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Abstract 

Abelman, S. and D. Eyre, A rational basis for second-kind Abel integral equations, Journal of Computational 
and Applied Mathematics 34 (1991) 281-290. 

A rational basis set is constructed using [l, l] rational interpolation. The basis is used in a product integration 
method for solving second-kind Abel integral equations. Criteria are established for determining the amount of 
bias to be used in the basis set when the integral equation has a nonsmooth solution. Several test problems are 
solved to illustrate the performance of the approximation method. 

Keywords: Integral equations, rational basis. 

1. Introduction 

This paper is concerned with the numerical solution of the weakly-singular Volterra-type 
integral equation of the second kind 

y(t) = g(t) - J,“t - s)-~K(~, s, Y(S)) ds, 0.1) 

where 0 < (Y < 1. Equation (1.1) is sometimes referred to as a second-kind Abel integral equation. 
It will be assumed that g is continuous and K( t, S, y) is continuous with respect to s and t and 
uniformly Lipschitz continuous with respect to y, 

IW? S? Y,) -WY s, Y*) I GLlY, -Y2lr (1.2) 

and that there exists a unique solution y(t) for t E [0, T]. Equation (1.1) arises, for example, in 
problems of stereology (see [13, Chapter 21). 
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A number of numerical techniques are available for finding approximate solutions of (1.1) 
[5,13]. Often these solutions have a nonsmooth behaviour and special techniques are required to 
solve the integral equation [7]. A nonpolynomial basis has been used in a collocation-type 
approach in [3,4,17], and in a Gale&in approach in [S]. A highly successful method using 
fractional powers of linear multistep methods has been pioneered by Lubich [14]. Other methods 
involve replacing the weak singularity by a polynomial [l]. In the present paper we shall consider 
a finite-element method based on product integration [6]. 

Rational functions have been studied as a finite-element base for space variables [20], and 
more recently also for the time variable in initial-value problems [19]. Each basis function is 
compactly supported. 

The [l, l] rational function to be considered in this paper has the form suggested in [19]: 

b 
%(d=a+ l+k(t/h)’ (1.3) 

t E [0, h]. Coefficients a and b are determined from the conditions r,(O) = 1 and rO( h) = 0. This 
leaves one undetermined coefficient k, which may be used to regulate the amount of bias in the 
basis function. The interval [0, h] is spanned by two basis functions 

(h-t) ‘&)= (h+kt)’ 0.4) 

r*(t) = 1 - 4&), (1.5) 
where the second equation is a consistency requirement. The parameter k can take any value in 
the interval ( - 1, co). Clearly k = 0 is the linear approximation, while k > 0 gives a rational 
function biased in the upwind direction and k < 0 in the downwind direction. 

The aim of this paper is to investigate the utility of the rational basis for solving (1.1) in the 
case of a nonsmooth solution. The method of approximation is described in Section 2. Section 3 
gives some convergence results. Practical implementation of the algorithm is discussed in Section 
4. Section 5 presents numerical results for both linear and nonlinear test problems. 

2. Approximation method 

Let 7r,, be a partition of the interval [0, T] defined by the points 0 = t, < t, < . . . -c t, = T. 

On this mesh we construct rational basis functions { 4; j = 0,. . . , n }, where (pO( t) = rO( t - to), 

+jtt) = 

i 

rl(t-tj_1)9 tj-l gt < ‘jy 

ro(t - r,)Y tj< t < tj+lr 

for j= l,..., n - 1, and &l,(t) = rl(t - t,,_*). 

Discretizing (1 .l) gives 

(2-l) 

~(ti)=g(ti)-Jb’(ti-~)-‘K(ti, $3 Y(S)) ds* (2.2) 
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The next step is to approximate the kernel K(ti, S, y(s)) in a linear space of rational basis 
functions 

C K(tiT tjY YCtj))+j(')* (2.3) 
j=o 

The values y( ti) can be approximated by coefficients { vi} which satisfy the algebraic equations 

Yj=g(ti)-h’-a C K(tiY tjY Yj)wij7 (2.4) 
J=o 

where the coefficients { wij } are quadrature weights given by the ‘product integrals 

h’ -Qij = J o”(ti - s)-~+~(s) ds, (2.5) 

with j<i<n. 
Now consider a uniform mesh. Putting s = tj +ph in (2.5), and using the definition (2.1), the 

weights wij form a lower triangular matrix 

0 

sow 4) 
a,(2) a,(l) + 42) 4) 
a,(3) a,(2) + 43) a,(l) + 42) 4) 

For a case of practical interest (Y = $, putting p = i -j, 

a,(/3)=A,[(p-l)"2-/3'/2] +B,/l dp 
0 (p -p)""(l + kp) ’ 

