element of
SO(3) are determined by the exponential matrix given by Eq. (50),
or equivalently by Eq. (60). Based on Eq. (43), the tangent vector
of the autoparallel at the identity is expressed in the form

~nðtÞ ¼ niðtÞ~eiðIÞ � NIðtÞ:

Moreover, the tangent vector of the same curve at the current point
R(t) = Q(t,n(t)) = A(t) is given by

NRðtÞ ¼ niðtÞêiðRÞ:

Since the 3 � 3 matrices A(t) and Q(t,n(t)) are orthogonal, like R(t),
they belong to SO(3). Finally, direct differentiation of Eq. (60) with
respect to s leads to

Q 0 ¼ Q ~n ¼ ~nQ ; ð70Þ

which resembles Eq. (27). In addition, direct comparison with Eq.
(66) reveals that the tangent vector ~nðtÞ is part of both a left and
a right invariant vector field on SO(3).

The results presented in this section demonstrate that all the
structure constants, the affinities and the components of the curva-
ture tensor in the standard basis remain constant, while all the
components of the torsion tensor are zero throughout SO(3). Also,
the values of the affinities given by Eq. (65) deviate from those re-
quired by Eq. (46). As a consequence, a factor of 1/2 enters the
argument of the exponential matrices in Eqs. (50) and (51),
governing parallel transfer of an arbitrary tangent vector along
an autoparallel curve HR(s). More specifically, the form of those
equations remains the same, but the transformation matrix
appearing in them takes the following form in SO(3)

ASOð3ÞðtÞ ¼ exp½t~nðtÞ=2�: ð71Þ

Due to the 1/2 factor in the argument, the parallel transfer of a vec-
tor along the autoparallel is not equivalent to a right translation,
with the exception of the tangent to the autoparallel. As a result,
the vector of TISO(3) resulting by a parallel translation of _RðtÞ, say
~xIIðtÞ, is not equal to vector ~xðtÞ, which produces _RðtÞ through a
right translation by R(t), according to Eq. (66b). This renders the
classical SO(3) rotation group as not suitable for describing rigid
body kinematics.

4.3. Group representation of manifold M(3) on SO(3)

In the present subsection, a group representation of M(3) on
SO(3) is performed in order to extract all the important group prop-
erties, like the group product, identity element, structure constants
and Lie bracket of M(3) from those of SO(3), through an appropriate
differentiable map (Hall, 2003). This map, say U from M(3) to
SO(3), is first selected to be one to one and onto, so that both of
these groups belong to the same abstract group. That is, the map
is invertible, while the two groups have the same dimension and
each element of one is mapped uniquely to an element of the other.
Moreover, this map must also be a homomorphism. In particular, if
⁄ and � represent the product operations in group M(3) and SO(3),
respectively, then

Uðp � qÞ ¼ UðpÞ �UðqÞ; 8p; q 2 Mð3Þ: ð72Þ

This implies that if p and q are elements of an Abelian subgroup of
M(3), then

p � q ¼ q � p ) UðpÞ �UðqÞ ¼ UðqÞ �UðpÞ;

which means that U(p) and U(q) are also elements of a correspond-
ing Abelian subgroup of SO(3). Thus, U preserves the structure of
the subgroups of SO(3). In fact, this map is then an isomorphism
(Frankel, 1997). Since the group operation in SO(3) is the ordinary
multiplication of 3 � 3 matrices, an immediate consequence is that
the group operation in M(3) is defined by

p � q ¼ U�1ðUðpÞUðqÞÞ: ð73Þ

Next, in order to derive an explicit form of the mapping U, appropri-
ate coordinate systems on the manifolds and bases on the tangent
spaces should first be selected for both M(3) and SO(3). For the lat-
ter, a suitable coordinate system and a basis can easily be obtained
by embedding its manifold into the space of the 3 � 3 real matrices,
which is equivalent to the Euclidean space R9. However, a more
sophisticated choice needs to be made for both the coordinate sys-
tem of M(3) and the bases of the tangent spaces at any point of
M(3), as explained next.

