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A b s t r a c t - - W e  introduce and discuss a linear Boltzmann equation describing dissipative interac- 
tions of a gas of test particles with a fixed background. For a pseudo-Maxwellian collision kernel, it is 
shown that, if the initial distribution has finite temperature, the solution converges exponentially for 
large time to a Maxwellian profile drifting at the same velocity as field particles and with a universal 
nonzero temperature which is lower than the given background temperature. (~) 2004 Elsevier Ltd. 
All rights reserved. 
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1. I N T R O D U C T I O N  

In recent t imes,  the  s tudy  of the  large-t ime behavior  of dissipat ive granular  gases has received a 

lot of a t tent ion.  Essential  progress has been made for simplified models,  in par t icu lar  thanks  to 

the  considerat ion of the  nonlinear Bol tzmann equation for inelast ic Maxwell  part icles,  bo th  for 

the  free case wi thout  energy input  [1,2], for the  driven case [3-5], and for mixtures  [6]. Despite 

their  impor tance  in pract ical  applications,  however, the  s tudy of the  evolution of a gas colliding 

inelast ical ly with a fixed background has not  been considered so far, at  least  to the  authors '  

knowledge. By this mechanism, granular  part icles exchange momen tum and energy with  the  

field part icles,  and s imultaneously some of the  kinetic energy of the  colliding pair  is dissipated 

( transferred to  nonpar t ic ipa t ing  degrees of freedom). 

In  this  paper ,  we introduce and s tudy  a linear dissipative Bol tzmann  model  under  the  as- 

sumpt ion  t ha t  the  collision kernel corresponds to the  so-called Maxwell ian molecules interaction.  

Inelast ic  Maxwell  models  share with elastic Maxwell molecules the  p roper ty  tha t  the  collision ra te  
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in the Boltzmann equation is independent of the relative velocity of the colliding pair. In granular 
gases, it is usual to consider Boltzmann-like equations for partially inelastic hard spheres. This 
choice relies on the physical fact that the grains must be cohesionless, which implies hard-sphere 

interaction only, and no long-range forces of any kind. Hence, in the inelastic case, a constant col- 
lision rate can be considered just as a matter of mathematical convenience. In spite of that, these 
models are of great interest for spatially homogeneous granular fluids because of the resulting 
mathematical simplifications [7,8], which lead even to exact analytical results. 

We introduce and discuss the inelastic linear Boltzmann model in Section 2, together with 

the relevant moment equations and with its representation in Fourier space. The background 
is supposed to be in thermodynamical equilibrium at given temperature and drift velocity. In 

Section 3, we will discuss the existence of a Maxwellian equilibrium for the granular gas, showing 

that this equilibrium has a well-defined temperature, lower than the temperature of the back- 
ground, and that it attracts exponentially in time any initial data which has finite temperature. 

The last Section is devoted to possible extensions and applications of the techniques. 

2. T H E  D I S S I P A T I V E  L I N E A R  B O L T Z M A N N  E Q U A T I O N  

We consider a linear Boltzmann-type equation for a granular gas subject to dissipative col- 
lisions against the field particles of a fixed background, labeled by a subscript 1 in the sequel. 
This simple kinetic model, which can be viewed as the dissipative generalization of the linear 
Maxwellian gas, originates from the inelastic hard-sphere Boltzmann equation with constant 

restitution coefficient e (with 0 < e < 1) 

Of 1 ff~ ,q.n, f_~f(v.)Ml(w.)_ f(v)Ml(w)] dwdn" (1) O----t + v. Vxf  = ~A  ~×s2 

Here A denotes the (constant) mean free path, q the relative velocity v - w, and (v., w.) are the 
precollisional velocities of the so-called inverse collision, which results in (v, w) as postcollisional 
velocities. M1 stands for the normalized field particle Maxwellian distribution function, charac- 
terized by given mass velocity ul and temperature T1, in symbols, M1 = M(v; rnl, ul, T1). Test 
particles exchange momentum and energy with the background even in the elastic case e = 1, 
and this effect depends on the mass ratios appearing in the precollisional velocities. Mass ratios 

and inelasticity will be described by the dimensionless parameters 

m 1 1 -- e 
-- - -  9 -- , (2) re+m1' 2 

where 0 < a < 1 (excluding thus the peculiarities of the limiting cases of Lorentz and Rayleigh 

gas) and 0 </3 < 1/2. 
The pseudo-Maxwellian approximation consists in replacing the relative velocity q in the col- 

lision kernel Iq" nl by a different vector ~ ,  where g~ is the unit vector in the direction of v - w, 
whereas ~ is a parameter, possibly dependent on some macroscopic variable of the gas, like tem- 
perature, but independent of the integration variables. In this approximation, upon using A/~ as 
time scale, we will consider the dimensionless equation in space homogeneous conditions 