(2.6) 

wherer=Oorl.HereA,=-l/k,B,=k/(l+k),A,=-B,=(l+k)/k. 
The integral in (2.7) can be evaluated using standard tables of integrals [9] 

k(P-p)"2-h 

k(p-p)"2+J;; ’ “” 1 

/ dp 
(/3-p)““(l+kp) =’ 

w -PY2 

(l+kp) ’ 
9 

, &arctan[ “‘~““], 

where (I = k(/3k + 1). 
For the special case of k = 0, 

a:‘)“‘( fi) = Ato) [( p - 1)1’2 - f1112] + ~,‘o) [ (p _ 1)3/2 _ p3/2], 

where Aho) = 2( /3 - 1), Ai”) = -z/3, B$@ = - B,‘O) = _ 3. 

(2.7) 

(2.8) 

(2.9) 
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At present we are not able to establish optimal error bounds for rational interpolation. We can 
however provide a rough estimate of the rational approximation to a function u [18]. Divide 
[a, b] into N subintervals with spacing h. We have the following theorem. 

Theorem 1. Let u E C2[a, b], and assume u(l) and uc2) are bounded. The [l, 11 rational interpolant 

uN of u is convergent of order 1. 

Proof. Consider an interval [ tj, tj+*]. The rational approximation to u(t) is 

UN(t) = u(tj)rO(t - t,) + u(t,+l)rI(t - t,) = $#, (3.1) 

where 

P(t)=[(l+k)u(tj+,)-U(tj)](t-tj)+hu(tj)> 

Q(t) = h + k(t - t,). 

Define 

L(t) = Q(t)+) -f’(t), 
where L(t) satisfies the interpolation conditions L( tj) = L( tj+I) = 0. Define 

j+l 

n(t)= r-I+t,), 
S=j 

write 

L(t) = Ir(t)A(t). 

function A(t) is obtained 

(34 

(3 *3) 

(3-4) 

and 

(3.5) 
The by defining the auxiliary function 

L?(Z) = II(z)A(t) -L(z), (34 

where t = t,. The function L?(z) vanishes at three distinct points tj < t < tj+ 1. By the application 
of Rolle’s theorem, Qc2)( z) vanishes at the point r E ( tj, tj+l). Evaluating lnc2)(z) at this point 
gives 

a(t)=f-$ [Q(z>u(z)l r=r- P-7) 

The error e = u - uN in the interval [tj, tj+J is therefore 

e(t) = - ; # $[Qbb(d ==I-, 

where r E ( tj, tj+ 1). On substituting t = tj + hp we find 

II e 11 < ikh h(l2+kk) I, d2) 11 + 11 u(l) I) , 
1 

(3.8) 

(3-9) 

where ]I . II denotes the supremum norm on the interval [ tj, tj+ *]. The result follows. •I 
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Next we investigate convergence of the numerical method. The local consistency error is 

defined as 

S(h, t;) = p( t,, S, Y(S)) ds-hl-a,$o,,,, fjy Y(tj))W,j. (3.10) 

The method is consistent of order p if, for some constant C independent of h, 

max (S(h, ti) 1 G Chp. 
O=Si<n 

(3.11) 

The value of p depends on the nonsmooth behaviour of the solution at t = 0 and is given by 
p = 1 - (Y. We now have the following theorem. 

Theorem 2. The method is convergent of order 1 - cr. 

Proof. The discretization error is 

e,=y(ti) -y_“leal$o{K(t;s tj> u,) -K(t;, tj> Y(t,)))w;j-‘(h> ii)- 

From (3.12) we obtain 

i--l ]e,] 
IejI ~hl-“LiG~e,~+h’-“L~~ 

j=. (i -j)* + ch’-“* 

(3.12) 

(3.13) 

This follows from the fact that there exists a W > 0, independent of i and j, such that 1 wji I G ii 

and 

(3.14) 

together with (1.2) and (3.11). 
For h G [( LW)*n]- * it is possible to apply the generalized Gronwall lemma of [15] (see also [6, 

Lemma 4.11). The result follows directly. •I 

4. Choice of the parameter k 

The choice of free parameter k is determined by the interpolation properties of the basis. Let 
p(t) be chosen to mimic the nonsmooth behaviour of the kernel in equation (1.1). In general p(t) 

may be piecewise continuous. In the spirit of exponential fitting [12], we consider a function f.(t) 
that interpolates to ,u( t) over tj_ 1 6 t < tjT 

f;(t) =P(tj-l)r*(t) +P(ti)l;(t)- (4.1) 

One approach is to choose k so as to minimize 

ft’ (r;:(t) - dt))* dt- 
JL1 

(4.4 

Then k satisfies 

/ 
r, oxthw(h--f)f dt=O 

f,- I (h+kt)’ 
(4.3) 
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The numerical performance of the method is expected to depend to a large extent on the 
appropriate choice of the auxiliary function p(t). Two choices of this auxiliary function will be 
investigated. 