In many occasions, it is beneficial to employ a special set of local
coordinates on a general manifold, known as canonical or (more
frequently but less accurately) as normal coordinates, which sim-
plify the subsequent analysis (Murray et al., 1994). Specifically,
let g(s) be the autoparallel curve of a manifold Mn emanating from
a point p of the manifold at s = 0, with a tangent vector n on the
tangent space TpMn. If the coordinates of the origin (or pole) p
are selected as

pi ¼ 0; i ¼ 1; . . . ;n

and the tangent vector n is expressed over a basis {ei} of TpMn in the
form

n ¼ niei;



Fig. 4. Definition of canonical coordinates on a manifold.
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then the canonical coordinates of any point q on the curve g(s) are
uniquely specified to be

qi ¼ sni: ð74Þ

Namely, the coordinates of points on an autoparallel curve are lin-
ear in s. Comparison with Eq. (26) reveals that the corresponding
exponential map coincides with the identity. Moreover, according
to Eq. (B7), the autoparallel curve originating from p with a tangent
vector ni ¼ _qi and passing from point q is given by

d2qi

ds2 þKi
jkðqÞ

dqj

ds
dqk

ds
¼ 0:

Then, taking Eq. (74) into account this yields

Ki
jkðqÞnjnk ¼ 0:

Since the last condition must hold for arbitrary ni at the origin p, the
following condition must be satisfied by the symmetric part of the
affinities

Ki
ðjkÞðpÞ �

1
2

Ki
jkðpÞ þKi

kjðpÞ
h i

¼ 0: ð75Þ

On the other hand, Ki
ðjkÞðqÞ – 0 for q – p, since the components ni

are fixed at point q.
Canonical coordinates specify uniquely any point q of Mn in the

vicinity of the pole p. A geometrical picture of a local canonical
coordinate patch is shown in Fig. 4. Since the autoparallels starting
from p can cross on another point of Mn, again, several canonical
Fig. 5. Definition of mapping U for a gro
coordinate patches may be selected to cover it completely. How-
ever, despite the fact that the canonical coordinates are holonomic,
the natural coordinate basis they provide is not useful in applica-
tions, since it depends on the local coordinates. For this reason,
the (holonomic) canonical coordinate system is employed in locat-
ing the coordinates of a point in a unique way, while another non-
natural coordinate frame is used for establishing a more conve-
nient basis of the tangent space at any point of Mn.

In the special case of a Lie group, it was shown at the end of Sec-
tion 3.2 that the affinities Ki

jk can be obtained from the structure
constants ci

jk, so that the autoparallel curves of the manifold coin-
cide with the one parameter subgroups and their left translations.
In the particular case of M(3), it was demonstrated in Section 4.1
that the left invariant canonical connection is the most natural
choice for it, with affinities given by Eq. (46). Then, its autoparallel
curves are identified by Eq. (43), which leads to Eq. (74), with n = 3.
Therefore, Eq. (74) defines a canonical coordinate system on M(3)
with origin at its identity element e. Moreover, direct comparison
of Eq. (74) with Eq. (61) reveals that the canonical coordinates
coincide with the components of the so called Cartesian rotation
vector. In fact, it can be shown that these coordinates also fulfill
condition (75). In this respect, the quantity defined by Eq. (61) is
actually not a vector but represents canonical coordinates, instead.

Based on the above, a canonical coordinate system is first placed
on M(3) with origin at e for locating its points (see Fig. 5). Next, a
basis {ei(e)} is selected at m(3), according to conditions that will be
stated more explicitly in Section 5. This basis is then extended to
all points q of M(3) by left translation, according to

eiðqÞ ¼ qeiðeÞ: ð76Þ

This is a non-natural basis and, consequently, it is not a convenient
system for the coordinates of points on the manifold, since they
then depend on the path (Papastavridis, 1999). Its main advantage
is that it depends on the current position only.

According to material presented in Sections 3.2 and 4.1, an
autoparallel curve emanating from the identity element e of M(3)
coincides with a one parameter Lie subgroup, which corresponds
to pure rigid body rotation about an axis determined by the tan-
gent vector to the curve at the identity. Conversely, given any point
q on the manifold, one can find a vector on the tangent space at the
identity element of M(3), representing an axis of rotation of the
body, which is tangent to the unique one parameter subgroup
emanating from e and passing from q. Moreover, these special
curves are captured by the corresponding exponential map of the
group. In fact, the exponential map of a group G is a local diffeo-
morphism (i.e., it is one to one, onto and possesses a differentiable
inverse) from a neighborhood of zero in TeG onto a neighborhood of
e in G (Marsden and Ratiu, 1999). In addition, this map can be
up representation of M(3) on SO(3).
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extended over all of G through a left translation. This implies that
the exponential map provides a convenient coordinate system on
all of G. Therefore, guided by Eq. (50), the mapping U from M(3)
to SO(3) is selected in the following form

UðqÞ ¼ expðs~nÞ; ð77Þ

where ~n ¼ spinðnÞ and n is the vector of m(3) which is tangent to the
autoparallel curve starting from the identity e and passing from
point q of M(3) (see Fig. 4). Based on Eq. (74), the components of
q depend on the parameters s and n. Therefore, the quantity

Qðs;nÞ ¼ Uðqðs; ~nÞÞ ð78Þ

represents a 3 � 3 exponential matrix. Since matrix Q is orthogonal,
it is an element of SO(3), indeed. In view of Eq. (74), this matrix rep-
resents a map from the canonical coordinates of point q to R9.
Moreover, since the identity element e of M(3) has canonical coor-
dinates (0,0,0), it turns out from Eqs. (77) and (78) that

UðeÞ ¼ Qð0;nÞ ¼ I; ð79Þ

which verifies that U maps the identity element e of M(3) to the
identity element I of SO(3).