- ~ ( v ,  t) = Q(f)(v, t), (3) 

where 

1 [-~f(v.)Ml(W.) f(v)Ml(w) 1 dwdn. Q(f)(v) = ~ j:3×s2 f t .  n I - (4) 

Taking any smooth test function ¢(v),  it is useful to consider the weak form of either (1) or (3), 
in which the collision terms may be written as 

1 ~ ]fl. nlf(v)Ml(w ) [¢(v*) - ¢(v)] dv dw dn, (5) (4 ,  Q) = 3×  ×s2 
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where the postcollisional velocity v* is defined by 

v* : v - 2o~(1 -- ~)(q.  n)n. (6) 

Clearly, ~b = 1 is a collision invariant (mass conservation), whereas ¢ : v and ¢ = v 2 are not. 
The equation being linear, normalization can be chosen so that  

/ fo(v) dv : 1, (7) 
3 

f0 standing for the initial condition associated to (3). 
One of the most important properties of Maxwell models is that moment equations are closed 

with respect to the moments of the distribution function. With constant (and unity) number den- 
sity, self-consistent explicit equations are then in order for drift velocity and granular temperature 

of the gas 

u = vf(v) dv, T = 3 - m  (v - u)2f(v) dr. (8) 
3 3 

A little algebra yields 

du 

d - 7  : - 

dT 2 2 
--dr : ~mc~ (1 - / 3 ) 2 ( u  - z 1 )  2 - 2 ~ ( 1  - / 3 ) { [ 1  - c~(1 - / 3 ) ] T  - (1 - c~)(1 - / 3 )T1 } .  

(9) 

This set of ordinary differential equations exhibits, already at first glance, a unique equilibrium 
point u = ul  and T = T #,  where 

T# (1 -a)(1 -/3)T (10) 

with 0 < T # < T1, is always proportional to, and lower than, the background temperature,  the 
ratio being determined by the characteristic parameters (2). This effect disappears, of course, 
in the elastic l imit/3 ~ 0. Time evolution corresponds, as is easily checked, to an exponential 
relaxation of u and T to their equilibrium values 

u = ul  (1 - e x p [ - a ( 1  - 13)t]) + u0 exp [ - a (1  - /3) t ] ,  

T = T # (1 - e x p { - 2 a ( 1  - /3)[1  - a(1 - /3)] t})  + To e x p { - 2 a ( 1  - /3) [1  - a(1 - /3) ] t}  

+ m(Ul 3 - u°)2 ( exp{-2a (1  - /3)[1  - a(1 - /3) ] t}  - exp [ -2a (1  - /3) t ] )  

(11) 

The asymptotic  temperature ratio T #/T1 is monotonically decreasing from 1 - /9  to 0 with respect 
to a,  and from 1 to (1 - a ) / (2  - a)  with respect to/9. 

Another important  feature of the pseudo-Maxwellian model is tha t  it lends itself to a convenient 
Fourier analysis. After introducing the Fourier transform ] of f ,  

f(~) = fR3 e-'~'v f(v) dv, 

it is clear that the Fourier transform of the dissipative kinetic equation (3) is nothing but its weak 
form relevant to the test function exp(-i~, v). It is also known [9] that the transformed equation 

can be made explicit in terms of 9 ~, with a collision term involving only a two-dimensional integral. 
More precisely, we get 

^ 
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where 
1 

In (13), we have set w = ~/l~t and 

~+ = ~ -  2a(1 - fl)(~.n)n, 
~- = 2c~(1 - fl)(~, n)n, (14) 

while/V/I (~) is the Fourier transform of the background Maxwellian distribution 

~/1(~) = exp {- - iu l .  ~ 2T~ '~[2 } 
rnl 4 " 

Note that ~+ + ~- = ~, and that initial condition (7) and mass conservation translate into 
](0, t) = 1. 