Choice (A). p(t) = K( ., t, y(t)) is the exact kernel of (1.1). This choice is made to test the 
rational basis for an optimal choice of k. This is only possible if the exact solution y(t) of (1.1) 
is known. 

Choice (B). p(t) is a simple function that approximates and has the correct asymptotic 
behaviour of the kernel K. This situation may often arise in practice where the asymptotic 
behaviour of the solution y(t) is known. Consider equation (l.l)with (Y = 4 
with the assumed form [7] 

that has a solution 

y(t) =x(t) + Y(t)Ji, 

where X(t) and Y(t) are smooth functions on [0, T]. We have chosen 
following algorithm. Given yO, yl,. . . , yi_ 1, we first calculate an intermediate 
equation 

(4.4) 
to implement the 

value yy) from the 

y,“’ + h”*K( t;, t;, yy)) a,(‘)(l) = g( ti) - h”*K( ti, ti_l, ~~_&z&~‘(l) 

- h”*K(ti, ti_1, yi_l)a,(2) 
i-2 

- hl’* c K(ti, tj, _yj)yj, 
j=O 

(4.5) 

where ai’) and a,(‘)(l) are defined by (2.9). The next step is to calculate yi using (2.4). In order 
to calculate the weights a,(l) and u,(l) defined by (2.7) the solution is assumed to have the form 

,V(t)=x+ yJ7* IE [ti-_lp ti]> (4.6) 
where coefficients X and Y are obtained from Y,_~ and r/O’. Then 

p(t) =K(-, t, x+ Yfi), (4.7) 
and k is computed from equation (4.3). In this algorithm the intermediate values y/O) are 
“corrected” using the assumed form of the solution, namely (4.6). Henceforth we shall refer to 
this particular scheme as the choice (B). 

5. Results and conclusions 

In this section we solve a number of test problems to illustrate the numerical performance of 
the method. Before presenting the results it should be remarked that exponential fitting was 
originally introduced as a method for solving stiff equations on coarse meshes. Consequently, we 
anticipate that the method described here should work well for large values of the stepsize h. 

A simple example of a linear equation with nonsmooth solution is [16] 

y(t) = 1 -l’(t-s)-“‘y(s) ds, tE [O,l], (5.1) 

which has the solution v(t) = exp( Tt)erfc(G), where erfc is the complementary error function 

PI- 
Table 1 shows results for the rational basis approximation of the linear equation (5.1) on the 

coarse mesh h = 0.2. For choices (A) and (B) the k-parameters in each interval [ti_-l, ti] were 
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Table 1 
Errors e, = y, - _y(t,) obtained for equation (5.1) using h = 0.2 

i t, v(t,> 

1 0.2 0.491648 
2 0.4 0.396 653 
3 0.6 0.343 677 
4 0.8 0.308 158 
5 1.0 0.282 059 

$ =O) 

-5.2.10-2 
- 1.6-10-2 
-9.7*10-3 
-6.7.10-3 
-5.0.10-3 

Rational basis 

;;c =I) 
Choice (A) Choice (B) 

ei k ei k 

-2.6.10-2 2.4-10-3 4.756 -1.5.10-2 1.850 
-6.2.10-3 1.8.1O-4 0.436 -6.0.10-3 0.187 
-2.8.10-3 8.8.10-5 0.259 -3.7.10-3 0.106 
- 1.5.10-j 4.6.10K5 0.187 -2.6.10-3 0.074 

8.0.10-4 2.8.10-5 0.147 - 1.9.10-3 0.057 

obtained using (4.3). All the values of k are positive. We also show for comparison results using 
a linear basis (k = 0) and a rational basis with fixed k (k = 1). Choice (A) gives results that are 
between one and two orders of magnitude more accurate than the those using the linear basis. 
This improvement extends over the entire interval [0, 11. Results for choice (B) are close to those 
obtained using a fixed value of k. 

Next we consider two examples of nonlinear equations 

Y(f) = t 1’2 + ;~t~ - c’(l- ~)-*‘~y(s)~ ds, 
/ 

Y(l) = t 1’2 + +$$5’2 - o’(t - s)-“‘y(s)” ds, 
/ 

both of which have the solution y(t) = t’12. The resulting 
the IMSL subroutine ZBREN. 