Next, in order to determine the Lie bracket of m(3), the tangent
mapping of U needs to first be obtained. In general, this quantity is
defined by

YðQÞ ¼ d
dt
fUðqðs;nðtÞÞÞgjt¼0 ¼ UðqÞ�XðqÞ; ð80Þ

where U(q)⁄ is the differential of U at q. This is a linear transforma-
tion, relating any vector X(q) of TqM(3) to a vector (which in fact is a
3 � 3 matrix) Y(Q) of TQSO(3), shown in Fig. 5.

In the special case where Eq. (80) is applied at the identity ele-
ment of M(3), it yields a relation between vectors X(e) of m(3) to
vectors (i.e., 3 � 3 matrices) Y(I) of so(3) with form

YðIÞ ¼ UðeÞ�XðeÞ: ð81Þ

By taking Eq. (70) into account and applying Eqs. (79) and (81), it
can easily be shown that

YðIÞ ¼ eXðeÞ ¼ spinðXðeÞÞ; ð82Þ

which means that the tangent mapping at the identity point e of
M(3) is defined by

UðeÞ�ð�Þ ¼ spinð�Þ: ð83Þ

This can be seen as a formal definition of the spin operator in SO(3).
Moreover, according to Eq. (81), Y(I) is U-related to X(e) (Warner,
1983). Then, if X1 and X2 are two vector fields on M(3), with corre-
sponding vector fields Y1 and Y2 on SO(3), it turns out that

UðeÞ�½X1ðeÞ;X2ðeÞ� ¼ ½UðeÞ�X1ðeÞ;UðeÞ�X2ðeÞ� ¼ ½Y1ðIÞ;Y2ðIÞ�: ð84Þ

Therefore, by taking the inverse mapping of the last relation, in con-
junction with Eq. (82), the Lie bracket of the Lie algebra m(3) can be
defined by

½X1ðeÞ;X2ðeÞ� ¼ spin�1ð½Y1ðIÞ;Y2ðIÞ�Þ ) ½X1ðeÞ;X2ðeÞ�
¼ vectð½Y1ðIÞ;Y2ðIÞ�Þ: ð85Þ

This leads naturally to the classical vector product in R3.
Next, in order to determine the tangent mapping of U at an

arbitrary point q of M(3), consider first a point g in the neighbor-
hood of point q, so that g = q ⁄ h. This implies that h represents a
point in an infinitesimal neighborhood of e. Then, direct applica-
tion of Eq. (72) yields

UðgÞ ¼ Uðq � hÞ ¼ UðqÞUðhÞ;

which in conjunction with Eqs. (80) and (81) gives
YðQÞ ¼ UðqÞ d
dt
fUðhðtÞÞgjt¼0 ¼ UðqÞ½UðeÞ�XðeÞ�;

or eventually, by employing Eqs. (78) and (83), it turns out that

YðQÞ ¼ Q eXðeÞ; ð86Þ

which is identical to Eqs. (8b) and (66a). This implies that the tan-
gent mapping at an arbitrary point q of M(3) is defined by

UðqÞ� ¼ UðqÞUðeÞ� ¼ QUðeÞ�
and completes the geometrical picture of the mapping between
M(3) and SO(3), shown in Fig. 5.

Finally, the connection in M(3) can be established by consider-
ing the structure constants through its Lie bracket. First, by defini-
tion (A8), for a basis {ei(e)} on m(3) it is true that

½eiðeÞ; ejðeÞ� � ck
ijekðeÞ; ð87Þ

while for the corresponding basis f~eiðIÞg of so(3), related to {ei(e)} by
Eq. (82), with

~eiðIÞ ¼ spinðeiðeÞÞ; ð88Þ

it holds that

½~eiðIÞ; ~ejðIÞ� � ~ck
ij
~ekðIÞ: ð89Þ

Then, by employing Eqs. (87) and (88) and performing straightfor-
ward operations one arrives at

spinð½eiðeÞ; ejðeÞ�Þ ¼ spin ck
ijekðeÞ

� �
¼ ck

ijspinðekðeÞÞ ¼ ck
ij~ekðIÞ:

Likewise, using Eqs. (84) and (89) leads to

spinð½eiðeÞ; ejðeÞ�Þ ¼ ½spinfeiðeÞg; spinfejðeÞg� ¼ ½~eiðIÞ; ~ejðIÞ� ¼ ~ck
ij~ekðIÞ:

Therefore, direct comparison of the last two relations yields

ck
ij ¼ ~ck

ij; ð90Þ

which determines the structure constants in m(3) and consequently
completes the definition of its Lie bracket, since the structure con-
stants ~ck

ij of the basis in so(3) are taken from Eq. (64). At the same
time, this result establishes the affinities of the connection on all
of M(3), through Eqs. (33), (38) and (46). This also verifies that
the left translated basis {ei(p)} is non-natural, since its structure
constants are non-zero. Finally, the basis vectors of m(3) corre-
sponding to the standard basis of so(3), defined by Eq. (62), are ob-
tained through an inversion of Eq. (88) in the form

eiðeÞ ¼ vectð~eiðIÞÞ;

which represent the standard base vectors of R3.

5. Application to rigid body dynamics

In this section, the study of spherical motion of a rigid body is
completed, by applying principles of dynamics. This makes neces-
sary the consideration of a new vector space, known as the dual
space to the tangent space TpM(3) and denoted by TpM(3)⁄. This
space is defined at every point p of M(3) and includes elements
known as covectors (or covariant vectors or one-forms), which
are linear functionals on TpM(3) (Frankel, 1997). More specifically,
if v is a vector of TpM(3), then there exists a covector v

�
� of TpM(3)⁄,

such that

v
�
�ðuÞ � hv ;ui; 8u 2 TpMð3Þ; ð91Þ

where h�, �i denotes the inner product of TpM(3). In addition, a basis
fe
�

ig (with i = 1,2,3) of Tp M(3)⁄ is called dual basis to the basis {ei} of
TpM(3), provided that it satisfies the condition
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e
�

iðejÞ ¼ di
j; ð92Þ

where di
j is a Kronecker delta symbol. Then, the covector v

�
� can be

expressed in the form

v
�
� ¼ v ie�

i; ð93Þ

where its components vi are now denoted by a lower index, in order
to distinguish them from (tangent) vector components. Therefore,
for a general u = uiei, it turns out from Eqs. (91)–(93) that

v
�
�ðuÞ ¼ ðv ie�

iÞðujejÞ ¼ v iuje
�

iðejÞ ¼ v iujdi
j ¼ v iui: ð94Þ

Moreover, another straightforward calculation, based on the defini-
tion (91), yields

v
�
�ðuÞ ¼ hv ;ui ¼ hv iei;ujeji ¼ v iujhei; eji ¼ v iujgij; ð95Þ

where the scalars

gij ¼ hei; eji ð96Þ

give the components of the so called metric tensor in the basis {ei}
selected for TpM(3). Then, for an arbitrary vector u, direct compari-
son of Eqs. (94) and (95) yields the useful relation

v i ¼ gijv j: ð97Þ

The choice of the body frame can now be made, based on the selec-
tion of an appropriate metric. This selection is performed in a way
that fits the dynamics (Papastavridis, 1999). First, by reconsidering
Eq. (95) with u = v = w and taking into account Eq. (54), it turns out
successively that

w
�
�ðwÞ ¼ hw;wi ¼ wiwjgij ¼ XigijX

j:

Therefore, direct comparison of the last result with Eq. (16) shows
that the kinetic energy of the rigid body can be expressed in the
form

T ¼ 1
2
hw;wi ¼ 1

2
XigijX

j; ð98Þ

provided that the metric tensor is equal to the mass moment of
inertia tensor of the body. That is

gij ¼ Jij; ð99Þ

with JO = [Jij]. Next, a basis {ei(e)} can be selected for the tangent
space m(3) through Eq. (96), so that it satisfies the conditions

heiðeÞ; ejðeÞi ¼ Jij: ð100Þ

This basis is then left translated at any point p of M(3), according to
Eq. (76). Therefore, if the metric tensor is chosen to be left invariant,
its components on this basis remain constant on all of M(3), which
means that