3. T R E N D  T O  E Q U I L I B R I U M  

The analysis of the previous section shows that mass velocity and temperature reach well- 
defined equilibrium values. We look now for possible nontrivial equilibrium distributions. A 
stationary solution to the Boltzmann equation (12) solves 

i £ [w .nl/(~ +) M1(~-)dn. (15) }(~) = ~ 

If we set ](~) = F(~) exp{- iul  - ~}, ](~) is a solution to (15) if there exists ~'(~) such that, 
Vn C S 2, 

fi'(~) = F (~ - 2 a ( 1 -  t3)(~ . n)n) exp {-~-~l la (1 -  t3)(~ . n)[2 } . (16) 

The structure of (16) suggests that an isotropic Maxwellian at a given temperature could fulfill 
the requirement. Since a ¢ 1 (m ~ 0) and number density is unity, the tentative solution is 

F(v) = M (v; m, 0, T # ) ,  

Inserting F(~) into (16) yields, for all ~ and n, 

#(¢)=e~p{ 2T#ICF}..~ 4 

e x p { - ~ 1 ( ~ 2 ( 1 - / ~ ) 2 ( ~ - n ) 2 [ ( 1 - ~ ) T  1 l-c~(l-/~)T#]~:~ } = 1, (17) 

which is identically satisfied. Actually, the Maxwellian is such that Q = 0 for all ~, and then 
Q = 0 for M1 v c R 3. 

In order to investigate uniqueness and trend to equilibrium, now denote by Ps (Na), s > 0, the 
class of all probability densities f on Na, such that 

We introduce a metric on P~(R 3) by 

A lvl*f(v) dv < ~. 
3 

](~) - 9(~) 
ds(f,g) = sup (lS) 
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Let us write s = k + 5 ,  where k is an integer and 0 <_ 5 < 1. The  crucial proper ty  of this 
metric is that ,  for ds ( f ,g )  to be finite, it suffices tha t  f and g have the same moments  up to 
order k. The  norm (18) has been introduced in [10] to investigate the t rend to equilibrium of the 
solutions to the Bol tzmann equation for Maxwell molecules. Further  studies showed the variety 
of applications of this metric  bo th  to kinetic theory [11-13] and to probabil i ty theory [14]. 

The  existence of a solution to equation (3) can be seen easily using the same methods available 
for the elastic linear Bol tzmann equation. Let f and g be two solutions of the Bol tzmann 
equation (3) corresponding to initial densities with finite tempera ture ,  and f ,  t~ their Fourier 
transforms. Then,  given any positive constant s > 0, we may  write 

0 ( / - 0 )  + 1(~)-0(~) _ 1 f > .  < /(¢+)-~(~÷)&(~-)dn. (19) 

Now, we have the bound 

- I ~ + l  ~ I,~1" 

-- f ( ~ + ) - g ( ~ + )  ( 1 - 4 c ~ ( 1 - / 3 ) 1 c o - n l 2 ( 1 - ( 1 - / 3 ) ~ ) )  */2 
- i ~ + l  s 

while, if s _< 2, a simple Taylor formula and a convexity argument  give 

1 £ I ~  n l  (1 - 4c~(1 - 9 ) l ~ "  nl = (1 - ~(1 - ~)))'/= dn < 1 - -  sc~(1 - - / 3 ) ( 1  - c~(1 - / 5 ) ) .  
2 

Upon defining s 
% = 1 - s~(1 - /5 ) (1  - c~(1 - 13)), 1 - ~ < % < 1, (20) 

we obtain then 

O ( f - g )  f ( { ) - 0 ( e )  < %  s u p - -  (21) 
I~t s + I~1 ~ - ~ 3  I~1 ~ ' 

and, if we set h({) = [](~) -0(~)]/1~1 ~, the preceding computa t ion  shows tha t  

Oh + h _ Gsllhlloo. (22) 

Gronwall 's  l emma proves then tha t  IIh(t)Iloo is nonincreasing, and, provided II h(0) ll~o is bounded, 

IIh( t) l loo < I I h ( 0 ) l l o ~ e x p { - ( 1 -  G , ) t } .  (23)  

If  now we consider the initial-value problem for the dissipative Bol tzmann equation with initial 
values fo(v),  go(v) of finite t empera ture  and identical mass, thanks to the definition of d,(., .), it 
follows tha t  d,( fo,go)  is bounded at least if s < 1. Hence, we proved the following. 