[17]: 

t E [O, 21, 62) 

1 E [o, 33 > (5 -3) 

nonlinear equations were solved using 

Table 2 shows linear and rational basis (choice (B)) approximations of the two nonlinear 
equations (5.2) and (5.3) again on a mesh with h = 0.2. Both examples show improvement in the 
accuracy of the rational approximation over the linear approximation for the entire interval 
IO, Tl. 

Table 3 gives a list of results for the quantity -log,, ) e, 1 for a range of mesh sizes. In both 
the linear (5.2) and nonlinear examples (5.3), (5.4) we obtain improvement in the accuracy of the 
approximate solutions. 

It is interesting to compare the results using a rational basis with results from a collocation 
method using a nonpolynomial basis, such as those found by te Riele [17]. In his approach, te 
Riele approximates the solution y(t) by a linear combination of basis functions. Nonpolynomial 
functions of the form t’12 are used as basis functions in the first interval. Results obtained using 
the lowest-order basis t’12 do not show any improvement when compared with results using a 
linear basis for equations (5.2) and (5.3) [17, 10(b) and 10(c)]. The rational basis does, however, 
yield improvement over the linear basis. Further, it is stated by te Riele that extending the 
nonpolynomial basis over more intervals leads to a loss of accuracy. This is in stark contrast to 
the results we have obtained using the rational basis where a marked improvement in accuracy 
was obtained by extending the rational basis over all intervals. 

Our final example is a nonlinear equation that arises in the theory of superfluidity [ll]: 

Y(t) = -~~f(~-s)-‘/2(y(s) -sin s)~ ds, TV [0, 11. (5 04) 
0 
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Table 3 
Results for -log,, 1 e, ) 

Equation h Linear basis Rational basis te Riele [ 171 

(A (W 

(5.1) 0.2 2.3 4.6 2.7 4.08 
0.1 2.8 5.2 3.3 4.30 
0.05 3.2 5.7 3.8 4.67 
0.025 3.7 6.2 4.3 - 

(5.2) 0.2 
0.1 
0.05 
0.025 

3.5 
4.1 
4.7 
5.3 

3.5 
4.1 
4.7 
5.3 

5.7 5.3 - 

6.6 6.2 4.16 
7.3 7.2 4.75 
7.9 9.0 5.35 

(5.3) 0.2 
0.1 
0.05 
0.025 

7.0 5.5 
7.4 6.4 
8.2 7.5 
7.7 8.6 

4.12 
4.69 
5.27 

Equation (5.4) has a solution with asymptotic behaviour 

y(t) - o(t”q, t -+ o+. 
We therefore replace the assumed form of the solution (4.6) by a solution of the form 

y(t) -x+ yt”*, tE [&, tJ. (5 4 
Table 4 shows results using the rational basis (choice (B)). The reference solution is obtained 

using the high-order convergence method of [14], and these calculations were performed using 
the algorithm of [lo] with a fine mesh (h = 6). For the purpose of comparison we also show the 
results obtained from a linear basis (k = 0) and a rational basis with k = 1. 

Table 4 
Approximate solutions Y, obtained for equation (5.4) using h = 0.1 

i t i Reference Y; Rational basis 
solution [lo] (k=O) 

Yi Choice (B) 
(k=l) 

V; k 

1 0.1 
2 0.2 
3 0.3 
4 0.4 
5 0.5 
6 0.6 
7 0.7 
8 0.8 
9 0.9 

10 1.0 

0.161755.10-3 
0.177806.10-’ 
0.695735.10-2 
0.175626.10-’ 
0.345440*10- 
0.577505.10-l 
0.861496.10-’ 
0.118210 
0.152242 
0.186623 

0.235029.10-3 
0.200415-10-2 
0.732012.10-2 
0.179857.10-’ 
0.349374.10-l 
0.580508.10-r 
0.863323.10-’ 
0.118279 
0.152218 
0.186527 

0.265415.10-3 
0.221880.10-2 
0.790462.10-2 
0.190495~10-’ 
0.364680.10-’ 
o.599347f10-’ 
0.884093.10-’ 
0.120392 
0.154237 
0.188360 

0.160873.10-3 
0.177697.10-2 
0.695948.10-2 
0.175756.10-’ 
0.345822.10-’ 
0.578323.10-r 
0.862901.10-’ 
0.118415 
0.152509 
0.186941 

- 0.780 
- 0.456 
- 0.280 
- 0.167 
- 0.080 
- 0.003 

0.072 
0.151 
0.244 
0.374 
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It is clear that the amount of bias introduced into the rational basis can have a significant 
effect on the accuracy of the product integration method. Although the rational basis can be 
tailored to the asymptotic behaviour of the kernel, this does not guarantee that accurate results 
can be obtained over the entire domain of integration. In the examples that we have considered it 
is found that a nonzero k in each of the intervals of integration is required in order to yield high 
accuracy solutions. 
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