heiðpÞ; ejðpÞi ¼ Jij; 8p 2 Mð3Þ: ð101Þ

At this point, a complete geometrical description of spherical mo-
tion can be provided. To achieve this in a way that can also be inter-
preted by employing the traditional approach as well, Fig. 6 is used.
First, the orientation of the body at a given time t is described by a
point, say p, of the three dimensional manifold M(3), the configura-
tion space of the body. In particular, the identity element e of M(3)
is chosen to represent the initial orientation. Then, a basis {ei(e)} is
selected by Eq. (100) and is left translated on all of M(3) through Eq.
(76), which has similar structure with Eq. (1). In this respect, these
bases are related to the spatial and body frame, respectively, em-
ployed in Section 2 (Fig. 1). The affinities on the body frames on
all of M(3) are then chosen from Eq. (46). This permits the construc-
tion of all the autoparallel curves gp(s) of M(3) starting from point e.
Each of these curves represents pure rotation of the body about an
axis n, which is the tangent of the autoparallel at e. Then, consider-
ing this point as a pole, all other points are located uniquely by
employing canonical coordinates. Here, these generalized coordi-
nates coincide with the components of the Cartesian rotation vec-
tor. Finally, the motion of the body is viewed as a curve c(t) on
M(3). The tangent to this curve at each point p is the angular veloc-
ity vector w of the body and belongs to the tangent space at p. This
explains why it is more convenient to express this vector in the
body frame.

In general, the geometry of a manifold depends not only on its
elements but on its connection and metric (if they are available) as
well. Based on this, M(3) presents some significant differences with
the classical rotation group SO(3). The first deviation appears in the
selection of the connection. Specifically, it was shown in Section 4.1
that the most convenient choice for describing spherical motion on
M(3) is the left invariant canonical connection, defined by Eq. (29).
This choice leads to a non-Riemannian manifold, with torsion and
no curvature, which is in sharp contrast to the geometrical proper-
ties of the ordinary SO(3).

Another important deviation between M(3) and SO(3) originates
from the selection of the metric tensor as well. More specifically,
by employing Eq. (63) and the orthogonality property of R(t), as ex-
pressed by Eq. (4), the components of the metric tensor in SO(3)
can be determined from

ĝ
ij
ðRÞ ¼ hêiðRÞ; êjðRÞi ¼ hRðtÞ~eiðIÞ;RðtÞ~ejðIÞi ¼ h~eiðIÞ;RTðtÞRðtÞ~ejðIÞi

¼ h~eiðIÞ; ~ejðIÞi

or eventually

ĝijðRÞ ¼ ĝijðIÞ:

This means that the components of the metric tensor remain con-
stant at any point of SO(3). In analogy to Eq. (24), this means that
the metric of SO(3) associated to the left invariant basis defined
by Eq. (63) is also left invariant. Moreover, these components can
be evaluated easily by direct application of the definitions in the
standard basis of so(3) and the Euclidean inner product in the space
of 3 � 3 matrices. In fact, proceeding in this manner, it eventually
turns out that

ĝij ¼ 2dij; ð102Þ

where dij is a Kronecker delta. This implies that the selection of a ba-
sis for so(3) by Eq. (62) leads to orthogonal bases on SO(3). Also, this
metric is symmetric and positive definite and can be shown that it
is compatible with the connection chosen (Papastavridis, 1999).
This verifies that SO(3) is a Riemannian manifold, since it also pos-
sesses curvature and is torsionless, as shown in Section 4.2. How-
ever, the components of the metric tensor in SO(3) are different
than those of the inertia tensor in M(3), defined by Eq. (99).

The picture describing the dynamics of a rigid body exhibiting
spherical motion can now be completed by illuminating the role
of TpM(3)⁄ and the selection of c(t). First, direct comparison of
Eqs. (97), (99) and (13) demonstrates that the covector w

�
� in

Fig. 6, corresponding to the angular velocity vector w, is the angu-
lar momentum vector. That is

w
�
� ¼ H

�O ) Hi ¼ JijX
j: ð103Þ

Also, comparison of Eqs. (91) and (98) shows that the dual product
of the angular velocity vector w, belonging to the tangent space
TpM(3), with the angular momentum H

�O, which is the correspond-
ing covector of the dual space TpM(3)⁄, yields the kinetic energy of
the body. That is,

T ¼ 1
2

w
�
�ðwÞ ¼ 1

2
H
�OðwÞ;



Fig. 6. Illustration of rigid body spherical motion and coordinate systems.
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which is equivalent to Eq. (16). In addition, the selection of the solu-
tion curve c(t) on M(3) is performed by applying Euler’s law in the
form

_H
�O ¼ M

� O; ð104Þ

where M
� O ¼ Mie�

i is the resultant moment with respect to point O,
while

_H
�O �

D
Dt

Hie�
i

� �
¼ dHi

dt
e
�

i þ Hi

@e
�

i

@Hk

dHk

dt
¼ _Hie�

i þ Hj

@e
�

j

@Hk
Xk; ð105Þ

with _Hk ¼ Xk. Moreover, Eq. (B1) in combination with Eq. (92)
yields

@e
�

j

@Hk
¼ rek

e
�

j ¼ �Kj
kie�

i:

Therefore, by employing Eq. (103) and taking into account that the
components Jij are constant, Eq. (105) becomes

_H
�O ¼ _Hi þ �Kj

kiX
k

� �
Hj

h i
e
�

i ¼ Jij
_Xj þ eXj

iHj

� �
e
�

i; ð106Þ

with

�Kj
kiX

k
h i

� eXj
i

h i
¼ eX ¼ spinðXÞ: ð107Þ

Substituting Eq. (106) into the underlying principle of motion, ex-
pressed by Eq. (104), leads to

Jij
_Xj þ eXj

iJjkX
k ¼ Mi; ð108Þ

which matches Eq. (15) and furnishes the components Xi of the
angular velocity in the local basis.