THEOREM 3.1. Let  f ( t )  and g(t) be two solutions.of  the dissipative Bol t zmann equation (3), 
corresponding to in i t id  values fo and go of  finite temperature and identical mass  p = 1. Then, i f  
s < 1, for 31I t imes t >_ O, 

d, ( f ( t ) ,  g(t)) <_ d, (fo, go) exp { - ( 1  - % ) t ) ,  (24) 

with % provided by (20), and the same holds for s = 1 i f  the initial distributions have the same 
drift velocity. In particular, let fo be a nonnegative density with finite moment s  of  order 2. 
Then, there exists a unique weak solution f ( t )  of  the dissipative Bol t zmann equation (3), such 
that f ( O ) = f o. This solution converges to the (unique) equilibrium M # = M ( v; m, Ul , T #)  as 
t ime goes to infinity, where T # is given by (10), and ul and T1 are drift velocity and temperature 
of  the background medium.  The following decay est imate is in order for 0 < s < 1: 

ds ( f ( t ) ,  M #)  < ds (/0, M #)  exp { -  (1 - %) t} ,  (25) 

and it can be extended to s = 1 when the initial drift velocity uo is equal to ul .  
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4.  C O N C L U S I O N S  

We have proved existence and uniqueness of a collision equi l ibr ium for the  pseudo-Maxwell ian 

model  of the  dissipat ive l inear Bol tzmann equation,  and exponent ia l  re laxat ion  to such equilib- 

r ium in space homogeneous condit ions for any ini t ia l  d a t u m  with  at  least  finite tempera ture .  

The  equi l ibr ium turns  out  to be Gaussian,  and shares the  same drif t  velocity wi th  the  back- 

ground,  whereas i ts  t empe ra tu r e  is always greater  than  zero and smaller  t han  the  background 

tempera tu re ,  depending on mass ra t io  and inelasticity. This is the  result  of the  combined effects 

of momen tum and energy exchange with  field particles,  on one side, and of energy dissipat ion 

in the  sca t ter ing  collisions, on the  other.  We were not  able to ex tend these results  beyond the 

pseudo-Maxwel l ian  model.  Work is in progress in this  direction. 

Avai labi l i ty  of a Maxwell ian equil ibrium at nonzero t empera tu re  allows us to  construct  hydro- 
dynamic  equations for the  considered granular  flow. If a macroscopic scale is used for t ime and 

space variable,  we may  rewri te  (1) as 

Of 
O--t + v.  V~ f  = l_Q(f),e (26) 

where e is the  Knudsen number.  W i t h  ¢ = 1 as a unique collision invariant ,  the  only conservation 

equat ion we can rely on is the  cont inui ty  equat ion 

Op 
0-7 + V~ .  (p~,) = O, (27) 

and p is the unique hydrodynamic variable. The Euler-type equation for this problem consists 

in expressing the higher-order moment u by using the equilibrium distribution pM # instead 
of f. This amounts simply to substituting ul for u in (27). More significant is the Navier- 
Stokes approximation, which takes into account first-order corrections with respect to the small 
parameter e. It can be obtained by a Chapman-Enskog asymptotic procedure in which the 
unknown f is expanded in powers of e, but p is left unexpanded. Skipping all technical details, 

the zero-order distribution is pM(v; m, u1,T#), and Fick's law is recovered for the first-order 

correction to the drift velocity. The resulting limiting equation is of convection-diffusion type, 

0-7 + V s '  (uzp) = eV~.  (1 (28) 

with t empe ra tu r e  dependent  diffusion coefficient, and with  # = c~m s tanding  for the  reduced 
mass of the  colliding pairs. The  elastic case would correspond to the  l imit  fl --* 0 in (28), so tha t  

i t  is easily seen tha t  inelast ic i ty  tends  to slow down the diffusive process. 
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