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Abstract—We introduce and discuss a linear Boltzmann equation describing dissipative interac-
tions of a gas of test particles with a fixed background. For a pseudo-Maxwellian collision kernel, it is
shown that, if the initial distribution has finite temperature, the solution converges exponentially for
large time to a Maxwellian profile drifting at the same velocity as field particles and with a universal
nonzero temperature which is lower than the given background temperature. © 2004 Elsevier Ltd.
All rights reserved.
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1. INTRODUCTION

In recent times, the study of the large-time behavior of dissipative granular gases has received a
lot of attention. Essential progress has been made for simplified models, in particular thanks to
the consideration of the nonlinear Boltzmann equation for inelastic Maxwell particles, both for
the free case without energy input [1,2], for the driven case [3-5], and for mixtures [6]. Despite
their importance in practical applications, however, the study of the evolution of a gas colliding
inelastically with a fixed background has not been considered so far, at least to the authors’
knowledge. By this mechanism, granular particles exchange momentum and energy with the
field particles, and simultaneously some of the kinetic energy of the colliding pair is dissipated
(transferred to nonparticipating degrees of freedom).

In this paper, we introduce and study a linear dissipative Boltzmann model under the as-
sumption that the collision kernel corresponds to the so-called Maxwellian molecules interaction.
Inelastic Maxwell models share with elastic Maxwell molecules the property that the collision rate
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in the Boltzmann equation is independent of the relative velocity of the colliding pair. In granular
gases, it is usual to consider Boltzmann-like equations for partially inelastic hard spheres. This
choice relies on the physical fact that the grains must be cohesionless, which implies hard-sphere
interaction only, and no long-range forces of any kind. Hence, in the inelastic case, a constant col-
lision rate can be considered just as a matter of mathematical convenience. In spite of that, these
models are of great interest for spatially homogeneous granular fluids because of the resulting
mathematical simplifications [7,8], which lead even to exact analytical results.

We introduce and discuss the inelastic linear Boltzmann model in Section 2, together with
the relevant moment equations and with its representation in Fourier space. The background
is supposed to be in thermodynamical equilibrium at given temperature and drift velocity. In
Section 3, we will discuss the existence of a Maxwellian equilibrium for the granular gas, showing
that this equilibrium has a well-defined temperature, lower than the temperature of the back-
ground, and that it attracts exponentially in time any initial data which has finite temperature.
The last section is devoted to possible extensions and applications of the techniques.

2. THE DISSIPATIVE LINEAR BOLTZMANN EQUATION

We consider a linear Boltzmann-type equation for a granular gas subject to dissipative col-
lisions against the field particles of a fixed background, labeled by a subscript 1 in the sequel.
This simple kinetic model, which can be viewed as the dissipative generalization of the linear
Maxwellian gas, originates from the inelastic hard-sphere Boltzmann equation with constant
restitution coefficient e (with 0 < e < 1)

% +v-Vof= %X s lg - n| {glz—f(v*)Ml(w*) — f()M1(w)| dwdn. 0
Here A denotes the (constant) mean free path, g the relative velocity v — w, and (v, wx) are the
precollisional velocities of the so-called inverse collision, which results in (v,w) as postcollisional
velocities. M; stands for the normalized field particle Maxwellian distribution function, charac-
terized by given mass velocity u; and temperature T3, in symbols, My = M (v;my,uy,T1). Test
particles exchange momentum and energy with the background even in the elastic case e =1,
and this effect depends on the mass ratios appearing in the precollisional velocities. Mass ratios
and inelasticity will be described by the dimensionless parameters '

mi l—e

B=— (2)

Q= ——,

m 4+ my
where 0 < a < 1 (excluding thus the peculiarities of the limiting cases of Lorentz and Rayleigh
gas) and 0 < B8 < 1/2.

The pseudo-Maxwellian approximation consists in replacing the relative velocity ¢ in the col-
lision kernel |g - n| by a different vector §<2, where Q is the unit vector in the direction of v — w,
whereas G is a parameter, possibly dependent on some macroscopic variable of the gas, like tem-
perature, but independent of the integration variables. In this approximation, upon using A/§ as
time scale, we will consider the dimensionless equation in space homogeneous conditions

of

E—(’U,t) :Q(f)(U’tL (3)

where

Q) = [ 10nl| M) = )M )| dud. @

Taking any smooth test function %(v), it is useful to consider the weak form of either (1) or (3),
in which the collision terms may be written as

Q) = — / 12 - nl () My (1) (") — ()] dv duw i, (5)
27(‘ R3xR3x S§2
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where the postcollisional velocity v* is defined by

v* =v—2a(l - )¢ n)n. (6)
Clearly, 1 = 1 is a collision invariant (mass conservation), whereas 1 = v and % = v? are not.
The equation being linear, normalization can be chosen so that
fo(v)dv =1, (N
R3

fo standing for the initial condition associated to (3).