Note that choosing the symmetric canonical connection, associ-
ated to the rotation group SO(3), would introduce a factor of 1/2 in
the definition of eX in Eq. (107). This in turn would cause the
appearance of the same erroneous factor in front of the second
term in the equation of motion (108).

Finally, the affinities selected for M(3), according to Eq. (46),
match its group and manifold properties but are not compatible
with its metric, expressed by Eq. (99). This implies that the metric
(and consequently the kinetic energy) is not preserved under par-
allel transfer along an arbitrary path. For instance, differentiation
of both sides of Eq. (98) with respect to time and simultaneous
application of the symmetry condition of the inertia tensor Jij = Jji,
yields eventually
_T ¼ XiJij
_Xj: ð109Þ

Among all the possible paths, only on the real one it is true that
_Hm ¼ Xm. Therefore, for M

� O ¼ 0
�

, i.e., for torque-free motion, Eqs.
(108) and (107) imply that

Jij
_Xj ¼ �eXj

iJjkX
k ¼ � �Kj

miX
m

� �
JjkX

k ¼ Kj
miX

mHj;

which after substituting in Eq. (109) yields

_T ¼ Xi Kj
miX

mHj

� �
¼ Kj

miX
iXm

� �
Hj ¼ 0;

due to the anti-symmetry property of the affinities selected for
M(3). This shows that the kinetic energy is conserved along the path
corresponding to the actual (torque-free) motion of the body.

6. Synopsis

The problem of finite rigid body rotation has been treated in
some detail in this study. Borrowing ideas from Lie group theory
provided a solid foundation for a thorough, clear and consistent
investigation of both rigid body kinematics and dynamics. As a re-
sult of this study, the following elegant geometrical picture
emerged on rigid body rotation about a fixed point.

First, the orientation of a rigid body was represented by a single
point, while the motion over a finite time interval was described by
a curve on a three dimensional manifold. The tangent vector at the
current point of this curve is the angular velocity of the body. Then,
it was demonstrated that, contrary to common belief, the well
known special orthogonal group SO(3) is not appropriate for
describing either the kinematics or the dynamics of large rigid
body rotation. In fact, a new manifold was introduced in a natural
way, named M(3), which is diffeomorphic to SO(3). Specifically, a
significant contribution of this work was the selection of a canon-
ical connection for M(3), so that its autoparallel curves, represent-
ing pure rotation of the body, coincide with its one parameter Lie
subgroups, which are located conveniently by the exponential
map. This led to a manifold possessing torsion and no curvature,
in contrast to the classical rotational group SO(3), which is a Rie-
mannian manifold with curvature and no torsion. Moreover, the
exponential map provided the ground for choosing a holonomic
coordinate system in determining uniquely the points on M(3). In
particular, the components of the classical Cartesian rotation vec-
tor were picked up as (canonical) coordinates. However, a non-hol-
onomic coordinate frame was selected for expressing the vectors of
the tangent space at the current point. This frame is fixed on the
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body (body frame) and was obtained mathematically by a left
translation of an appropriate basis at the identity. Moreover, all
the important geometrical properties of M(3), like its group prod-
uct, identity element and structure constants, were also selected
by a suitable representation on the rotation group SO(3).

Among other things, it was shown that the angular velocity of
the body has two special images in the tangent space at the iden-
tity point of M(3). Namely, it can be viewed as the result of a left or
a right translation of two vectors, X and x, known as the convec-
tive and spatial angular velocity, respectively, in the engineering
literature. In addition, it was illustrated that the right translation
of x is equivalent to a parallel translation from the identity to
the current point along an autoparallel curve.

Next, the emphasis was put in the study of the dynamics. This
made necessary the selection of a left invariant metric. Specifically,
based on the expression of the kinetic energy of the body, the com-
ponents of the metric tensor were chosen to be equal to the com-
ponents of the mass moment of inertia tensor of the body. This
provided the body frame at the identity. Moreover, the concept
of the dual space was utilized for the complete dynamic descrip-
tion. Initially, it was demonstrated that the covector corresponding
to the angular velocity is the angular momentum. Then, the equa-
tions of motion of the body were derived by application of Euler’s
law, which led eventually to the selection of the exact path on the
manifold. Finally, as a consequence of the fact that the connection
and metric chosen for M(3) are not compatible, in contrast to the
case of SO(3), the inner product in the tangent space (representing
kinetic energy) is not preserved along any arbitrary curve. How-
ever, it was proved that the kinetic energy of the body is conserved
along the true path, during a torque-free motion.

Apart from clarifying the picture of rigid body kinematics and
dynamics, the results presented in this study are expected to provide
valuable tools for setting up the equations of motion and developing
novel, robust and efficient techniques for their geometrically exact
temporal discretization in all areas of mechanics, where the config-
uration space possesses group properties. For instance, this is the
case in robotics, where the configuration space includes the special
Euclidean group SE(3), which involves a combination of SO(3) and R3

for the rotational and translational part of the motion, respectively.
Moreover, the approach presented lays the foundation for a more
systematic treatment of constrained mechanical systems.

Appendix A. Evaluation of the components of a Lie bracket in a
general basis

The concept of the Lie bracket arises naturally in the study of
the Lie derivative, which is a based on a generalization of the clas-
sical directional derivative from a Euclidean manifold to a general
non-flat manifold Mn and provides a measure of its non-commuta-
tivity. If f = f(h1, . . . ,hn) is a function expressed in a local coordinate
system {hi} with i = 1, . . . ,n near a point p of Mn, while {ei} is a basis
on the tangent space TpMn to Mn at p, then the following definition

Xðf Þ ¼ Xi@ if ; ðA1Þ

represents the derivative of f with respect to the vector X = Xiei of
TpMn (Frankel, 1997), with

@if � @f=@hi: ðA2Þ

Likewise, the Lie derivative LXY at a point of a manifold determines
the change of a vector field Y along the flow generated by another
field X on Mn. This derivative is a vector field on Mn, giving

ðLXYÞðf Þ ¼ XfYðf Þg � YfXðf Þg; ðA3Þ

when applied to a scalar function f (Warner, 1983). Therefore, it can
be expressed in the form
LXY ¼ ½X;Y�; ðA4Þ

where the corresponding Lie bracket is defined by

½X;Y � � XY � YX: ðA5Þ

In order to determine the components of this bracket on the basis
{ei}, straightforward evaluation of the terms on the right hand side
of Eq. (A3), taking into account the definition (A1), yields

½X;Y �f ¼ Xj@ jY
i � Yj@jX

i þ ci
jkXjYk

� �
eiðf Þ: ðA6Þ

Then, Eq. (A4) shows that the Lie derivative of a vector field Y with
respect to field X is given by

LXY ¼ ½X;Y� ¼ Xj@jY
i � Yj@jX

i þ ci
jkXjYk

� �
ei: ðA7Þ

This is true in the general case, where the basis {ei} is non-natural
(or anholonomic or a frame), with

½ei; ej� ¼ ck
ijek; ðA8Þ

where the terms ck
ij are known as structure constants and their val-

ues depend on the basis {ei} entirely. When these terms are multi-
plied by 1/2 become the components of the anholonomicity object
(Papastavridis, 1999). In the special case where the basis {ei} is nat-
ural (or holonomic or a coordinate frame) (Bowen and Wang, 2008),
the basis vector ei is tangent to the ith coordinate curve and

½ei; ej� ¼ 0; 8i; j: ðA9Þ

Finally, from the anti-symmetry property of the Lie bracket, that is
[X,Y] = �[Y,X], resulting easily from the definition (A5), it turns out
from Eq. (A8) that

½ej; ei� ¼ �½ei; ej� ) ck
ji ¼ �ck

ij: ðA10Þ

This means that the structure constants are always anti-symmetric
in their lower indices.
Appendix B. Connection and covariant differentiation on a
manifold

A valuable geometrical tool in moving from a tangent space of
a non-flat manifold to an adjacent tangent space is the so called
affine connection of the manifold, represented by symbol r. For
any manifold Mn, this leads to a mapping rwv from TpMn � TpMn

to TpMn, known as the covariant differential of v along w and
provides the derivative of a vector field v(t) at a point p of the
manifold along a direction specified by a vector w at point p
(Frankel, 1997).