One of the most important properties of Maxwell models is that moment equations are closed
with respect to the moments of the distribution function. With constant (and unity) number den-
sity, self-consistent explicit equations are then in order for drift velocity and granular temperature
of the gas

= vylv)av zlm ’U—’LLZU’U
u= [ vfo)de,  T=gm [ w-wrw)a Q

A little algebra yields

du

pri —a(l - B)(u — uy),

ar 2 (9)
e §ma2(1 = B)*(u—u1)? =201 = B){[1 — (1 = B)IT — (1 — x)(1 ~ B)T1}.

This set of ordinary differential equations exhibits, already at first glance, a unique equilibrium
point v = u; and T = T#, where

_(1-o(1-p)
T# = TT@—_ﬂTTl’ (10)

with 0 < T# < T3, is always proportional to, and lower than, the background temperature, the
ratio being determined by the characteristic parameters (2). This effect disappears, of course,
in the elastic limit 3 — 0. Time evolution corresponds, as is easily checked, to an exponential
relaxation of w and T to their equilibrium values

u =11 (1 —exp[—a(l — B)t]) + ug exp[—a(l — B)t],
T =T# (1 - exp{-2a(1 - H)1 ~ (1 ~ ) + Toexp{-2a(1 ~ AL ~all- A}
m(u1 - U0)2

+ P20 (ep {21~ B)[1 — a(1 - )1t} — exp[-20(1 - B)f]).
The asymptotic temperature ratio T# /T is monotonically decreasing from 1— 8 to 0 with respect
to o, and from 1 to (1 — )/(2 — «) with respect to 3.

Another important feature of the pseudo-Maxwellian model is that it lends itself to a convenient
Fourier analysis. After introducing the Fourier transform f of f,

fo = [ e o,

it is clear that the Fourier transform of the dissipative kinetic equation (3) is nothing but its weak
form relevant to the test function exp(—i£ - v). It is also known [9] that the transformed equation
can be made explicit in terms of f , with a collision term involving only a two-dimensional integral.
More precisely, we get

Uen=0(f) €, 12)
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where

£)© =5z [ o+ nl[F (€9 M6 - O] dn. (13

In (13), we have set w = ¢/|¢] and

€5 =¢=20(1 - B)(¢-n)n,

14
£ =2a(1 - B)(E - n)n, 4y
while Mj (€) is the Fourier transform of the background Maxwellian distribution
- , 2Ty €2
(6 = exp { -6 ZHE
Note that £t 4+ £~ = ¢, and that initial condition (7) and mass conservation translate into

fo.1) =
3. TREND TO EQUILIBRIUM

The analysis of the previous section shows that mass velocity and temperature reach well-
defined equilibrium values. We look now for possible nontrivial equilibrium distributions. A
stationary solution to the Boltzmann equation (12) solves

=£7F/ lw - n|f (1) M (2) dn. (15)
S2

If we set f(¢) = F(¢) exp{—iu - £}, f(¢) is a solution to (15) if there exists F'(£) such that,
Vne S?

F(&) = (€ = 2601~ A)€- myr) exp {22 a1 = p)(¢-n)? . (10

The structure of (16) suggests that an isotropic Maxwellian at a given temperature could fulfill
the requirement. Since o # 1 (m # 0) and number density is unity, the tentative solution is

F(’U)=M(U;m,0,T#)’ F(f):exp{_ﬁg}
Inserting £ (&) into (16) yields, for all £ and n,

which is identically satisfied. Actually, the Maxwellian is such that Q = 0 for all £, and then
Q =0 for all v € R3.

In order to investigate uniqueness and trend to equilibrium, now denote by P,(R3), s > 0, the
class of all probability densities f on R?, such that

/ [v]° f(v) dv < c0.
R3
We introduce a metric on Ps(R?) by

i@ -s@]

T a8

ds(fs g) = sup
£€R3
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Let us write s = k 4 &, where k is an integer and 0 < § < 1. The crucial property of this
metric is that, for ds(f,g) to be finite, it suffices that f and g have the same moments up to
order k. The norm (18) has been introduced in [10] to investigate the trend to equilibrium of the
solutions to the Boltzmann equation for Maxwell molecules. Further studies showed the variety
of applications of this metric both to kinetic theory [11-13] and to probability theory [14].