Evaluation of the components of this quantity depends on the
choice of a local coordinate system and a basis of the tangent space
at each point of the manifold. In particular, if {hi} with i = 1, . . . ,n is
a set of coordinates of Mn and {ei} is a basis on the tangent space
TpMn, the following definition

rej
ek ¼ Ki

jkei ðB1Þ

introduces the components Ki
jk of the connectionr in the basis {ei},

known as affinities. Then, the covariant differential of a vector field
v(t) = vi(t)ei(t) along w = wiei is determined in the form

rwv ¼ @ivk þKk
ijv j

� �
wiek: ðB2Þ

This means that rwv(t) represents a vector on the tangent space
TpMn, which does not depend on the derivatives of w. In fact, if w
is the tangent vector of a curve c(t) on the manifold, then
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rwvðtÞ ¼ @vk

@hi

dhi

dt
þKk

ijv jwi

 !
ek ¼

dvk

dt
þKk

ijw
iv j

 !
ek

� Dvk

Dt
ek ¼

Dv
Dt

; ðB3Þ

which leads to the classical definition of the covariant derivative
(Papastavridis, 1999).

Next, a parallel translation of vector field v(t) along a curve c(t)
of a manifold with tangent vector w is defined by
rwv ¼ 0: ðB4Þ

From Eq. (B3), this implies that

_v i þKi
jkwjvk ¼ 0; ðB5Þ

which represents a set of linear ordinary differential equations in
vi(t). Therefore, for a given set of initial values, vi(0), this leads to
a unique solution v(t), for any curve c(t) and any set of Ki

jk. This
illustrates that the parallel displacement of a vector along a curve
of a non-flat manifold is path dependent. Furthermore, in the spe-
cial case with v = w � n, application of the condition

rnn ¼ 0; ðB6Þ

which requires that the tangent vector to the path remains parallel
to itself, yields a set of nonlinear (quadratic) ordinary differential
equations in ni, with form

_ni þKi
jknjnk ¼ 0: ðB7Þ

Solution of this set of equations leads to special curves on the man-
ifold, known as autoparallels and representing its ‘‘straightest’’
curves (Shabanov, 1998). When the manifold possesses a metric,
another special family of curves can be defined on it, known as geo-
desics and representing its ‘‘shortest’’ curves. Namely, the basic
property of a geodesic curve is that it has the minimum length
among all the curves joining two points of the manifold (Dodson
and Poston, 1991). When the affinities Ki

jk are compatible with
the metric and possesses no torsion, like in SO(3), the geodesics
and autoparallels coincide.

From Eq. (B7) it is apparent that the autoparallels are not af-
fected by the anti-symmetric (in the two lower indices) part of
the affinities. However, Eq. (B5) suggests that this part affects the
parallel translation of an arbitrary vector. Moreover, in the special
case with Ki

jk ¼ �Ki
kj, Eq. (B7) leads to

_ni ¼ 0 ) niðtÞ ¼ nið0Þ: ðB8Þ

This means that the components of vector n(t), which is tangent to
an autoparallel curve of the manifold, remain constant. This has
important implications in Mechanics.

In general, there exists an infinite number of affine connections
on any manifold. For each of them, the main geometrical invariants
of a connection are its torsion and curvature tensors. The definition
of both of these objects involves the covariant derivative and the
Lie bracket of the tangent space at each point of the manifold. Spe-
cifically, the torsion of the connection is defined by

sðX;YÞ ¼ rXY �rY X � ½X;Y�: ðB9Þ

By assuming that X = Xiei and Y = Yiei, employing Eqs. (B2) and (A7)
and performing direct calculation reveals that

sðX;YÞ ¼ si
jkXjYkei;

which furnishes the components of the torsion tensor in the basis
{ei} in the form

si
jk ¼ Ki

jk �Ki
kj � ci

jk: ðB10Þ

In view of Eq. (A10), this yields the anti-symmetry property
si

jk ¼ �si
kj. Obviously, these components depend both on the
properties of the manifold (through the affinities Ki
jk) and the basis

(through the structure constants ci
jk). Therefore, the condition for a

torsion free (or symmetric) connection is

si
jk ¼ 0 ) ci

jk ¼ Ki
jk �Ki

kj: ðB11Þ

Moreover, when the basis is natural to the coordinate system
ci

jk ¼ 0
� �

the last expression becomes

Ki
jk ¼ Ki

kj: ðB12Þ

This shows that the condition for a torsionless connection implies
symmetry in the lower two indices of its affinities, provided the ba-
sis is holonomic.

Finally, the curvature tensor of a connection is defined by

Rðw
�
�;X; YÞv ¼ w

�
�ðrX ½rYv � � rY ½rXv � � r½X;Y�vÞ

¼ w
�
�ðbRðX;YÞvÞ; ðB13Þ

which represents a mapping from T�pMn � TpMn � TpMn � TpMn to
the set of real scalars R. Again, direct evaluation of the components
of the curvature tensor in the basis {ei} (and its dual) yields

Ri
jkl ¼ Ki

lj;k �Ki
kj;l þKi

kmKm
lj �Ki

lmKm
kj � cm

klK
i
mj: ðB14Þ
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