The existence of a solution to equation (3) can be seen easily using the same methods available
for the elastic linear Boltzmann equation. Let f and g be two solutions of the Boltzmann
equation (3) corresponding to initial densities with finite temperature, and f, § their Fourier
transforms. Then, given any positive constant s > 0, we may write

o (F-9) jo-a0 1 FED =36 g o g
Y S e R
Now, we have the bound
FED=aED 1 oe| o | FED) =GN EH
r O e e i
= LE S (1 saa- o nP (- (1= 0)o)),

while, if s < 2, a simple Taylor formula and a convexity argument give

a7 Lo nl (1= 4a0 =Bl (1oL~ )
Upon defining :

2 in <1-sa(1-8)(1-oa(l-2)).

y=l-sal-f)(1-a(l-F), 1-7<%<l (20)

we obtain then ( . ) ’ .
a\U-8) fo-u© F-4 o1
o T TREr | ST | 2D

and, if we set h(¢) = [f(¢) — §(€)]/|¢]°, the preceding computation shows that

{— b} < o llho- (22)

Gronwall’s lemma proves then that ||A(t)||co is nonincreasing, and, provided ||A(0}]|oo is bounded,

[A()lleo < 17(0) oo exp {—(1 —s)t} . : (23)
If now we consider the initial-value problem for the dissipative Boltzmann equation with initial

values fo(v), go(v) of finite temperature and identical mass, thanks to the definition of d,(-,-), it
follows that ds(fo, go) is bounded at least if s < 1. Hence, we proved the following.

THEOREM 3.1. Let f(t) and g(t) be two solutions.of the dissipative Boltzmann equation (3),
corresponding to initial values fo and gq of finite temperature and identical mass p = 1. Then, if
s < 1, for all timest > 0,

ds(£(t),9(t)) < ds(fo, g0) exp {—(1 — 7s)t}, (24)
with v, provided by (20), and the same holds for s = 1 if the initial distributions have the same
drift velocity. In particular, let fy be a nonnegative density with finite moments of order 2.
Then, there exists a unique weak solution f(t) of the dissipative Boltzmann equation (3), such
that f(0) = fo. This solution converges to the (unique) equilibrium M#* = M (v;m,u;,T*) as
time goes to infinity, where T# is given by (10), and u; and T are drift velocity and temperature
of the background medium. The following decay estimate is in order for 0 < s < 1:

ds (£(£), M*) < d (fo, M¥) exp {— (1 — %)}, (25)

and it can be extended to s = 1 when the initial drift velocity ug is equal to u;.
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4. CONCLUSIONS

We have proved existence and uniqueness of a collision equilibrium for the pseudo-Maxwellian
model of the dissipative linear Boltzmann equation, and exponential relaxation to such equilib-
rium in space homogeneous conditions for any initial datum with at least finite temperature.
The equilibrium turns out to be Gaussian, and shares the same drift velocity with the back-
ground, whereas its temperature is always greater than zero and smaller than the background
temperature, depending on mass ratio and inelasticity. This is the result of the combined effects
of momentum and energy exchange with field particles, on one side, and of energy dissipation
in the scattering collisions, on the other. We were not able to extend these results beyond the
pseudo-Maxwellian model. Work is in progress in this direction.

Availability of a Maxwellian equilibrium at nonzero temperature allows us to construct hydro-
dynamic equations for the considered granular flow. If a macroscopic scale is used for time and
space variable, we may rewrite (1) as - ‘

7] 1
A v Vet = <QU), (26)

where ¢ is the Knudsen number. With 7 = 1 as a unique collision invariant, the only conservation
equation we can rely on is the continuity equation

Op _

and p is the unique hydrodynamic variable. The Euler-type equation for this problem consists
in expressing the higher-order moment u by using the equilibrium distribution pM # instead
of f. This amounts simply to substituting u; for u in (27). More significant is the Navier-
Stokes approximation, which takes into account first-order corrections with respect to the small
parameter €. It can be obtained by a Chapman-Enskog asymptotic procedure in which the
unknown f is expanded in powers of €, but p is left unexpanded. Skipping all technical details,
the zero-order distribution is pM(v;m,u;, T#), and Fick’s law is recovered for the first-order
correction to the drift velocity. The resulting limiting equation is of convection-diffusion type,

0]
6—§+Vz-(ulp)=evm-(

T#

with temperature dependent diffusion coefficient, and with p = am standing for the reduced
mass of the colliding pairs. The elastic case would correspond to the limit § — 0 in (28), so that
it is easily seen that inelasticity tends to slow down the diffusive process.
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